organic compounds
N1,N2-Bis[(2-chloro-6-methylquinolin-3-yl)methylidene]ethane-1,2-diamine
aChemistry Group, BITS, Pilani – K. K. Birla Goa Campus, Goa, India 403 726, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title molecule, C24H20Cl2N4, lies on an inversion center in an extended trans conformation. In the crystal, weak C—H⋯Cl interactions connect the molecules into chains along [010].
Related literature
For general background to ); Huiyan et al. (2009); Kano et al. (2003); Liu et al. (2010); Salhi et al. (2009); Wang et al. (2008); Yong & Zheng (2009). For related structures, see: Assey et al. (2010); Dipesh et al. (2007).
see: Schiff (1864Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810041309/lh5149sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041309/lh5149Isup2.hkl
A mixture of 2-chloro-3-formyl-6-methylquinoline (0.2 g, 1 mM) and ethylenediamine (0.03 ml, 0.5 mM) was stirred in dichloromethane for 3 h at room temperature. The solvent from the reaction mixture was removed under reduced pressure, and the resulting solid was dried and purified by
using a 1:3 mixture of ethyl acetate and hexane. Recrystallization was by slow evaporation of a dichloromethane solution of (I) which yielded white coloured needle type crystals. M.p. 485–487 K. Yield: 83%.H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93, 0.96 and 0.97 Å; Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).
Quinoline Schiff base complexes are important class of compounds owing to their applications in the fields of environmental (Salhi et al., 2009), catalytic (Kano et al., 2003), DNA binding (Yong et al., 2009) and polymeric applications (Huiyan et al., 2009). Quinoline appended Schiff base complexes are also known for their photophysical properties (Liu et al., 2010; Wang et al., 2008). Related structures have already appeared in the literature (Assey et al., 2010; Dipesh et al., 2007). Herein we report the synthesis and
of the title compound, (I).In the title compound, C24H20Cl2N4, the molecule is in an extended
conformation and is located on a center of inversion between C12 and C12(-x, 1-y, -z). In the weak C—H···Cl interactions connect molecules into chains along [010].For general background to
see: Schiff (1864); Huiyan et al. (2009); Kano et al. (2003); Liu et al. (2010); Salhi et al. (2009); Yong et al. (2009); Wang et al. (2008). For related structures, see: Assey et al. (2010); Dipesh et al. (2007).Data collection: CrysAlis PRO (Oxford Diffraction 2007); cell
CrysAlis PRO (Oxford Diffraction 2007); data reduction: CrysAlis PRO (Oxford Diffraction 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H20Cl2N4 | Z = 1 |
Mr = 435.34 | F(000) = 226 |
Triclinic, P1 | Dx = 1.378 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 4.4088 (8) Å | Cell parameters from 2032 reflections |
b = 7.2008 (11) Å | θ = 5.3–73.4° |
c = 16.9383 (18) Å | µ = 2.93 mm−1 |
α = 84.236 (11)° | T = 295 K |
β = 87.924 (12)° | Plate, colorless |
γ = 78.698 (14)° | 0.46 × 0.37 × 0.15 mm |
V = 524.57 (14) Å3 |
Oxford Diffraction Xcalibur diffractometer with Ruby Gemini detector | 2011 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1710 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 73.6°, θmin = 5.3° |
ω scans | h = −5→5 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −8→8 |
Tmin = 0.378, Tmax = 1.000 | l = −20→21 |
3137 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.168 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1105P)2 + 0.063P] where P = (Fo2 + 2Fc2)/3 |
2011 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C24H20Cl2N4 | γ = 78.698 (14)° |
Mr = 435.34 | V = 524.57 (14) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.4088 (8) Å | Cu Kα radiation |
b = 7.2008 (11) Å | µ = 2.93 mm−1 |
c = 16.9383 (18) Å | T = 295 K |
α = 84.236 (11)° | 0.46 × 0.37 × 0.15 mm |
β = 87.924 (12)° |
Oxford Diffraction Xcalibur diffractometer with Ruby Gemini detector | 2011 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 1710 reflections with I > 2σ(I) |
Tmin = 0.378, Tmax = 1.000 | Rint = 0.028 |
3137 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.168 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.44 e Å−3 |
2011 reflections | Δρmin = −0.29 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.37544 (18) | 1.10262 (8) | 0.15067 (4) | 0.0756 (3) | |
N1 | 0.7058 (5) | 0.8882 (3) | 0.25986 (11) | 0.0533 (5) | |
N2 | 0.2488 (4) | 0.5727 (3) | 0.07293 (11) | 0.0532 (5) | |
C1 | 0.5343 (5) | 0.8821 (3) | 0.20006 (13) | 0.0500 (5) | |
C2 | 0.4730 (5) | 0.7140 (3) | 0.17101 (12) | 0.0459 (5) | |
C3 | 0.6152 (5) | 0.5444 (3) | 0.21010 (12) | 0.0463 (5) | |
H3A | 0.5844 | 0.4305 | 0.1934 | 0.056* | |
C4 | 0.8067 (5) | 0.5410 (3) | 0.27498 (12) | 0.0449 (5) | |
C5 | 0.9619 (5) | 0.3710 (3) | 0.31671 (13) | 0.0507 (5) | |
H5A | 0.9386 | 0.2546 | 0.3009 | 0.061* | |
C6 | 1.1455 (5) | 0.3738 (3) | 0.37978 (13) | 0.0540 (5) | |
C7 | 1.1733 (6) | 0.5531 (4) | 0.40297 (14) | 0.0597 (6) | |
H7A | 1.2940 | 0.5570 | 0.4464 | 0.072* | |
C8 | 1.0298 (6) | 0.7198 (3) | 0.36399 (14) | 0.0579 (6) | |
H8A | 1.0559 | 0.8348 | 0.3806 | 0.069* | |
C9 | 0.8427 (5) | 0.7190 (3) | 0.29892 (12) | 0.0470 (5) | |
C10 | 1.3155 (7) | 0.1939 (4) | 0.42378 (16) | 0.0696 (7) | |
H10A | 1.2724 | 0.0859 | 0.4004 | 0.104* | |
H10B | 1.2489 | 0.1886 | 0.4784 | 0.104* | |
H10C | 1.5339 | 0.1922 | 0.4206 | 0.104* | |
C11 | 0.2710 (5) | 0.7195 (3) | 0.10311 (13) | 0.0498 (5) | |
H11A | 0.1572 | 0.8358 | 0.0823 | 0.060* | |
C12 | 0.0528 (5) | 0.5922 (3) | 0.00365 (13) | 0.0517 (5) | |
H12A | 0.1677 | 0.6255 | −0.0439 | 0.062* | |
H12B | −0.1257 | 0.6933 | 0.0090 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.1104 (6) | 0.0382 (4) | 0.0809 (5) | −0.0165 (3) | −0.0379 (4) | −0.0011 (3) |
N1 | 0.0706 (11) | 0.0410 (10) | 0.0537 (10) | −0.0204 (8) | −0.0112 (9) | −0.0083 (7) |
N2 | 0.0627 (11) | 0.0470 (10) | 0.0525 (10) | −0.0123 (8) | −0.0189 (8) | −0.0078 (8) |
C1 | 0.0654 (13) | 0.0386 (11) | 0.0499 (11) | −0.0168 (9) | −0.0107 (9) | −0.0064 (8) |
C2 | 0.0540 (11) | 0.0426 (11) | 0.0454 (10) | −0.0174 (8) | −0.0046 (8) | −0.0085 (8) |
C3 | 0.0602 (12) | 0.0397 (10) | 0.0450 (10) | −0.0212 (9) | −0.0062 (9) | −0.0086 (8) |
C4 | 0.0556 (11) | 0.0415 (10) | 0.0421 (10) | −0.0185 (8) | −0.0041 (8) | −0.0068 (8) |
C5 | 0.0639 (13) | 0.0427 (11) | 0.0497 (11) | −0.0183 (9) | −0.0072 (9) | −0.0063 (9) |
C6 | 0.0629 (13) | 0.0520 (13) | 0.0494 (11) | −0.0170 (10) | −0.0066 (9) | −0.0024 (9) |
C7 | 0.0728 (14) | 0.0613 (14) | 0.0507 (12) | −0.0221 (11) | −0.0205 (10) | −0.0085 (10) |
C8 | 0.0767 (15) | 0.0493 (12) | 0.0550 (12) | −0.0235 (10) | −0.0149 (11) | −0.0132 (9) |
C9 | 0.0592 (11) | 0.0425 (11) | 0.0444 (10) | −0.0190 (8) | −0.0036 (8) | −0.0097 (8) |
C10 | 0.0848 (17) | 0.0598 (15) | 0.0646 (15) | −0.0155 (13) | −0.0223 (13) | 0.0021 (12) |
C11 | 0.0599 (12) | 0.0417 (11) | 0.0499 (11) | −0.0125 (9) | −0.0124 (9) | −0.0047 (8) |
C12 | 0.0600 (12) | 0.0471 (12) | 0.0498 (11) | −0.0117 (9) | −0.0158 (9) | −0.0053 (9) |
Cl—C1 | 1.747 (2) | C6—C7 | 1.415 (3) |
N1—C1 | 1.295 (3) | C6—C10 | 1.504 (3) |
N1—C9 | 1.366 (3) | C7—C8 | 1.361 (4) |
N2—C11 | 1.242 (3) | C7—H7A | 0.9300 |
N2—C12 | 1.462 (3) | C8—C9 | 1.401 (3) |
C1—C2 | 1.428 (3) | C8—H8A | 0.9300 |
C2—C3 | 1.375 (3) | C10—H10A | 0.9600 |
C2—C11 | 1.473 (3) | C10—H10B | 0.9600 |
C3—C4 | 1.405 (3) | C10—H10C | 0.9600 |
C3—H3A | 0.9300 | C11—H11A | 0.9300 |
C4—C5 | 1.414 (3) | C12—C12i | 1.508 (4) |
C4—C9 | 1.422 (3) | C12—H12A | 0.9700 |
C5—C6 | 1.368 (3) | C12—H12B | 0.9700 |
C5—H5A | 0.9300 | ||
C1—N1—C9 | 117.53 (17) | C6—C7—H7A | 118.8 |
C11—N2—C12 | 117.90 (19) | C7—C8—C9 | 120.3 (2) |
N1—C1—C2 | 126.0 (2) | C7—C8—H8A | 119.9 |
N1—C1—Cl | 115.36 (15) | C9—C8—H8A | 119.9 |
C2—C1—Cl | 118.65 (16) | N1—C9—C8 | 119.18 (18) |
C3—C2—C1 | 116.02 (18) | N1—C9—C4 | 122.22 (19) |
C3—C2—C11 | 121.40 (18) | C8—C9—C4 | 118.6 (2) |
C1—C2—C11 | 122.6 (2) | C6—C10—H10A | 109.5 |
C2—C3—C4 | 120.86 (18) | C6—C10—H10B | 109.5 |
C2—C3—H3A | 119.6 | H10A—C10—H10B | 109.5 |
C4—C3—H3A | 119.6 | C6—C10—H10C | 109.5 |
C3—C4—C5 | 123.30 (18) | H10A—C10—H10C | 109.5 |
C3—C4—C9 | 117.38 (19) | H10B—C10—H10C | 109.5 |
C5—C4—C9 | 119.33 (18) | N2—C11—C2 | 121.6 (2) |
C6—C5—C4 | 121.50 (19) | N2—C11—H11A | 119.2 |
C6—C5—H5A | 119.3 | C2—C11—H11A | 119.2 |
C4—C5—H5A | 119.3 | N2—C12—C12i | 109.9 (2) |
C5—C6—C7 | 117.9 (2) | N2—C12—H12A | 109.7 |
C5—C6—C10 | 121.9 (2) | C12i—C12—H12A | 109.7 |
C7—C6—C10 | 120.2 (2) | N2—C12—H12B | 109.7 |
C8—C7—C6 | 122.4 (2) | C12i—C12—H12B | 109.7 |
C8—C7—H7A | 118.8 | H12A—C12—H12B | 108.2 |
C9—N1—C1—C2 | 0.3 (4) | C10—C6—C7—C8 | 178.5 (2) |
C9—N1—C1—Cl | −178.07 (16) | C6—C7—C8—C9 | 0.9 (4) |
N1—C1—C2—C3 | −1.1 (4) | C1—N1—C9—C8 | −179.9 (2) |
Cl—C1—C2—C3 | 177.21 (16) | C1—N1—C9—C4 | 1.2 (3) |
N1—C1—C2—C11 | 179.1 (2) | C7—C8—C9—N1 | −178.8 (2) |
Cl—C1—C2—C11 | −2.6 (3) | C7—C8—C9—C4 | 0.1 (4) |
C1—C2—C3—C4 | 0.4 (3) | C3—C4—C9—N1 | −1.8 (3) |
C11—C2—C3—C4 | −179.78 (19) | C5—C4—C9—N1 | 178.25 (19) |
C2—C3—C4—C5 | −179.1 (2) | C3—C4—C9—C8 | 179.34 (19) |
C2—C3—C4—C9 | 0.9 (3) | C5—C4—C9—C8 | −0.6 (3) |
C3—C4—C5—C6 | −179.8 (2) | C12—N2—C11—C2 | −177.51 (19) |
C9—C4—C5—C6 | 0.2 (3) | C3—C2—C11—N2 | −8.3 (3) |
C4—C5—C6—C7 | 0.8 (3) | C1—C2—C11—N2 | 171.5 (2) |
C4—C5—C6—C10 | −179.0 (2) | C11—N2—C12—C12i | −156.5 (2) |
C5—C6—C7—C8 | −1.3 (4) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Clii | 0.93 | 2.86 | 3.780 (2) | 170 |
Symmetry code: (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C24H20Cl2N4 |
Mr | 435.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 4.4088 (8), 7.2008 (11), 16.9383 (18) |
α, β, γ (°) | 84.236 (11), 87.924 (12), 78.698 (14) |
V (Å3) | 524.57 (14) |
Z | 1 |
Radiation type | Cu Kα |
µ (mm−1) | 2.93 |
Crystal size (mm) | 0.46 × 0.37 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with Ruby Gemini detector |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.378, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3137, 2011, 1710 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.622 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.168, 1.05 |
No. of reflections | 2011 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.29 |
Computer programs: CrysAlis PRO (Oxford Diffraction 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cli | 0.93 | 2.86 | 3.780 (2) | 169.6 |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.
References
Assey, G. E., Butcher, R. J. & Gultneh, Y. (2010). Acta Cryst. E66, m620. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dipesh, P., Alexander, V. W., Scott, B. M. T., Hilborn, J., Desper, J. & Levy, C. J. (2007). Dalton Trans. pp. 4788–4796. Google Scholar
Huiyan, L., Feng, G., Dezhong, N. & Jinlei, T. (2009). Inorg. Chim. Acta, 362, 4179–4184. Google Scholar
Kano, S., Nakano, H., Kojima, M., Baba, N. & Nakajima, K. (2003). Inorg. Chim. Acta, 349, 6–16. Web of Science CSD CrossRef CAS Google Scholar
Liu, -C. Z., Wang, -D. B., Yang, -Y. Z., Li, -R. T. & Li, Y. (2010). Inorg. Chem. Commun. 13, 606–608. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Salhi, R., Rhouati, S., Gurek, G. A. & Ahsen, V. (2009). Asian J. Chem. 21, 4553–4558. CAS Google Scholar
Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118–119. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, -Q. J., Huang, L., Gao, L., Zhu, H. J., Wang, Y., Fan, X. & Zou, Z. (2008). Inorg. Chem. Commun. 11, 203–206. Web of Science CrossRef CAS Google Scholar
Yong, -C. L. & Zheng, -Y. Y. (2009). Eur. J. Med. Chem. 44, 5080–5089. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline Schiff base complexes are important class of compounds owing to their applications in the fields of environmental (Salhi et al., 2009), catalytic (Kano et al., 2003), DNA binding (Yong et al., 2009) and polymeric applications (Huiyan et al., 2009). Quinoline appended Schiff base complexes are also known for their photophysical properties (Liu et al., 2010; Wang et al., 2008). Related structures have already appeared in the literature (Assey et al., 2010; Dipesh et al., 2007). Herein we report the synthesis and crystal structure of the title compound, (I).
In the title compound, C24H20Cl2N4, the molecule is in an extended trans conformation and is located on a center of inversion between C12 and C12(-x, 1-y, -z). In the crystal structure, weak C—H···Cl interactions connect molecules into chains along [010].