metal-organic compounds
{6,6′-Diethoxy-2,2′-[4,5-dimethyl-o-phenylenebis(nitrilomethylidyne)]diphenolato}copper(II)
aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, rkia@srbiau.ac.ir, dmntahir_uos@yahoo.com
In the title complex, [Cu(C26H26N2O4)], the CuII ion lies on a crystallographic twofold rotation axis and is coordinated in a slightly distorted square-planar environment. The dihedral angle between the central benzene ring and each of the two symmetry-related outer benzene rings is 5.1 (2)°. The is stabilized by intermolecular π–π interactions with centroid–centroid distances in the range 3.466 (2)–3.6431 (16) Å.
Related literature
For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998); Elmali et al. (2000). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810042789/lh5150sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810042789/lh5150Isup2.hkl
The title compound was synthesized by adding bis(3-ethoxysalicylidene)-4,5- dimethyl phenylenediamine (2 mmol) to a solution of CuCl2.4H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Dark-green single crystals of the title compound suitable for X-ray
were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.All hydrogen atoms were positioned geometrically with C-H = 0.93-0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was applied to the methyl groups.
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the
have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower et al., 1998).The molecular structure of the title compound is shown in Fig. 1. The π–π interactions [Cg1···Cg3i = 3.594 (2)Å, (i) -x, 1 - y, -z; Cg2···Cg2i = 3.6431 (16)Å, Cg2···Cg3i = 3.466 (2)Å, Cg1, Cg2, and Cg3 are the centroids of Cu1/N1/C8/C8A/N1A, C1–C6, and Cu1/O1/C1/C6/C7/N1, respectively.
comprises half of a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The geometry around the CuII ion is slightly distorted square-planar for which the coordination is a N2O2 donor set of the Schiff base ligand. The dihedral angle between the mean planes of the centeral aromatic ring with the two symmetry-related outer rings is 5.1 (2)°. The is stabilized by intermolecularFor background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998); Elmali et al. (2000). For standard bond lengths, see: Allen et al. (1987).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cu(C26H26N2O4)] | F(000) = 1028 |
Mr = 494.03 | Dx = 1.294 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2273 reflections |
a = 14.9755 (7) Å | θ = 2.5–27.5° |
b = 15.8803 (7) Å | µ = 0.89 mm−1 |
c = 12.2264 (6) Å | T = 296 K |
β = 119.285 (2)° | Block, green |
V = 2536.0 (2) Å3 | 0.27 × 0.21 × 0.11 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 3157 independent reflections |
Radiation source: fine-focus sealed tube | 1910 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
φ and ω scans | θmax = 28.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −16→20 |
Tmin = 0.982, Tmax = 0.992 | k = 0→21 |
3157 measured reflections | l = −16→0 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0549P)2 + 4.1197P] where P = (Fo2 + 2Fc2)/3 |
3157 reflections | (Δ/σ)max = 0.001 |
152 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[Cu(C26H26N2O4)] | V = 2536.0 (2) Å3 |
Mr = 494.03 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 14.9755 (7) Å | µ = 0.89 mm−1 |
b = 15.8803 (7) Å | T = 296 K |
c = 12.2264 (6) Å | 0.27 × 0.21 × 0.11 mm |
β = 119.285 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3157 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1910 reflections with I > 2σ(I) |
Tmin = 0.982, Tmax = 0.992 | Rint = 0.049 |
3157 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.43 e Å−3 |
3157 reflections | Δρmin = −0.46 e Å−3 |
152 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.51186 (3) | 0.2500 | 0.0401 (2) | |
O1 | 0.06365 (19) | 0.42620 (14) | 0.2039 (2) | 0.0464 (6) | |
N1 | 0.0519 (2) | 0.60241 (16) | 0.1905 (3) | 0.0401 (7) | |
O2 | 0.1286 (2) | 0.28916 (14) | 0.1524 (3) | 0.0591 (8) | |
C1 | 0.1134 (3) | 0.4353 (2) | 0.1421 (3) | 0.0395 (8) | |
C2 | 0.1501 (3) | 0.3619 (2) | 0.1111 (3) | 0.0444 (9) | |
C3 | 0.2022 (3) | 0.3667 (3) | 0.0445 (4) | 0.0548 (10) | |
H3A | 0.2271 | 0.3177 | 0.0272 | 0.066* | |
C4 | 0.2178 (3) | 0.4435 (3) | 0.0029 (4) | 0.0590 (11) | |
H4A | 0.2514 | 0.4457 | −0.0440 | 0.071* | |
C5 | 0.1843 (3) | 0.5156 (3) | 0.0305 (4) | 0.0531 (10) | |
H5A | 0.1958 | 0.5670 | 0.0028 | 0.064* | |
C6 | 0.1315 (3) | 0.5138 (2) | 0.1013 (3) | 0.0411 (8) | |
C7 | 0.0998 (3) | 0.5921 (2) | 0.1269 (3) | 0.0449 (9) | |
H7A | 0.1145 | 0.6403 | 0.0954 | 0.054* | |
C8 | 0.0270 (3) | 0.6835 (2) | 0.2165 (3) | 0.0436 (9) | |
C9 | 0.0525 (3) | 0.7599 (2) | 0.1837 (4) | 0.0544 (10) | |
H9A | 0.0881 | 0.7601 | 0.1392 | 0.065* | |
C10 | 0.0264 (3) | 0.8356 (2) | 0.2158 (4) | 0.0621 (13) | |
C11 | 0.0545 (4) | 0.9164 (3) | 0.1760 (5) | 0.0899 (18) | |
H11A | 0.0925 | 0.9516 | 0.2481 | 0.135* | |
H11B | −0.0067 | 0.9451 | 0.1169 | 0.135* | |
H11C | 0.0957 | 0.9041 | 0.1376 | 0.135* | |
C12 | 0.1611 (3) | 0.2112 (2) | 0.1270 (4) | 0.0537 (10) | |
H12A | 0.2352 | 0.2095 | 0.1671 | 0.064* | |
H12B | 0.1336 | 0.2044 | 0.0373 | 0.064* | |
C13 | 0.1234 (4) | 0.1426 (3) | 0.1764 (5) | 0.0774 (14) | |
H13A | 0.1490 | 0.0896 | 0.1659 | 0.116* | |
H13B | 0.0499 | 0.1419 | 0.1313 | 0.116* | |
H13C | 0.1469 | 0.1521 | 0.2638 | 0.116* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0526 (4) | 0.0263 (3) | 0.0492 (4) | 0.000 | 0.0309 (3) | 0.000 |
O1 | 0.0652 (17) | 0.0318 (12) | 0.0572 (16) | 0.0001 (11) | 0.0415 (15) | 0.0021 (11) |
N1 | 0.0440 (18) | 0.0284 (15) | 0.0416 (17) | 0.0005 (12) | 0.0161 (15) | 0.0026 (12) |
O2 | 0.084 (2) | 0.0334 (14) | 0.084 (2) | 0.0090 (13) | 0.0601 (18) | 0.0010 (13) |
C1 | 0.041 (2) | 0.0384 (19) | 0.042 (2) | −0.0003 (15) | 0.0224 (18) | 0.0007 (15) |
C2 | 0.050 (2) | 0.045 (2) | 0.044 (2) | 0.0025 (17) | 0.0278 (19) | −0.0011 (16) |
C3 | 0.056 (3) | 0.057 (2) | 0.061 (3) | 0.002 (2) | 0.037 (2) | −0.006 (2) |
C4 | 0.058 (3) | 0.071 (3) | 0.066 (3) | −0.005 (2) | 0.045 (2) | −0.002 (2) |
C5 | 0.057 (2) | 0.053 (2) | 0.052 (2) | −0.0105 (19) | 0.029 (2) | 0.0052 (19) |
C6 | 0.0423 (19) | 0.0403 (18) | 0.0402 (19) | −0.0024 (16) | 0.0199 (16) | 0.0006 (16) |
C7 | 0.049 (2) | 0.040 (2) | 0.042 (2) | −0.0098 (16) | 0.0197 (19) | 0.0053 (16) |
C8 | 0.048 (2) | 0.0262 (17) | 0.042 (2) | −0.0007 (15) | 0.0111 (17) | 0.0014 (15) |
C9 | 0.060 (3) | 0.0328 (19) | 0.054 (2) | −0.0060 (18) | 0.015 (2) | 0.0081 (17) |
C10 | 0.069 (3) | 0.0271 (19) | 0.053 (3) | −0.0036 (18) | 0.001 (2) | 0.0032 (16) |
C11 | 0.116 (4) | 0.032 (2) | 0.083 (4) | −0.015 (2) | 0.019 (3) | 0.010 (2) |
C12 | 0.055 (2) | 0.044 (2) | 0.064 (3) | 0.0131 (18) | 0.031 (2) | −0.0042 (18) |
C13 | 0.101 (4) | 0.039 (2) | 0.103 (4) | 0.011 (2) | 0.058 (3) | 0.000 (2) |
Cu1—O1i | 1.898 (2) | C6—C7 | 1.419 (5) |
Cu1—O1 | 1.898 (2) | C7—H7A | 0.9300 |
Cu1—N1i | 1.938 (3) | C8—C9 | 1.389 (5) |
Cu1—N1 | 1.938 (3) | C8—C8i | 1.406 (7) |
O1—C1 | 1.303 (4) | C9—C10 | 1.379 (5) |
N1—C7 | 1.301 (5) | C9—H9A | 0.9300 |
N1—C8 | 1.419 (4) | C10—C10i | 1.404 (9) |
O2—C2 | 1.361 (4) | C10—C11 | 1.504 (5) |
O2—C12 | 1.419 (4) | C11—H11A | 0.9600 |
C1—C2 | 1.417 (5) | C11—H11B | 0.9600 |
C1—C6 | 1.417 (5) | C11—H11C | 0.9600 |
C2—C3 | 1.378 (5) | C12—C13 | 1.484 (6) |
C3—C4 | 1.385 (5) | C12—H12A | 0.9700 |
C3—H3A | 0.9300 | C12—H12B | 0.9700 |
C4—C5 | 1.358 (5) | C13—H13A | 0.9600 |
C4—H4A | 0.9300 | C13—H13B | 0.9600 |
C5—C6 | 1.430 (5) | C13—H13C | 0.9600 |
C5—H5A | 0.9300 | ||
O1i—Cu1—O1 | 88.42 (14) | N1—C7—H7A | 117.2 |
O1i—Cu1—N1i | 93.93 (11) | C6—C7—H7A | 117.2 |
O1—Cu1—N1i | 174.47 (11) | C9—C8—C8i | 119.1 (2) |
O1i—Cu1—N1 | 174.47 (11) | C9—C8—N1 | 126.1 (4) |
O1—Cu1—N1 | 93.93 (11) | C8i—C8—N1 | 114.82 (19) |
N1i—Cu1—N1 | 84.17 (17) | C10—C9—C8 | 121.6 (4) |
C1—O1—Cu1 | 127.2 (2) | C10—C9—H9A | 119.2 |
C7—N1—C8 | 122.0 (3) | C8—C9—H9A | 119.2 |
C7—N1—Cu1 | 124.8 (2) | C9—C10—C10i | 119.4 (3) |
C8—N1—Cu1 | 113.1 (2) | C9—C10—C11 | 119.2 (4) |
C2—O2—C12 | 119.4 (3) | C10i—C10—C11 | 121.4 (3) |
O1—C1—C2 | 118.0 (3) | C10—C11—H11A | 109.5 |
O1—C1—C6 | 124.3 (3) | C10—C11—H11B | 109.5 |
C2—C1—C6 | 117.6 (3) | H11A—C11—H11B | 109.5 |
O2—C2—C3 | 124.8 (3) | C10—C11—H11C | 109.5 |
O2—C2—C1 | 114.0 (3) | H11A—C11—H11C | 109.5 |
C3—C2—C1 | 121.2 (3) | H11B—C11—H11C | 109.5 |
C2—C3—C4 | 120.7 (4) | O2—C12—C13 | 108.2 (3) |
C2—C3—H3A | 119.6 | O2—C12—H12A | 110.1 |
C4—C3—H3A | 119.6 | C13—C12—H12A | 110.1 |
C5—C4—C3 | 120.2 (4) | O2—C12—H12B | 110.1 |
C5—C4—H4A | 119.9 | C13—C12—H12B | 110.1 |
C3—C4—H4A | 119.9 | H12A—C12—H12B | 108.4 |
C4—C5—C6 | 121.0 (4) | C12—C13—H13A | 109.5 |
C4—C5—H5A | 119.5 | C12—C13—H13B | 109.5 |
C6—C5—H5A | 119.5 | H13A—C13—H13B | 109.5 |
C1—C6—C7 | 123.4 (3) | C12—C13—H13C | 109.5 |
C1—C6—C5 | 119.2 (3) | H13A—C13—H13C | 109.5 |
C7—C6—C5 | 117.3 (3) | H13B—C13—H13C | 109.5 |
N1—C7—C6 | 125.7 (3) | ||
O1i—Cu1—O1—C1 | 169.0 (3) | C2—C1—C6—C7 | −179.4 (3) |
N1—Cu1—O1—C1 | −6.0 (3) | O1—C1—C6—C5 | −177.9 (3) |
O1—Cu1—N1—C7 | 8.1 (3) | C2—C1—C6—C5 | 0.7 (5) |
N1i—Cu1—N1—C7 | −177.1 (4) | C4—C5—C6—C1 | −0.6 (6) |
O1—Cu1—N1—C8 | −175.5 (2) | C4—C5—C6—C7 | 179.5 (3) |
N1i—Cu1—N1—C8 | −0.69 (17) | C8—N1—C7—C6 | 177.1 (3) |
Cu1—O1—C1—C2 | −176.4 (2) | Cu1—N1—C7—C6 | −6.9 (5) |
Cu1—O1—C1—C6 | 2.2 (5) | C1—C6—C7—N1 | 0.7 (6) |
C12—O2—C2—C3 | 0.1 (6) | C5—C6—C7—N1 | −179.4 (3) |
C12—O2—C2—C1 | 179.8 (3) | C7—N1—C8—C9 | −2.6 (6) |
O1—C1—C2—O2 | −0.6 (5) | Cu1—N1—C8—C9 | −179.1 (3) |
C6—C1—C2—O2 | −179.3 (3) | C7—N1—C8—C8i | 178.5 (4) |
O1—C1—C2—C3 | 179.1 (3) | Cu1—N1—C8—C8i | 2.0 (5) |
C6—C1—C2—C3 | 0.5 (5) | C8i—C8—C9—C10 | 0.2 (6) |
O2—C2—C3—C4 | 178.0 (4) | N1—C8—C9—C10 | −178.7 (3) |
C1—C2—C3—C4 | −1.7 (6) | C8—C9—C10—C10i | 0.7 (7) |
C2—C3—C4—C5 | 1.8 (7) | C8—C9—C10—C11 | −179.0 (4) |
C3—C4—C5—C6 | −0.6 (6) | C2—O2—C12—C13 | −177.2 (4) |
O1—C1—C6—C7 | 2.0 (6) |
Symmetry code: (i) −x, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C26H26N2O4)] |
Mr | 494.03 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 14.9755 (7), 15.8803 (7), 12.2264 (6) |
β (°) | 119.285 (2) |
V (Å3) | 2536.0 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.27 × 0.21 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.982, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3157, 3157, 1910 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.147, 1.05 |
No. of reflections | 3157 |
No. of parameters | 152 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.46 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
HK and AJ thank PNU for financial support. RK thanks the Islamic Azad University and Professor H. M. Stoeckli-Evans for valuable help.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Blower, P. J. (1998). Transition Met. Chem. 23, 109–112. CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. CSD CrossRef CAS IUCr Journals Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower et al., 1998).
The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit comprises half of a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The geometry around the CuII ion is slightly distorted square-planar for which the coordination is a N2O2 donor set of the Schiff base ligand. The dihedral angle between the mean planes of the centeral aromatic ring with the two symmetry-related outer rings is 5.1 (2)°. The crystal structure is stabilized by intermolecular π–π interactions [Cg1···Cg3i = 3.594 (2)Å, (i) -x, 1 - y, -z; Cg2···Cg2i = 3.6431 (16)Å, Cg2···Cg3i = 3.466 (2)Å, Cg1, Cg2, and Cg3 are the centroids of Cu1/N1/C8/C8A/N1A, C1–C6, and Cu1/O1/C1/C6/C7/N1, respectively.