organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N1,N2-Bis[(2-chloro-6-methyl­quinolin-3-yl)methyl­­idene]ethane-1,2-di­amine

aChemistry Group, BITS, Pilani – K. K. Birla Goa Campus, Goa, India 403 726, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 9 October 2010; accepted 13 October 2010; online 20 October 2010)

The title mol­ecule, C24H20Cl2N4, lies on an inversion center in an extended trans conformation. In the crystal, weak C—H⋯Cl inter­actions connect the mol­ecules into chains along [010].

Related literature

For general background to Schiff bases, see: Schiff (1864[Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118-119.]); Huiyan et al. (2009[Huiyan, L., Feng, G., Dezhong, N. & Jinlei, T. (2009). Inorg. Chim. Acta, 362, 4179-4184.]); Kano et al. (2003[Kano, S., Nakano, H., Kojima, M., Baba, N. & Nakajima, K. (2003). Inorg. Chim. Acta, 349, 6-16.]); Liu et al. (2010[Liu, -C. Z., Wang, -D. B., Yang, -Y. Z., Li, -R. T. & Li, Y. (2010). Inorg. Chem. Commun. 13, 606-608.]); Salhi et al. (2009[Salhi, R., Rhouati, S., Gurek, G. A. & Ahsen, V. (2009). Asian J. Chem. 21, 4553-4558.]); Wang et al. (2008[Wang, -Q. J., Huang, L., Gao, L., Zhu, H. J., Wang, Y., Fan, X. & Zou, Z. (2008). Inorg. Chem. Commun. 11, 203-206.]); Yong & Zheng (2009[Yong, -C. L. & Zheng, -Y. Y. (2009). Eur. J. Med. Chem. 44, 5080-5089.]). For related structures, see: Assey et al. (2010[Assey, G. E., Butcher, R. J. & Gultneh, Y. (2010). Acta Cryst. E66, m620.]); Dipesh et al. (2007[Dipesh, P., Alexander, V. W., Scott, B. M. T., Hilborn, J., Desper, J. & Levy, C. J. (2007). Dalton Trans. pp. 4788-4796.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20Cl2N4

  • Mr = 435.34

  • Triclinic, [P \overline 1]

  • a = 4.4088 (8) Å

  • b = 7.2008 (11) Å

  • c = 16.9383 (18) Å

  • α = 84.236 (11)°

  • β = 87.924 (12)°

  • γ = 78.698 (14)°

  • V = 524.57 (14) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 2.93 mm−1

  • T = 295 K

  • 0.46 × 0.37 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Ruby Gemini detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.378, Tmax = 1.000

  • 3137 measured reflections

  • 2011 independent reflections

  • 1710 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.168

  • S = 1.05

  • 2011 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cli 0.93 2.86 3.780 (2) 170
Symmetry code: (i) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline Schiff base complexes are important class of compounds owing to their applications in the fields of environmental (Salhi et al., 2009), catalytic (Kano et al., 2003), DNA binding (Yong et al., 2009) and polymeric applications (Huiyan et al., 2009). Quinoline appended Schiff base complexes are also known for their photophysical properties (Liu et al., 2010; Wang et al., 2008). Related structures have already appeared in the literature (Assey et al., 2010; Dipesh et al., 2007). Herein we report the synthesis and crystal structure of the title compound, (I).

In the title compound, C24H20Cl2N4, the molecule is in an extended trans conformation and is located on a center of inversion between C12 and C12(-x, 1-y, -z). In the crystal structure, weak C—H···Cl interactions connect molecules into chains along [010].

Related literature top

For general background to Schiff bases, see: Schiff (1864); Huiyan et al. (2009); Kano et al. (2003); Liu et al. (2010); Salhi et al. (2009); Yong et al. (2009); Wang et al. (2008). For related structures, see: Assey et al. (2010); Dipesh et al. (2007).

Experimental top

A mixture of 2-chloro-3-formyl-6-methylquinoline (0.2 g, 1 mM) and ethylenediamine (0.03 ml, 0.5 mM) was stirred in dichloromethane for 3 h at room temperature. The solvent from the reaction mixture was removed under reduced pressure, and the resulting solid was dried and purified by column chromatography using a 1:3 mixture of ethyl acetate and hexane. Recrystallization was by slow evaporation of a dichloromethane solution of (I) which yielded white coloured needle type crystals. M.p. 485–487 K. Yield: 83%.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93, 0.96 and 0.97 Å; Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

Quinoline Schiff base complexes are important class of compounds owing to their applications in the fields of environmental (Salhi et al., 2009), catalytic (Kano et al., 2003), DNA binding (Yong et al., 2009) and polymeric applications (Huiyan et al., 2009). Quinoline appended Schiff base complexes are also known for their photophysical properties (Liu et al., 2010; Wang et al., 2008). Related structures have already appeared in the literature (Assey et al., 2010; Dipesh et al., 2007). Herein we report the synthesis and crystal structure of the title compound, (I).

In the title compound, C24H20Cl2N4, the molecule is in an extended trans conformation and is located on a center of inversion between C12 and C12(-x, 1-y, -z). In the crystal structure, weak C—H···Cl interactions connect molecules into chains along [010].

For general background to Schiff bases, see: Schiff (1864); Huiyan et al. (2009); Kano et al. (2003); Liu et al. (2010); Salhi et al. (2009); Yong et al. (2009); Wang et al. (2008). For related structures, see: Assey et al. (2010); Dipesh et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction 2007); cell refinement: CrysAlis PRO (Oxford Diffraction 2007); data reduction: CrysAlis PRO (Oxford Diffraction 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with unique part of molecule labeled. Ellipsoids drawn at 30% probability level. The unlabeled atoms are related by the symmetry operator (-x, 1-y, -z).
[Figure 2] Fig. 2. Part of the crystal structure viewed along the a axis showing the intermolecular C—H···Cl interactions as dashed lines.
N1,N2-Bis[(2-chloro-6-methylquinolin-3-yl)methylidene]ethane- 1,2-diamine top
Crystal data top
C24H20Cl2N4Z = 1
Mr = 435.34F(000) = 226
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 4.4088 (8) ÅCell parameters from 2032 reflections
b = 7.2008 (11) Åθ = 5.3–73.4°
c = 16.9383 (18) ŵ = 2.93 mm1
α = 84.236 (11)°T = 295 K
β = 87.924 (12)°Plate, colorless
γ = 78.698 (14)°0.46 × 0.37 × 0.15 mm
V = 524.57 (14) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby Gemini detector
2011 independent reflections
Radiation source: Enhance (Cu) X-ray Source1710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 73.6°, θmin = 5.3°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 88
Tmin = 0.378, Tmax = 1.000l = 2021
3137 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1105P)2 + 0.063P]
where P = (Fo2 + 2Fc2)/3
2011 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C24H20Cl2N4γ = 78.698 (14)°
Mr = 435.34V = 524.57 (14) Å3
Triclinic, P1Z = 1
a = 4.4088 (8) ÅCu Kα radiation
b = 7.2008 (11) ŵ = 2.93 mm1
c = 16.9383 (18) ÅT = 295 K
α = 84.236 (11)°0.46 × 0.37 × 0.15 mm
β = 87.924 (12)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Ruby Gemini detector
2011 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1710 reflections with I > 2σ(I)
Tmin = 0.378, Tmax = 1.000Rint = 0.028
3137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
2011 reflectionsΔρmin = 0.29 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.37544 (18)1.10262 (8)0.15067 (4)0.0756 (3)
N10.7058 (5)0.8882 (3)0.25986 (11)0.0533 (5)
N20.2488 (4)0.5727 (3)0.07293 (11)0.0532 (5)
C10.5343 (5)0.8821 (3)0.20006 (13)0.0500 (5)
C20.4730 (5)0.7140 (3)0.17101 (12)0.0459 (5)
C30.6152 (5)0.5444 (3)0.21010 (12)0.0463 (5)
H3A0.58440.43050.19340.056*
C40.8067 (5)0.5410 (3)0.27498 (12)0.0449 (5)
C50.9619 (5)0.3710 (3)0.31671 (13)0.0507 (5)
H5A0.93860.25460.30090.061*
C61.1455 (5)0.3738 (3)0.37978 (13)0.0540 (5)
C71.1733 (6)0.5531 (4)0.40297 (14)0.0597 (6)
H7A1.29400.55700.44640.072*
C81.0298 (6)0.7198 (3)0.36399 (14)0.0579 (6)
H8A1.05590.83480.38060.069*
C90.8427 (5)0.7190 (3)0.29892 (12)0.0470 (5)
C101.3155 (7)0.1939 (4)0.42378 (16)0.0696 (7)
H10A1.27240.08590.40040.104*
H10B1.24890.18860.47840.104*
H10C1.53390.19220.42060.104*
C110.2710 (5)0.7195 (3)0.10311 (13)0.0498 (5)
H11A0.15720.83580.08230.060*
C120.0528 (5)0.5922 (3)0.00365 (13)0.0517 (5)
H12A0.16770.62550.04390.062*
H12B0.12570.69330.00900.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1104 (6)0.0382 (4)0.0809 (5)0.0165 (3)0.0379 (4)0.0011 (3)
N10.0706 (11)0.0410 (10)0.0537 (10)0.0204 (8)0.0112 (9)0.0083 (7)
N20.0627 (11)0.0470 (10)0.0525 (10)0.0123 (8)0.0189 (8)0.0078 (8)
C10.0654 (13)0.0386 (11)0.0499 (11)0.0168 (9)0.0107 (9)0.0064 (8)
C20.0540 (11)0.0426 (11)0.0454 (10)0.0174 (8)0.0046 (8)0.0085 (8)
C30.0602 (12)0.0397 (10)0.0450 (10)0.0212 (9)0.0062 (9)0.0086 (8)
C40.0556 (11)0.0415 (10)0.0421 (10)0.0185 (8)0.0041 (8)0.0068 (8)
C50.0639 (13)0.0427 (11)0.0497 (11)0.0183 (9)0.0072 (9)0.0063 (9)
C60.0629 (13)0.0520 (13)0.0494 (11)0.0170 (10)0.0066 (9)0.0024 (9)
C70.0728 (14)0.0613 (14)0.0507 (12)0.0221 (11)0.0205 (10)0.0085 (10)
C80.0767 (15)0.0493 (12)0.0550 (12)0.0235 (10)0.0149 (11)0.0132 (9)
C90.0592 (11)0.0425 (11)0.0444 (10)0.0190 (8)0.0036 (8)0.0097 (8)
C100.0848 (17)0.0598 (15)0.0646 (15)0.0155 (13)0.0223 (13)0.0021 (12)
C110.0599 (12)0.0417 (11)0.0499 (11)0.0125 (9)0.0124 (9)0.0047 (8)
C120.0600 (12)0.0471 (12)0.0498 (11)0.0117 (9)0.0158 (9)0.0053 (9)
Geometric parameters (Å, º) top
Cl—C11.747 (2)C6—C71.415 (3)
N1—C11.295 (3)C6—C101.504 (3)
N1—C91.366 (3)C7—C81.361 (4)
N2—C111.242 (3)C7—H7A0.9300
N2—C121.462 (3)C8—C91.401 (3)
C1—C21.428 (3)C8—H8A0.9300
C2—C31.375 (3)C10—H10A0.9600
C2—C111.473 (3)C10—H10B0.9600
C3—C41.405 (3)C10—H10C0.9600
C3—H3A0.9300C11—H11A0.9300
C4—C51.414 (3)C12—C12i1.508 (4)
C4—C91.422 (3)C12—H12A0.9700
C5—C61.368 (3)C12—H12B0.9700
C5—H5A0.9300
C1—N1—C9117.53 (17)C6—C7—H7A118.8
C11—N2—C12117.90 (19)C7—C8—C9120.3 (2)
N1—C1—C2126.0 (2)C7—C8—H8A119.9
N1—C1—Cl115.36 (15)C9—C8—H8A119.9
C2—C1—Cl118.65 (16)N1—C9—C8119.18 (18)
C3—C2—C1116.02 (18)N1—C9—C4122.22 (19)
C3—C2—C11121.40 (18)C8—C9—C4118.6 (2)
C1—C2—C11122.6 (2)C6—C10—H10A109.5
C2—C3—C4120.86 (18)C6—C10—H10B109.5
C2—C3—H3A119.6H10A—C10—H10B109.5
C4—C3—H3A119.6C6—C10—H10C109.5
C3—C4—C5123.30 (18)H10A—C10—H10C109.5
C3—C4—C9117.38 (19)H10B—C10—H10C109.5
C5—C4—C9119.33 (18)N2—C11—C2121.6 (2)
C6—C5—C4121.50 (19)N2—C11—H11A119.2
C6—C5—H5A119.3C2—C11—H11A119.2
C4—C5—H5A119.3N2—C12—C12i109.9 (2)
C5—C6—C7117.9 (2)N2—C12—H12A109.7
C5—C6—C10121.9 (2)C12i—C12—H12A109.7
C7—C6—C10120.2 (2)N2—C12—H12B109.7
C8—C7—C6122.4 (2)C12i—C12—H12B109.7
C8—C7—H7A118.8H12A—C12—H12B108.2
C9—N1—C1—C20.3 (4)C10—C6—C7—C8178.5 (2)
C9—N1—C1—Cl178.07 (16)C6—C7—C8—C90.9 (4)
N1—C1—C2—C31.1 (4)C1—N1—C9—C8179.9 (2)
Cl—C1—C2—C3177.21 (16)C1—N1—C9—C41.2 (3)
N1—C1—C2—C11179.1 (2)C7—C8—C9—N1178.8 (2)
Cl—C1—C2—C112.6 (3)C7—C8—C9—C40.1 (4)
C1—C2—C3—C40.4 (3)C3—C4—C9—N11.8 (3)
C11—C2—C3—C4179.78 (19)C5—C4—C9—N1178.25 (19)
C2—C3—C4—C5179.1 (2)C3—C4—C9—C8179.34 (19)
C2—C3—C4—C90.9 (3)C5—C4—C9—C80.6 (3)
C3—C4—C5—C6179.8 (2)C12—N2—C11—C2177.51 (19)
C9—C4—C5—C60.2 (3)C3—C2—C11—N28.3 (3)
C4—C5—C6—C70.8 (3)C1—C2—C11—N2171.5 (2)
C4—C5—C6—C10179.0 (2)C11—N2—C12—C12i156.5 (2)
C5—C6—C7—C81.3 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Clii0.932.863.780 (2)170
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC24H20Cl2N4
Mr435.34
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.4088 (8), 7.2008 (11), 16.9383 (18)
α, β, γ (°)84.236 (11), 87.924 (12), 78.698 (14)
V3)524.57 (14)
Z1
Radiation typeCu Kα
µ (mm1)2.93
Crystal size (mm)0.46 × 0.37 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Ruby Gemini detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.378, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3137, 2011, 1710
Rint0.028
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.168, 1.05
No. of reflections2011
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cli0.932.863.780 (2)169.6
Symmetry code: (i) x, y1, z.
 

Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAssey, G. E., Butcher, R. J. & Gultneh, Y. (2010). Acta Cryst. E66, m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDipesh, P., Alexander, V. W., Scott, B. M. T., Hilborn, J., Desper, J. & Levy, C. J. (2007). Dalton Trans. pp. 4788–4796.  Google Scholar
First citationHuiyan, L., Feng, G., Dezhong, N. & Jinlei, T. (2009). Inorg. Chim. Acta, 362, 4179–4184.  Google Scholar
First citationKano, S., Nakano, H., Kojima, M., Baba, N. & Nakajima, K. (2003). Inorg. Chim. Acta, 349, 6–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, -C. Z., Wang, -D. B., Yang, -Y. Z., Li, -R. T. & Li, Y. (2010). Inorg. Chem. Commun. 13, 606–608.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSalhi, R., Rhouati, S., Gurek, G. A. & Ahsen, V. (2009). Asian J. Chem. 21, 4553–4558.  CAS Google Scholar
First citationSchiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, -Q. J., Huang, L., Gao, L., Zhu, H. J., Wang, Y., Fan, X. & Zou, Z. (2008). Inorg. Chem. Commun. 11, 203–206.  Web of Science CrossRef CAS Google Scholar
First citationYong, -C. L. & Zheng, -Y. Y. (2009). Eur. J. Med. Chem. 44, 5080–5089.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds