organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Hy­dr­oxy-1,1-di­methyl­eth­yl)­benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 26 October 2010; accepted 28 October 2010; online 31 October 2010)

In the title mol­ecule, C10H15NO3S, the S atom is bonded in a distorted tetra­hedral geometry. In the crystal structure, inter­molecular N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds connect the mol­ecules to form a two-dimensional network parallel to (100). The 2-methyl­propan-1-ol group is disordered over two orientations with occupancies of 0.570 (3) and 0.430 (3).

Related literature

For general background to sulfonamide derivatives, see: Ozbek et al. (2007[Ozbek, N., Katircioglu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Parari et al. (2008[Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776-781.]). For our previous structural studies on sulfonamide derivatives, see: Asiri et al. (2009[Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.]); Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NO3S

  • Mr = 229.30

  • Monoclinic, P 21 /c

  • a = 12.4094 (3) Å

  • b = 9.0042 (2) Å

  • c = 10.4525 (2) Å

  • β = 93.731 (1)°

  • V = 1165.45 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.24 × 0.16 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 10723 measured reflections

  • 2857 independent reflections

  • 2331 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.119

  • S = 1.04

  • 2857 reflections

  • 176 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3Bi 0.86 2.14 2.840 (9) 139
O3B—H3B⋯O2ii 0.82 2.02 2.777 (10) 152
C10B—H10D⋯O1iii 0.97 2.54 3.478 (3) 162
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The sulfonamide moiety is found in a number of synthetic as well as natural compounds and renders various biological acitivities in these compounds (Ozbek et al., 2007, Parari et al., 2008). In continuation of our structural studies on various sulfonamide derivatives (Asiri et al., 2009, Aziz-ur-Rehman et al., 2010) herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1 and reveals a distorted tetrahedral geometry around the S atom [maximum deviation from the ideal sp3 hybridized geometry for O—S—O = 119.29 (8)°]. There are weak intramolecular C—H···O contacts within the molecule. In the crystal structure, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds connect the molecules to form a two-dimensional network parallel to (100) (Fig. 2).

Related literature top

For general background on sulfonamide derivatives, see: Ozbek et al. (2007); Parari et al. (2008). For our previous structural studies on sulfonamide derivatives, see: Asiri et al. (2009); Aziz-ur-Rehman et al. (2010).

Experimental top

A mixture of benzenesulfonyl chloride (10.0 mmol; 1.28 ml), 2-amino-2-methyl propanol (10.0 mmol; 0.95 ml), aqueous sodium carbonate (10%; 15.0 ml) and water (20 ml) was stirred for one and half hours at room temperature. The crude mixture was washed with distilled water and dried. The product was dissolved in methanol and recrystallized by slow evaporation of the solvent, to generate colourless crystals of N-(2-hydroxy-1,1-dimethylethyl)benzenesulfonamide in 65% yield.

Refinement top

All H atoms were positioned geometrically with N—H = 0.86, O—H = 0.82 and C—H = 0.93–0.97 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(Cmethyl,O). The 2-methylpropan-1-ol group of the title molecule show disoder over two sets of sites with an occupancy ratio of 0.570 (3):0.430 (3).

Structure description top

The sulfonamide moiety is found in a number of synthetic as well as natural compounds and renders various biological acitivities in these compounds (Ozbek et al., 2007, Parari et al., 2008). In continuation of our structural studies on various sulfonamide derivatives (Asiri et al., 2009, Aziz-ur-Rehman et al., 2010) herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1 and reveals a distorted tetrahedral geometry around the S atom [maximum deviation from the ideal sp3 hybridized geometry for O—S—O = 119.29 (8)°]. There are weak intramolecular C—H···O contacts within the molecule. In the crystal structure, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds connect the molecules to form a two-dimensional network parallel to (100) (Fig. 2).

For general background on sulfonamide derivatives, see: Ozbek et al. (2007); Parari et al. (2008). For our previous structural studies on sulfonamide derivatives, see: Asiri et al. (2009); Aziz-ur-Rehman et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. The disorder is not shown.
[Figure 2] Fig. 2. Part of the crystal structure of (I) H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity and only the major component of the disorder is shown.
N-(2-Hydroxy-1,1-dimethylethyl)benzenesulfonamide top
Crystal data top
C10H15NO3SF(000) = 488
Mr = 229.30Dx = 1.307 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5041 reflections
a = 12.4094 (3) Åθ = 2.8–28.2°
b = 9.0042 (2) ŵ = 0.27 mm1
c = 10.4525 (2) ÅT = 296 K
β = 93.731 (1)°Block, colourless
V = 1165.45 (4) Å30.24 × 0.16 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2331 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.3°, θmin = 3.4°
φ and ω scansh = 1616
10723 measured reflectionsk = 1210
2857 independent reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.1878P]
where P = (Fo2 + 2Fc2)/3
2857 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.31 e Å3
8 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H15NO3SV = 1165.45 (4) Å3
Mr = 229.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4094 (3) ŵ = 0.27 mm1
b = 9.0042 (2) ÅT = 296 K
c = 10.4525 (2) Å0.24 × 0.16 × 0.07 mm
β = 93.731 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2331 reflections with I > 2σ(I)
10723 measured reflectionsRint = 0.024
2857 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0398 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
2857 reflectionsΔρmin = 0.34 e Å3
176 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.81238 (3)0.43637 (4)0.53924 (3)0.0453 (1)
O10.76229 (12)0.56081 (15)0.47567 (14)0.0735 (5)
O20.88776 (11)0.34876 (16)0.47376 (13)0.0715 (5)
O3B0.9863 (5)0.7719 (10)0.7102 (11)0.0594 (14)0.570 (3)
N10.87618 (9)0.48927 (13)0.66870 (11)0.0397 (3)
C10.60374 (15)0.3406 (3)0.5338 (2)0.0764 (7)
C20.52364 (17)0.2428 (3)0.5643 (3)0.1035 (10)
C30.54859 (17)0.1204 (3)0.6369 (3)0.0838 (8)
C40.65240 (17)0.0938 (2)0.6815 (2)0.0694 (7)
C50.73310 (14)0.1902 (2)0.65250 (18)0.0581 (5)
C60.70811 (11)0.31395 (16)0.57831 (14)0.0437 (4)
C70.83869 (12)0.59545 (16)0.76557 (14)0.0444 (4)
C8B0.7250 (3)0.5962 (4)0.7901 (4)0.0746 (13)0.570 (3)
C9B0.9096 (4)0.5645 (4)0.8934 (3)0.0733 (13)0.570 (3)
C10B0.8755 (2)0.7543 (3)0.7249 (3)0.0519 (9)0.570 (3)
O3A0.9831 (10)0.7515 (14)0.7318 (14)0.085 (3)0.430 (3)
C8A0.7815 (4)0.4982 (5)0.8656 (4)0.0567 (11)0.430 (3)
C9A0.7497 (4)0.7001 (5)0.7058 (4)0.0597 (12)0.430 (3)
C10A0.9310 (3)0.6663 (4)0.8205 (3)0.0494 (11)0.430 (3)
H3B1.003000.725700.646900.0890*0.570 (3)
H40.668600.010400.731600.0830*
H50.804100.172200.682600.0700*
H8B10.682800.616900.711900.1120*0.570 (3)
H8B20.711900.671400.852300.1120*0.570 (3)
H8B30.705100.501000.822300.1120*0.570 (3)
H9B10.984600.566000.876200.1100*0.570 (3)
H10C0.836700.779800.644300.0620*0.570 (3)
H10D0.854200.824900.788600.0620*0.570 (3)
H9B20.891400.468900.926500.1100*0.570 (3)
H9B30.895800.639700.955400.1100*0.570 (3)
H10.586900.423600.483500.0920*
H1A0.939500.452200.684300.0480*
H20.452400.260600.535300.1240*
H30.494300.054400.656100.1010*
H8A10.719500.450400.824100.0850*0.430 (3)
H8A20.759100.560400.933600.0850*0.430 (3)
H8A30.831000.424300.900300.0850*0.430 (3)
H3A0.998300.698900.671400.1280*0.430 (3)
H9A10.689900.642000.671000.0890*0.430 (3)
H9A20.778500.757700.638600.0890*0.430 (3)
H9A30.725600.765400.770700.0890*0.430 (3)
H10A0.910600.729800.889900.0590*0.430 (3)
H10B0.980800.591900.856600.0590*0.430 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0485 (2)0.0503 (2)0.0378 (2)0.0069 (2)0.0083 (2)0.0011 (1)
O10.0798 (9)0.0732 (9)0.0657 (8)0.0128 (7)0.0080 (7)0.0318 (7)
O20.0709 (8)0.0829 (9)0.0644 (8)0.0190 (7)0.0321 (6)0.0308 (7)
O3B0.053 (2)0.0512 (19)0.077 (3)0.0173 (17)0.0263 (17)0.0205 (18)
N10.0355 (6)0.0386 (6)0.0455 (6)0.0017 (4)0.0061 (5)0.0065 (5)
C10.0514 (9)0.0801 (13)0.0952 (15)0.0080 (9)0.0131 (9)0.0279 (12)
C20.0492 (11)0.116 (2)0.142 (2)0.0234 (12)0.0186 (12)0.0368 (19)
C30.0632 (12)0.0812 (14)0.1073 (17)0.0282 (11)0.0084 (11)0.0083 (13)
C40.0739 (12)0.0561 (10)0.0788 (13)0.0114 (9)0.0095 (10)0.0117 (9)
C50.0491 (8)0.0577 (9)0.0672 (10)0.0033 (7)0.0012 (7)0.0100 (8)
C60.0440 (7)0.0453 (7)0.0417 (7)0.0050 (6)0.0026 (6)0.0020 (6)
C70.0521 (8)0.0413 (7)0.0414 (7)0.0049 (6)0.0152 (6)0.0027 (6)
C8B0.0581 (18)0.078 (2)0.092 (3)0.0108 (17)0.0389 (18)0.029 (2)
C9B0.102 (3)0.076 (2)0.0411 (15)0.0045 (19)0.0006 (16)0.0051 (15)
C10B0.0560 (17)0.0421 (14)0.0591 (16)0.0018 (12)0.0151 (12)0.0096 (12)
O3A0.100 (5)0.080 (5)0.080 (5)0.055 (4)0.040 (3)0.042 (4)
C8A0.070 (2)0.053 (2)0.0499 (19)0.0027 (18)0.0259 (18)0.0017 (17)
C9A0.068 (2)0.055 (2)0.056 (2)0.0252 (19)0.0035 (18)0.0043 (17)
C10A0.0512 (19)0.056 (2)0.0415 (18)0.0101 (15)0.0059 (14)0.0122 (16)
Geometric parameters (Å, º) top
S1—O11.4247 (14)C1—H10.9300
S1—O21.4315 (14)C2—H20.9300
S1—N11.5954 (12)C3—H30.9300
S1—C61.7677 (14)C4—H40.9300
O3A—C10A1.394 (14)C5—H50.9300
O3B—C10B1.402 (7)C8A—H8A20.9600
O3A—H3A0.8200C8A—H8A10.9600
O3B—H3B0.8200C8A—H8A30.9600
N1—C71.4890 (19)C8B—H8B10.9600
N1—H1A0.8600C8B—H8B20.9600
C1—C61.369 (2)C8B—H8B30.9600
C1—C21.381 (3)C9A—H9A30.9600
C2—C31.362 (4)C9A—H9A10.9600
C3—C41.362 (3)C9A—H9A20.9600
C4—C51.374 (3)C9B—H9B10.9600
C5—C61.381 (2)C9B—H9B20.9600
C7—C9A1.552 (5)C9B—H9B30.9600
C7—C10B1.569 (3)C10A—H10B0.9700
C7—C8A1.569 (5)C10A—H10A0.9700
C7—C8B1.450 (4)C10B—H10D0.9700
C7—C10A1.401 (4)C10B—H10C0.9700
C7—C9B1.576 (4)
S1···H8B12.9800H8A1···C62.8400
S1···H9A12.8100H1A···H3A2.3400
S1···H9A23.1100H1A···H9B12.2900
O1···C8B3.364 (4)H1A···H10B2.2300
O1···C10B3.364 (3)H1A···O3Bv2.1400
O1···C9A2.726 (4)H1A···C10Bv3.0100
O2···O3Bi2.777 (10)H1A···O3Av2.2000
O2···O3Ai2.907 (14)H1A···C10Av3.0400
O3A···N1ii2.912 (13)H1A···O3A2.7900
O3A···N12.767 (13)H2···H8B2vi2.5500
O3A···O2i2.907 (14)H8A2···H9A32.5300
O3B···N12.908 (9)H8A2···H10A2.4900
O3B···O2i2.777 (10)H3···C8Bvi2.8400
O3B···N1ii2.840 (9)H3···H8B3vi2.5500
O3B···C9Bii3.157 (10)H8A3···H10B2.4600
O1···H12.5100H8A3···O2vii2.6600
O1···H8B12.7600H3A···N12.4200
O1···H9A3iii2.6700H3A···H1A2.3400
O1···H4iv2.8100H3A···O2i2.1800
O1···H8B2iii2.7900H3B···O2i2.0200
O1···H10Aiii2.8200H3B···N12.6700
O1···H9A12.4000H4···C9Axi2.9900
O1···H10C2.7600H4···H9A3xi2.3400
O1···H10Diii2.5400H4···O1vii2.8100
O1···H9A22.4600H9A1···S12.8100
O2···H8A3iv2.6600H9A1···O12.4000
O2···H9B2iv2.9000H9A1···H8A12.3700
O2···H3Ai2.1800H5···O3Bv2.9100
O2···H3Bi2.0200H5···O3Av2.8200
O3A···H5ii2.8200H9A2···S13.1100
O3A···H9A22.6600H9A2···O12.4600
O3A···H1Aii2.2000H9A2···O3A2.6600
O3A···H1A2.7900H9A3···H4x2.3400
O3B···H9B12.5400H9A3···H8A22.5300
O3B···H1Aii2.1400H9A3···O1xii2.6700
O3B···H5ii2.9100H9A3···H10A2.5600
O3B···H9B2ii2.7900H8B1···C63.0900
O3B···H9B1ii2.8300H8B1···H10C2.5400
N1···O3Av2.912 (13)H8B1···S12.9800
N1···O3B2.908 (9)H8B1···O12.7600
N1···O3Bv2.840 (9)H8B2···H9B32.4800
N1···O3A2.767 (13)H8B2···H10D2.3700
N1···H3A2.4200H8B2···H2viii2.5500
N1···H3B2.6700H8B2···O1xii2.7900
C3···C8Bvi3.535 (4)H8B3···C63.0600
C5···C8A3.583 (5)H8B3···H3viii2.5500
C5···C8Aiv3.531 (5)H8B3···H9B22.5100
C6···C8B3.368 (4)H9B1···H1A2.2900
C6···C8A3.499 (5)H9B1···O3B2.5400
C8A···C5vii3.531 (5)H9B1···H9B2ix2.5100
C8A···C63.499 (5)H9B1···O3Bv2.8300
C8A···C53.583 (5)H9B1···C9Bix2.9100
C8B···C63.368 (4)H10A···H8A22.4900
C8B···O13.364 (4)H10A···H9A32.5600
C8B···C3viii3.535 (4)H10A···O1xii2.8200
C9A···O12.726 (4)H10B···H1A2.2300
C9B···O3Bv3.157 (10)H10B···H8A32.4600
C9B···C9Bix3.271 (6)H10C···H9B3iii2.2700
C10B···O13.364 (3)H10C···O12.7600
C5···H8A12.9600H10C···H8B12.5400
C6···H8B13.0900H10D···O1xii2.5400
C6···H8B33.0600H10D···H8B22.3700
C6···H8A12.8400H10D···H9B32.4400
C8B···H3viii2.8400H9B2···O3Bv2.7900
C9A···H4x2.9900H9B2···H8B32.5100
C9B···H9B2ix3.0200H9B2···C9Bix3.0200
C9B···H9B1ix2.9100H9B2···H9B1ix2.5100
C10A···H1Aii3.0400H9B2···O2vii2.9000
C10B···H1Aii3.0100H9B3···H8B22.4800
C10B···H9B3iii3.0000H9B3···H10D2.4400
H1···O12.5100H9B3···C10Bxii3.0000
H8A1···C52.9600H9B3···H10Cxii2.2700
H8A1···H9A12.3700
O1—S1—O2119.29 (8)C5—C4—H4120.00
O1—S1—N1109.76 (7)C3—C4—H4120.00
O1—S1—C6107.13 (8)C4—C5—H5120.00
O2—S1—N1105.45 (7)C6—C5—H5120.00
O2—S1—C6106.13 (8)H8A1—C8A—H8A3110.00
N1—S1—C6108.70 (7)H8A2—C8A—H8A3109.00
C10A—O3A—H3A109.00C7—C8A—H8A1109.00
C10B—O3B—H3B109.00C7—C8A—H8A2109.00
S1—N1—C7127.50 (10)C7—C8A—H8A3109.00
S1—N1—H1A116.00H8A1—C8A—H8A2110.00
C7—N1—H1A116.00C7—C8B—H8B1109.00
C2—C1—C6119.3 (2)C7—C8B—H8B2109.00
C1—C2—C3120.2 (2)H8B1—C8B—H8B3109.00
C2—C3—C4120.6 (2)C7—C8B—H8B3109.00
C3—C4—C5120.0 (2)H8B1—C8B—H8B2109.00
C4—C5—C6119.56 (16)H8B2—C8B—H8B3110.00
S1—C6—C1120.19 (14)C7—C9A—H9A1110.00
S1—C6—C5119.46 (11)H9A2—C9A—H9A3110.00
C1—C6—C5120.35 (16)C7—C9A—H9A3109.00
N1—C7—C10B106.97 (15)H9A1—C9A—H9A2109.00
N1—C7—C10A106.72 (18)C7—C9A—H9A2109.00
N1—C7—C8A105.65 (19)H9A1—C9A—H9A3109.00
N1—C7—C9A111.21 (19)C7—C9B—H9B2109.00
C9B—C7—C10B103.6 (2)C7—C9B—H9B3109.00
C8A—C7—C9A105.5 (3)C7—C9B—H9B1109.00
C8A—C7—C10A112.0 (2)H9B1—C9B—H9B3110.00
C9A—C7—C10A115.5 (2)H9B2—C9B—H9B3109.00
N1—C7—C8B118.28 (19)H9B1—C9B—H9B2110.00
C8B—C7—C9B110.3 (3)C7—C10A—H10A109.00
C8B—C7—C10B110.33 (19)C7—C10A—H10B109.00
N1—C7—C9B106.32 (17)H10A—C10A—H10B108.00
O3A—C10A—C7112.3 (6)O3A—C10A—H10A109.00
O3B—C10B—C7116.0 (4)O3A—C10A—H10B109.00
C2—C1—H1120.00O3B—C10B—H10D108.00
C6—C1—H1120.00H10C—C10B—H10D107.00
C3—C2—H2120.00C7—C10B—H10C108.00
C1—C2—H2120.00C7—C10B—H10D108.00
C2—C3—H3120.00O3B—C10B—H10C108.00
C4—C3—H3120.00
O1—S1—N1—C743.70 (14)C2—C1—C6—C50.3 (3)
O2—S1—N1—C7173.39 (12)C2—C1—C6—S1179.33 (19)
C6—S1—N1—C773.17 (13)C6—C1—C2—C30.6 (4)
N1—S1—C6—C1126.00 (15)C1—C2—C3—C40.8 (4)
O1—S1—C6—C17.45 (17)C2—C3—C4—C50.5 (4)
O2—S1—C6—C1121.01 (15)C3—C4—C5—C60.2 (3)
N1—S1—C6—C554.93 (15)C4—C5—C6—C10.0 (3)
O1—S1—C6—C5173.48 (13)C4—C5—C6—S1179.10 (14)
O2—S1—C6—C558.06 (15)N1—C7—C10B—O3B56.0 (6)
S1—N1—C7—C9B159.68 (18)C8B—C7—C10B—O3B174.2 (6)
S1—N1—C7—C8B35.1 (2)C9B—C7—C10B—O3B56.1 (6)
S1—N1—C7—C10B90.15 (16)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z1/2; (v) x+2, y1/2, z+3/2; (vi) x+1, y1/2, z+3/2; (vii) x, y+1/2, z+1/2; (viii) x+1, y+1/2, z+3/2; (ix) x+2, y+1, z+2; (x) x, y+1, z; (xi) x, y1, z; (xii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3Bv0.862.142.840 (9)139
O3B—H3B···O2i0.822.022.777 (10)152
C1—H1···O10.932.512.886 (3)105
C9B—H9B1···O3B0.962.542.881 (11)101
C10B—H10D···O1xii0.972.543.478 (3)162
Symmetry codes: (i) x+2, y+1, z+1; (v) x+2, y1/2, z+3/2; (xii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H15NO3S
Mr229.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.4094 (3), 9.0042 (2), 10.4525 (2)
β (°) 93.731 (1)
V3)1165.45 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.24 × 0.16 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10723, 2857, 2331
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.04
No. of reflections2857
No. of parameters176
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3Bi0.862.142.840 (9)139
O3B—H3B···O2ii0.822.022.777 (10)152
C1—H1···O10.932.512.886 (3)105
C9B—H9B1···O3B0.962.542.881 (11)101
C10B—H10D···O1iii0.972.543.478 (3)162
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x, y+3/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: azizryk@hotmail.com.

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for providing financial support.

References

First citationAsiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246–o1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOzbek, N., Katircioglu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationParari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds