metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1H-imidazole-κN3)(2-phenyl­propanedioato-κ2O1,O3)nickel(II)

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 October 2010; accepted 14 October 2010; online 23 October 2010)

In the title complex, [Ni(C9H6O4)(C3H4N2)4], the NiII ion is O,O′-chelated by the phenyl­malonato ligand and coordinated by four imidazole ligands in a slightly distorted octa­hedral geometry. In the crystal structure, symmetry-related mol­ecules are linked by N—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For the cobalt(II) analog, see: Zhang et al. (2007[Zhang, K.-L., Kuai, H.-W., Liu, W.-L. & Diao, G.-W. (2007). J. Mol. Struct. 831, 114-118.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H6O4)(C3H4N2)4]

  • Mr = 509.18

  • Orthorhombic, P 21 21 21

  • a = 8.5358 (8) Å

  • b = 13.3148 (12) Å

  • c = 20.6996 (19) Å

  • V = 2352.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.812, Tmax = 0.881

  • 15962 measured reflections

  • 5516 independent reflections

  • 4013 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.086

  • S = 0.98

  • 5516 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2344 Friedel pairs

  • Flack parameter: 0.082 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.88 2.06 2.943 (3) 176
N4—H4⋯O1ii 0.88 1.97 2.839 (3) 168
N6—H6⋯O2iii 0.88 1.90 2.774 (3) 172
N8—H8⋯O4iv 0.88 1.85 2.718 (3) 169
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have previously reported the crystal structure of the tetrakis(imidazole) adduct of cobalt(II) phenylmalonate. The structure features the carboxylate-chelated cobalt(II) atom bonded to four N-heterocycles; each of these has a nitrogen-donor site that enables the octahedrally coordinated mononuclear molecule to connect with each other to form a three-dimensional network (Zhang et al., 2007). The nickel analog (Fig. 1) is isostructural, the two compounds crystallizing with similar unit cell dimensions.

Related literature top

For the cobalt(II) analog, see: Zhang et al. (2007).

Experimental top

Imidazole (0.339 g. 0.56 mmol) was dissolved in methanol (10 ml) and to the solution was added nickel nitrate hexahydrate (0.480 g, 1.65 mmol) dissolved in water (6 ml). To the clear soluiton was added phenylmalonic acid (0.300 g, 1.65 mmol) and sodium hydroxide (0.120 g, 3.30 mmol) dissolved in water (10 ml). The filtered solution was set aside for the growth of green crystals over several days; yield 50%. CH&N elemental analysis. Calc. for C21H22N8NiO4: C 49.53, H 4.36, N 22.00%. Found: C 49.61, H 4.49, N 21.91%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

The imidazolium H-atoms were similarly treated (N–H 0.88 Å; Uiso(H) 1.2Ueq(N)).

The crystal has several voids but these are too small (20Å3) to accomodate a solvent molecule.

Structure description top

We have previously reported the crystal structure of the tetrakis(imidazole) adduct of cobalt(II) phenylmalonate. The structure features the carboxylate-chelated cobalt(II) atom bonded to four N-heterocycles; each of these has a nitrogen-donor site that enables the octahedrally coordinated mononuclear molecule to connect with each other to form a three-dimensional network (Zhang et al., 2007). The nickel analog (Fig. 1) is isostructural, the two compounds crystallizing with similar unit cell dimensions.

For the cobalt(II) analog, see: Zhang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ni(C3H4N2)4(C9H6O4) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Tetrakis(1H-imidazole-κN3)(2-phenylpropanedioato- κ2O1,O3)nickel(II) top
Crystal data top
[Ni(C9H6O4)(C3H4N2)4]F(000) = 1056
Mr = 509.18Dx = 1.438 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2481 reflections
a = 8.5358 (8) Åθ = 2.6–21.7°
b = 13.3148 (12) ŵ = 0.87 mm1
c = 20.6996 (19) ÅT = 293 K
V = 2352.6 (4) Å3Prism, green
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
5516 independent reflections
Radiation source: fine-focus sealed tube4013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.812, Tmax = 0.881k = 1717
15962 measured reflectionsl = 1927
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0326P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5516 reflectionsΔρmax = 0.41 e Å3
307 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 2344 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.082 (13)
Crystal data top
[Ni(C9H6O4)(C3H4N2)4]V = 2352.6 (4) Å3
Mr = 509.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5358 (8) ŵ = 0.87 mm1
b = 13.3148 (12) ÅT = 293 K
c = 20.6996 (19) Å0.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
5516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4013 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.881Rint = 0.051
15962 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.41 e Å3
S = 0.98Δρmin = 0.31 e Å3
5516 reflectionsAbsolute structure: Flack (1983), 2344 Friedel pairs
307 parametersAbsolute structure parameter: 0.082 (13)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.66167 (4)0.40568 (3)0.336577 (18)0.02636 (10)
O10.8851 (2)0.40575 (17)0.29819 (9)0.0324 (4)
O21.0679 (2)0.37546 (16)0.22649 (12)0.0433 (6)
O30.5823 (2)0.41866 (15)0.24132 (9)0.0323 (5)
O40.6203 (3)0.43579 (17)0.13674 (11)0.0515 (7)
N10.6652 (3)0.24683 (16)0.33088 (13)0.0338 (6)
N20.5969 (3)0.0939 (2)0.30389 (16)0.0597 (9)
H20.53880.04320.29080.072*
N30.4310 (2)0.4058 (2)0.37002 (11)0.0301 (5)
N40.1739 (3)0.4091 (2)0.36620 (12)0.0388 (6)
H40.07820.41100.35040.047*
N50.6703 (3)0.56328 (16)0.33579 (12)0.0312 (5)
N60.7570 (3)0.7169 (2)0.32201 (14)0.0424 (8)
H60.81800.76670.30980.051*
N70.7489 (3)0.4034 (2)0.43160 (11)0.0324 (6)
N80.8143 (4)0.4576 (2)0.52810 (14)0.0500 (8)
H80.83590.49910.55990.060*
C10.9291 (3)0.3761 (2)0.24304 (17)0.0300 (7)
C20.8045 (3)0.3333 (2)0.19607 (15)0.0343 (8)
H2A0.76620.27130.21610.041*
C30.6602 (3)0.4033 (2)0.19068 (14)0.0315 (6)
C40.8732 (3)0.3022 (2)0.13164 (16)0.0361 (8)
C50.8607 (4)0.2032 (3)0.11128 (17)0.0468 (9)
H50.80550.15690.13600.056*
C60.9301 (5)0.1738 (3)0.0545 (2)0.0635 (12)
H6A0.92020.10750.04100.076*
C71.0126 (5)0.2392 (4)0.0179 (2)0.0683 (13)
H71.06020.21730.01990.082*
C81.0264 (5)0.3368 (3)0.0363 (2)0.0643 (12)
H8A1.08310.38170.01100.077*
C90.9556 (4)0.3689 (3)0.09264 (17)0.0471 (9)
H90.96320.43600.10470.057*
C100.5503 (4)0.1886 (2)0.31110 (17)0.0450 (9)
H100.44880.21080.30310.054*
C110.7919 (4)0.1839 (2)0.3360 (2)0.0493 (9)
H110.89200.20360.34840.059*
C120.7502 (4)0.0899 (3)0.3204 (2)0.0626 (12)
H120.81390.03330.32080.075*
C130.3064 (3)0.4087 (2)0.33245 (16)0.0361 (7)
H130.31060.41020.28760.043*
C140.3722 (3)0.4050 (3)0.43166 (15)0.0391 (7)
H140.43180.40400.46930.047*
C150.2137 (4)0.4060 (3)0.42918 (17)0.0446 (8)
H150.14540.40480.46420.054*
C160.7835 (4)0.6195 (2)0.31334 (16)0.0383 (8)
H160.87280.59410.29350.046*
C170.5650 (4)0.6304 (2)0.36077 (17)0.0427 (9)
H170.47050.61320.38020.051*
C180.6178 (4)0.7249 (2)0.35329 (17)0.0426 (9)
H180.56900.78370.36680.051*
C190.7768 (4)0.4830 (3)0.46802 (16)0.0392 (8)
H190.77090.54890.45330.047*
C200.7710 (5)0.3241 (3)0.47194 (18)0.0585 (12)
H200.75900.25710.46040.070*
C210.8133 (6)0.3571 (3)0.53140 (18)0.0682 (13)
H210.83680.31790.56730.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02413 (16)0.02630 (16)0.02864 (19)0.00065 (17)0.00168 (18)0.00153 (19)
O10.0262 (10)0.0397 (11)0.0312 (11)0.0002 (10)0.0005 (9)0.0080 (11)
O20.0255 (11)0.0565 (15)0.0479 (15)0.0019 (10)0.0034 (11)0.0166 (12)
O30.0296 (10)0.0422 (13)0.0252 (11)0.0041 (10)0.0009 (9)0.0002 (10)
O40.0486 (14)0.0700 (17)0.0359 (14)0.0183 (12)0.0071 (12)0.0217 (12)
N10.0380 (13)0.0312 (13)0.0322 (15)0.0052 (12)0.0028 (18)0.0004 (11)
N20.0581 (18)0.0281 (14)0.093 (3)0.0143 (16)0.0013 (17)0.0146 (18)
N30.0258 (11)0.0332 (12)0.0313 (14)0.0023 (13)0.0017 (11)0.0005 (14)
N40.0232 (11)0.0497 (15)0.0436 (15)0.0030 (15)0.0003 (13)0.0011 (15)
N50.0278 (12)0.0303 (12)0.0356 (14)0.0031 (10)0.0006 (17)0.0003 (11)
N60.0387 (15)0.0343 (15)0.054 (2)0.0088 (13)0.0008 (14)0.0059 (15)
N70.0331 (12)0.0349 (13)0.0291 (14)0.0015 (13)0.0029 (11)0.0033 (15)
N80.064 (2)0.053 (2)0.0330 (18)0.0026 (18)0.0074 (17)0.0125 (15)
C10.0243 (15)0.0255 (16)0.040 (2)0.0061 (12)0.0016 (14)0.0010 (13)
C20.0326 (18)0.0358 (17)0.0346 (18)0.0004 (14)0.0001 (15)0.0012 (15)
C30.0283 (13)0.0343 (14)0.0319 (15)0.0006 (18)0.0009 (14)0.0023 (15)
C40.0273 (16)0.049 (2)0.0322 (17)0.0077 (15)0.0009 (14)0.0051 (16)
C50.0362 (18)0.051 (2)0.053 (2)0.0041 (18)0.0058 (18)0.0053 (18)
C60.064 (3)0.069 (3)0.057 (3)0.018 (2)0.007 (2)0.031 (2)
C70.075 (3)0.088 (3)0.042 (3)0.032 (3)0.001 (2)0.013 (2)
C80.060 (3)0.088 (3)0.045 (3)0.018 (2)0.015 (2)0.015 (2)
C90.052 (2)0.048 (2)0.042 (2)0.0090 (17)0.0023 (19)0.0043 (17)
C100.0379 (18)0.0350 (18)0.062 (3)0.0055 (15)0.0071 (17)0.0004 (17)
C110.0431 (19)0.0379 (18)0.067 (3)0.0085 (14)0.018 (2)0.004 (2)
C120.056 (2)0.0342 (19)0.098 (4)0.006 (2)0.009 (2)0.003 (3)
C130.0293 (14)0.0416 (16)0.0374 (17)0.0031 (14)0.0022 (14)0.0015 (19)
C140.0350 (16)0.0509 (18)0.0313 (17)0.0019 (18)0.0008 (14)0.0026 (18)
C150.0366 (16)0.056 (2)0.041 (2)0.0009 (19)0.0089 (15)0.006 (2)
C160.0365 (17)0.0314 (19)0.047 (2)0.0011 (13)0.0027 (15)0.0013 (15)
C170.0347 (17)0.0400 (18)0.053 (2)0.0016 (14)0.0081 (17)0.0003 (16)
C180.0430 (19)0.0261 (16)0.059 (3)0.0068 (14)0.0016 (17)0.0031 (15)
C190.0401 (19)0.044 (2)0.034 (2)0.0004 (16)0.0038 (16)0.0028 (17)
C200.102 (3)0.038 (2)0.036 (2)0.003 (2)0.020 (2)0.0050 (17)
C210.112 (4)0.057 (3)0.036 (2)0.006 (3)0.025 (3)0.0050 (19)
Geometric parameters (Å, º) top
Ni1—O12.0662 (18)C2—C41.515 (4)
Ni1—N32.087 (2)C2—C31.549 (4)
Ni1—O32.092 (2)C2—H2A0.9800
Ni1—N52.100 (2)C4—C51.388 (5)
Ni1—N72.103 (2)C4—C91.391 (4)
Ni1—N12.118 (2)C5—C61.372 (5)
O1—C11.265 (4)C5—H50.9300
O2—C11.234 (3)C6—C71.352 (6)
O3—C31.258 (3)C6—H6A0.9300
O4—C31.245 (3)C7—C81.359 (5)
N1—C101.316 (4)C7—H70.9300
N1—C111.373 (4)C8—C91.382 (5)
N2—C101.330 (4)C8—H8A0.9300
N2—C121.353 (4)C9—H90.9300
N2—H20.8800C10—H100.9300
N3—C131.318 (3)C11—C121.340 (5)
N3—C141.371 (4)C11—H110.9300
N4—C131.329 (3)C12—H120.9300
N4—C151.348 (4)C13—H130.9300
N4—H40.8800C14—C151.355 (4)
N5—C161.308 (4)C14—H140.9300
N5—C171.369 (4)C15—H150.9300
N6—C161.329 (4)C16—H160.9300
N6—C181.357 (4)C17—C181.345 (4)
N6—H60.8800C17—H170.9300
N7—C191.323 (4)C18—H180.9300
N7—C201.359 (4)C19—H190.9300
N8—C191.328 (4)C20—C211.356 (5)
N8—C211.339 (4)C20—H200.9300
N8—H80.8800C21—H210.9300
C1—C21.550 (4)
O1—Ni1—N3176.75 (9)C5—C4—C2119.8 (3)
O1—Ni1—O386.37 (7)C9—C4—C2122.2 (3)
N3—Ni1—O390.39 (8)C6—C5—C4119.9 (4)
O1—Ni1—N587.95 (9)C6—C5—H5120.1
N3—Ni1—N591.98 (10)C4—C5—H5120.1
O3—Ni1—N585.50 (9)C7—C6—C5121.4 (4)
O1—Ni1—N791.88 (8)C7—C6—H6A119.3
N3—Ni1—N791.36 (9)C5—C6—H6A119.3
O3—Ni1—N7175.72 (9)C6—C7—C8120.3 (4)
N5—Ni1—N790.54 (10)C6—C7—H7119.9
O1—Ni1—N188.05 (10)C8—C7—H7119.9
N3—Ni1—N191.88 (10)C7—C8—C9119.6 (4)
O3—Ni1—N191.98 (9)C7—C8—H8A120.2
N5—Ni1—N1175.40 (10)C9—C8—H8A120.2
N7—Ni1—N191.87 (10)C8—C9—C4120.9 (4)
C1—O1—Ni1128.36 (18)C8—C9—H9119.5
C3—O3—Ni1126.92 (18)C4—C9—H9119.5
C10—N1—C11104.6 (2)N1—C10—N2111.8 (3)
C10—N1—Ni1126.6 (2)N1—C10—H10124.1
C11—N1—Ni1128.0 (2)N2—C10—H10124.1
C10—N2—C12107.3 (3)C12—C11—N1110.0 (3)
C10—N2—H2126.3C12—C11—H11125.0
C12—N2—H2126.3N1—C11—H11125.0
C13—N3—C14104.7 (2)C11—C12—N2106.3 (4)
C13—N3—Ni1124.44 (19)C11—C12—H12126.8
C14—N3—Ni1130.84 (18)N2—C12—H12126.8
C13—N4—C15107.1 (2)N3—C13—N4112.1 (3)
C13—N4—H4126.5N3—C13—H13123.9
C15—N4—H4126.5N4—C13—H13123.9
C16—N5—C17104.2 (3)C15—C14—N3109.3 (3)
C16—N5—Ni1126.9 (2)C15—C14—H14125.4
C17—N5—Ni1128.8 (2)N3—C14—H14125.4
C16—N6—C18106.8 (3)N4—C15—C14106.8 (3)
C16—N6—H6126.6N4—C15—H15126.6
C18—N6—H6126.6C14—C15—H15126.6
C19—N7—C20104.3 (3)N5—C16—N6112.7 (3)
C19—N7—Ni1125.8 (2)N5—C16—H16123.7
C20—N7—Ni1129.4 (2)N6—C16—H16123.7
C19—N8—C21107.5 (3)C18—C17—N5110.3 (3)
C19—N8—H8126.2C18—C17—H17124.8
C21—N8—H8126.2N5—C17—H17124.8
O2—C1—O1122.5 (3)C17—C18—N6106.0 (3)
O2—C1—C2118.9 (3)C17—C18—H18127.0
O1—C1—C2118.5 (3)N6—C18—H18127.0
C4—C2—C3114.1 (2)N7—C19—N8111.9 (3)
C4—C2—C1112.8 (2)N7—C19—H19124.1
C3—C2—C1111.7 (2)N8—C19—H19124.1
C4—C2—H2A105.8C21—C20—N7110.1 (3)
C3—C2—H2A105.8C21—C20—H20125.0
C1—C2—H2A105.8N7—C20—H20125.0
O4—C3—O3123.1 (3)N8—C21—C20106.2 (4)
O4—C3—C2119.4 (3)N8—C21—H21126.9
O3—C3—C2117.2 (3)C20—C21—H21126.9
C5—C4—C9118.0 (3)
O3—Ni1—O1—C128.3 (3)Ni1—O3—C3—O4161.4 (2)
N5—Ni1—O1—C1113.9 (3)Ni1—O3—C3—C223.8 (4)
N7—Ni1—O1—C1155.7 (3)C4—C2—C3—O46.3 (4)
N1—Ni1—O1—C163.9 (3)C1—C2—C3—O4123.0 (3)
O1—Ni1—O3—C315.1 (2)C4—C2—C3—O3168.7 (3)
N3—Ni1—O3—C3164.7 (2)C1—C2—C3—O361.9 (4)
N5—Ni1—O3—C3103.4 (2)C3—C2—C4—C5111.2 (3)
N1—Ni1—O3—C372.8 (2)C1—C2—C4—C5120.0 (3)
O1—Ni1—N1—C10137.2 (3)C3—C2—C4—C971.8 (4)
N3—Ni1—N1—C1039.6 (3)C1—C2—C4—C957.1 (4)
O3—Ni1—N1—C1050.9 (3)C9—C4—C5—C60.6 (5)
N7—Ni1—N1—C10131.0 (3)C2—C4—C5—C6176.6 (3)
O1—Ni1—N1—C1130.7 (3)C4—C5—C6—C70.8 (6)
N3—Ni1—N1—C11152.6 (3)C5—C6—C7—C81.1 (7)
O3—Ni1—N1—C11117.0 (3)C6—C7—C8—C90.1 (7)
N7—Ni1—N1—C1161.1 (3)C7—C8—C9—C41.4 (6)
O3—Ni1—N3—C132.8 (3)C5—C4—C9—C81.7 (5)
N5—Ni1—N3—C1388.3 (3)C2—C4—C9—C8175.4 (3)
N7—Ni1—N3—C13178.9 (3)C11—N1—C10—N20.3 (4)
N1—Ni1—N3—C1389.2 (3)Ni1—N1—C10—N2170.4 (2)
O3—Ni1—N3—C14175.9 (3)C12—N2—C10—N10.5 (4)
N5—Ni1—N3—C1490.4 (3)C10—N1—C11—C121.0 (4)
N7—Ni1—N3—C140.2 (3)Ni1—N1—C11—C12171.0 (3)
N1—Ni1—N3—C1492.1 (3)N1—C11—C12—N21.3 (5)
O1—Ni1—N5—C163.4 (3)C10—N2—C12—C111.1 (5)
N3—Ni1—N5—C16173.4 (3)C14—N3—C13—N40.4 (4)
O3—Ni1—N5—C1683.1 (3)Ni1—N3—C13—N4179.4 (2)
N7—Ni1—N5—C1695.3 (3)C15—N4—C13—N30.2 (4)
O1—Ni1—N5—C17173.2 (3)C13—N3—C14—C150.8 (4)
N3—Ni1—N5—C1710.1 (3)Ni1—N3—C14—C15179.7 (2)
O3—Ni1—N5—C17100.3 (3)C13—N4—C15—C140.7 (4)
N7—Ni1—N5—C1781.3 (3)N3—C14—C15—N41.0 (4)
O1—Ni1—N7—C1992.3 (2)C17—N5—C16—N60.3 (4)
N3—Ni1—N7—C1987.6 (3)Ni1—N5—C16—N6177.6 (2)
N5—Ni1—N7—C194.4 (3)C18—N6—C16—N51.1 (4)
N1—Ni1—N7—C19179.5 (3)C16—N5—C17—C180.5 (4)
O1—Ni1—N7—C2096.5 (3)Ni1—N5—C17—C18176.7 (2)
N3—Ni1—N7—C2083.5 (3)N5—C17—C18—N61.2 (4)
N5—Ni1—N7—C20175.5 (3)C16—N6—C18—C171.3 (4)
N1—Ni1—N7—C208.4 (3)C20—N7—C19—N80.1 (4)
Ni1—O1—C1—O2176.5 (2)Ni1—N7—C19—N8172.8 (2)
Ni1—O1—C1—C20.1 (4)C21—N8—C19—N70.9 (5)
O2—C1—C2—C44.3 (4)C19—N7—C20—C210.6 (5)
O1—C1—C2—C4179.1 (3)Ni1—N7—C20—C21173.2 (3)
O2—C1—C2—C3134.4 (3)C19—N8—C21—C201.2 (6)
O1—C1—C2—C349.0 (4)N7—C20—C21—N81.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.062.943 (3)176
N4—H4···O1ii0.881.972.839 (3)168
N6—H6···O2iii0.881.902.774 (3)172
N8—H8···O4iv0.881.852.718 (3)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C9H6O4)(C3H4N2)4]
Mr509.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.5358 (8), 13.3148 (12), 20.6996 (19)
V3)2352.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.812, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
15962, 5516, 4013
Rint0.051
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.086, 0.98
No. of reflections5516
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.31
Absolute structureFlack (1983), 2344 Friedel pairs
Absolute structure parameter0.082 (13)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.882.062.943 (3)176
N4—H4···O1ii0.881.972.839 (3)168
N6—H6···O2iii0.881.902.774 (3)172
N8—H8···O4iv0.881.852.718 (3)169
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x+3/2, y+1, z+1/2.
 

Acknowledgements

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, K.-L., Kuai, H.-W., Liu, W.-L. & Diao, G.-W. (2007). J. Mol. Struct. 831, 114–118.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds