organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Fluoro­benzyl­­idene)acetohydrazide

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 10 October 2010; accepted 21 October 2010; online 30 October 2010)

The title compound, C9H9FN2O, was prepared by the reaction of 4-fluoro­benzophenone and acethydrazide. In the mol­ecule, all non-H atoms are essentially coplanar [r.m.s. deviation = 0.065 (2) Å]. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to Schiff bases, see: Goswami et al. (2009[Goswami, T. K., Roy, M., Nethaji, M. & Chakravarty, A. R. (2009). Organometallics, pp. 1992-1994]); Zhang et al. (2010[Zhang, H. L., Syed, S. & Barbas, C. F. (2010). Org. Lett. pp. 708-711.]). For related structures, see: Li & Jian (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]); Girgis (2006[Girgis, A. S. (2006). J. Chem. Res. pp. 81-85.]); Yang et al. (2010[Yang, J., Jiang, Z.-D., Zhang, F.-G. & Jian, F.-F. (2010). Acta Cryst. E66, o927.]);

[Scheme 1]

Experimental

Crystal data
  • C9H9FN2O

  • Mr = 180.18

  • Monoclinic, P 21 /n

  • a = 10.443 (2) Å

  • b = 4.0418 (8) Å

  • c = 21.172 (4) Å

  • β = 96.71 (3)°

  • V = 887.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 7536 measured reflections

  • 2033 independent reflections

  • 1412 reflections with I > σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.176

  • S = 1.12

  • 2033 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.04 2.899 (2) 176
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention in the literature (Zhang et al., 2010; Goswami et al., 2009). As part of our search for new schiff base compounds we synthesized the title compound(I) and its crystal structure is reported herein. In the title compound (Fig. 1), the bond lengths and angles are similar to those in related structures (Li & Jian, 2008; Yang et al., 2010). The C3N2 bond length of 1.269 (2)Å is slight shorter than the CN double bond [1.281 (2) Å and 1.2732 (18)] reported by Girgis (2006) and Yang et al. (2010). In the crystal structure, molecules are linked into centrosymmetric dimers by pairs of intermolecular N—H···O hydrogen bonds (Table 1).

Related literature top

For general background to Schiff bases, see: Goswami et al. (2009); Zhang et al. (2010). For related structures, see: Li & Jian (2008); Girgis (2006); Yang et al. (2010);

Experimental top

A mixture of the 4-fluorobenzophenone (0.02 mol) and acethydrazide (0.02 mol) was stirred in refluxing ethanol (30 ml) for 2 h to afford the title compound (yield 65%). Single crystals suitable for X-ray measurements were obtained by recrystallization from a solution of the title compound in ethanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H 0.93–0.96Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl)

Structure description top

Schiff bases have received considerable attention in the literature (Zhang et al., 2010; Goswami et al., 2009). As part of our search for new schiff base compounds we synthesized the title compound(I) and its crystal structure is reported herein. In the title compound (Fig. 1), the bond lengths and angles are similar to those in related structures (Li & Jian, 2008; Yang et al., 2010). The C3N2 bond length of 1.269 (2)Å is slight shorter than the CN double bond [1.281 (2) Å and 1.2732 (18)] reported by Girgis (2006) and Yang et al. (2010). In the crystal structure, molecules are linked into centrosymmetric dimers by pairs of intermolecular N—H···O hydrogen bonds (Table 1).

For general background to Schiff bases, see: Goswami et al. (2009); Zhang et al. (2010). For related structures, see: Li & Jian (2008); Girgis (2006); Yang et al. (2010);

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
N'-(4-Fluorobenzylidene)acetohydrazide top
Crystal data top
C9H9FN2OF(000) = 376
Mr = 180.18Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2033 reflections
a = 10.443 (2) Åθ = 3.7–27.5°
b = 4.0418 (8) ŵ = 0.11 mm1
c = 21.172 (4) ÅT = 293 K
β = 96.71 (3)°Bar, colourless
V = 887.5 (3) Å30.24 × 0.22 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1412 reflections with I > σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
φ and ω scansh = 1313
7536 measured reflectionsk = 55
2033 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1001P)2 + 0.0565P]
where P = (Fo2 + 2Fc2)/3
2033 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H9FN2OV = 887.5 (3) Å3
Mr = 180.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.443 (2) ŵ = 0.11 mm1
b = 4.0418 (8) ÅT = 293 K
c = 21.172 (4) Å0.24 × 0.22 × 0.22 mm
β = 96.71 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1412 reflections with I > σ(I)
7536 measured reflectionsRint = 0.025
2033 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.12Δρmax = 0.31 e Å3
2033 reflectionsΔρmin = 0.23 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.41309 (13)0.8047 (4)0.12439 (6)0.0506 (4)
C40.50404 (14)0.7947 (4)0.23307 (7)0.0448 (4)
C30.50479 (15)0.7172 (4)0.16566 (7)0.0517 (4)
H3A0.57410.60120.15270.062*
N10.42670 (14)0.7124 (4)0.06305 (6)0.0574 (4)
H1A0.49210.59410.05610.069*
O10.35986 (12)0.7130 (4)0.04043 (5)0.0692 (4)
F10.50984 (11)0.9900 (3)0.42320 (4)0.0807 (4)
C20.34069 (16)0.8017 (4)0.01332 (7)0.0533 (4)
C80.40253 (16)1.0213 (4)0.31985 (7)0.0545 (4)
H8A0.33331.12680.33520.065*
C70.50862 (17)0.9235 (4)0.36057 (7)0.0536 (4)
C50.60833 (15)0.6986 (4)0.27603 (7)0.0518 (4)
H5A0.67720.58820.26130.062*
C90.40169 (14)0.9588 (4)0.25596 (7)0.0497 (4)
H9A0.33181.02700.22770.060*
C60.61129 (16)0.7648 (4)0.34044 (7)0.0557 (4)
H6A0.68150.70250.36910.067*
C10.22542 (17)0.9959 (4)0.02534 (8)0.0631 (5)
H1B0.17381.04040.01430.095*
H1C0.25221.20110.04560.095*
H1D0.17570.87200.05250.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0517 (8)0.0632 (8)0.0366 (7)0.0062 (6)0.0045 (5)0.0048 (5)
C40.0445 (8)0.0502 (8)0.0393 (8)0.0073 (6)0.0030 (6)0.0030 (6)
C30.0471 (8)0.0647 (10)0.0433 (8)0.0038 (7)0.0058 (6)0.0067 (7)
N10.0497 (8)0.0851 (10)0.0374 (7)0.0001 (7)0.0045 (5)0.0076 (6)
O10.0619 (7)0.1067 (11)0.0384 (6)0.0006 (7)0.0029 (5)0.0048 (6)
F10.0863 (8)0.1149 (10)0.0392 (6)0.0063 (7)0.0000 (5)0.0137 (5)
C20.0511 (9)0.0682 (10)0.0400 (8)0.0107 (8)0.0033 (6)0.0005 (7)
C80.0513 (9)0.0650 (10)0.0472 (9)0.0041 (7)0.0059 (6)0.0074 (7)
C70.0600 (9)0.0648 (10)0.0350 (7)0.0067 (8)0.0017 (6)0.0056 (7)
C50.0432 (8)0.0635 (10)0.0484 (8)0.0001 (7)0.0035 (6)0.0029 (7)
C90.0451 (8)0.0584 (9)0.0441 (8)0.0002 (7)0.0011 (6)0.0030 (6)
C60.0488 (9)0.0697 (10)0.0458 (8)0.0026 (7)0.0061 (6)0.0018 (7)
C10.0681 (11)0.0673 (11)0.0533 (9)0.0041 (9)0.0043 (7)0.0044 (8)
Geometric parameters (Å, º) top
N2—C31.269 (2)C8—C91.375 (2)
N2—N11.3744 (17)C8—C71.380 (2)
C4—C51.390 (2)C8—H8A0.9300
C4—C91.392 (2)C7—C61.360 (2)
C4—C31.462 (2)C5—C61.386 (2)
C3—H3A0.9300C5—H5A0.9300
N1—C21.351 (2)C9—H9A0.9300
N1—H1A0.8600C6—H6A0.9300
O1—C21.2317 (17)C1—H1B0.9600
F1—C71.3516 (17)C1—H1C0.9600
C2—C11.484 (2)C1—H1D0.9600
C3—N2—N1114.97 (14)F1—C7—C8118.09 (15)
C5—C4—C9118.69 (14)C6—C7—C8122.96 (14)
C5—C4—C3119.05 (15)C6—C5—C4121.01 (15)
C9—C4—C3122.25 (14)C6—C5—H5A119.5
N2—C3—C4121.53 (15)C4—C5—H5A119.5
N2—C3—H3A119.2C8—C9—C4120.87 (14)
C4—C3—H3A119.2C8—C9—H9A119.6
C2—N1—N2122.09 (15)C4—C9—H9A119.6
C2—N1—H1A119.0C7—C6—C5118.13 (15)
N2—N1—H1A119.0C7—C6—H6A120.9
O1—C2—N1118.51 (16)C5—C6—H6A120.9
O1—C2—C1122.36 (15)C2—C1—H1B109.5
N1—C2—C1119.12 (14)C2—C1—H1C109.5
C9—C8—C7118.32 (15)H1B—C1—H1C109.5
C9—C8—H8A120.8C2—C1—H1D109.5
C7—C8—H8A120.8H1B—C1—H1D109.5
F1—C7—C6118.94 (15)H1C—C1—H1D109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.899 (2)176
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H9FN2O
Mr180.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.443 (2), 4.0418 (8), 21.172 (4)
β (°) 96.71 (3)
V3)887.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.22 × 0.22
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > σ(I)] reflections
7536, 2033, 1412
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.176, 1.12
No. of reflections2033
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.03982.899 (2)176.3
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors would like to thank the National Natural Science Foundation of Shandong Province (Y2008B29) and Yuandu Scholar of Weifang City.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGirgis, A. S. (2006). J. Chem. Res. pp. 81–85.  CrossRef Google Scholar
First citationGoswami, T. K., Roy, M., Nethaji, M. & Chakravarty, A. R. (2009). Organometallics, pp. 1992–1994  Web of Science CSD CrossRef Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Jiang, Z.-D., Zhang, F.-G. & Jian, F.-F. (2010). Acta Cryst. E66, o927.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, H. L., Syed, S. & Barbas, C. F. (2010). Org. Lett. pp. 708–711.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds