organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(3-Bromo­phen­yl)-3-(4,5-dimeth­­oxy-2-nitro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dSequent Scientif Limited, New Mangalore 57 011, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 6 October 2010; accepted 13 October 2010; online 23 October 2010)

In the title compound, C17H14BrNO5, the dihedral angle between the 3-bromo-substituted benzene ring and the 4,5-dimeth­oxy-2-nitro-phenyl ring is 15.2 (1)°. The dihedral angles between the mean plane of the propenone group and the mean planes of the 3-bromo-substituted benzene and 4,5-dimeth­oxy-2-nitro­phenyl rings are 6.9 (6) and 20.5 (5)°, respectively. Weak inter­molecular C—H⋯O inter­actions contribute to crystal stability and ππ inter­actions [centroid–centroid distances = 3.7072 (18) and 3.6326 (18) Å] are also observed.

Related literature

For the biological activity of chalcones, see: Liu et al. (2003[Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem. 11, 2729-2738.]); Nielson et al. (1998[Nielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819-4832.]); Rajas et al. (2002[Rajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951-1954.]); Dinkova-Kostova et al. (1998[Dinkova-Kostova, A. T., Abey-Gunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287-5296.]). For their non-linear optical properties, see: Goto et al. (1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]); Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]);Tam et al. (1989[Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93-96.]); Indira et al. (2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]). For the effect of bulky substit­uents on the spontaneous polarization of non-centrosymmetric crystals, see: Fichou et al. (1988[Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429-430.]). For the influence of the steric effect of the substituent on the mol­ecular hyperpolarizability, see: Cho et al. (1996[Cho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996). Bull. Korean Chem. Soc. 17, 693-695.]). For related structures, see: Butcher et al. (2007a[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007a). Acta Cryst. E63, o3680.],b[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007b). Acta Cryst. E63, o3833.],c[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Mayekar, A. N. (2007c). Acta Cryst. E63, o4253-o4254.]); Jasinski et al. (2010a[Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o158.],b[Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1638.],c[Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010c). Acta Cryst. E66, o1661.],d[Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010d). Acta Cryst. E66, o1676.],e[Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010e). Acta Cryst. E<66, o1701.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243-o1244.]); Kant et al. (2009[Kant, R., Kamni,, Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o836.]); Yathirajan et al. (2007[Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2196-o2197.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14BrNO5

  • Mr = 392.20

  • Orthorhombic, P 21 21 21

  • a = 6.8547 (2) Å

  • b = 8.3205 (2) Å

  • c = 27.1509 (6) Å

  • V = 1548.54 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.88 mm−1

  • T = 123 K

  • 0.55 × 0.12 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.490, Tmax = 1.000

  • 9914 measured reflections

  • 3069 independent reflections

  • 3011 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.07

  • 3069 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1228 Friedel pairs

  • Flack parameter: 0.08 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O5i 0.98 2.46 3.383 (3) 157
C17—H17B⋯O3ii 0.98 2.48 3.116 (4) 123
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones have displayed an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer activities (Dinkova-Kostova et al., 1998) have been cited in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue-light transmittance and good crystallizability. They provide the necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002, Sarojini et al., 2006). Substitution on either of the benzene rings greatly influences the non-centrosymmetric crystal packing. It is speculated that, in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influenced, not only by the electronic effect, but also by the steric effect of the substituent (Cho et al., 1996). The crystal structure studies of 2,3-dibromo-1-(2,4-dichlorophenyl)-3-(4,5-dimethoxy-2-nitrophenyl) propan-1-one (Yathirajan et al., 2007); (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher et al., 2007a); (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007b); (2E)-3-(2-bromo-5-methoxyphenyl)-1-(2,4-dichlorophenyl) prop-2-en-1-one (Butcher et al., 2007c); (E)-3-(4-bromophenyl)-1-(3,4-dichlorophenyl)prop-2-en-1-one (Kant et al., 2009); (2E)-3-(4-bromophenyl)-1-(3-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010a); (2E)-1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (Dutkiewicz et al., 2010); (2E)-1-(2-bromophenyl)-3-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010b); (2E)-1-(2-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010c); (2E)-1-(2-bromophenyl)-3- (3,4,5-trimethoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010d) and (2E)-1-(2-bromophenyl)-3-(4-bromophenyl)prop-2-en-1-one (Jasinski et al., 2010e) have been reported. In continuation of our work on chalcones, the present paper reports the synthesis and crystal structure of a new chalcone, C17H14BrNO5.

In the title compound the dihedral angle between the 3-bromo-substituted benzene ring and the 4,5-dimethoxy-2-nitro-phenyl ring is 15.2 (1)° (Fig. 2). The dihedral angles between the mean plane of the propenone group and the mean planes of the 3-bromo-substituted benzene and 4,5-dimethoxy-2-nitro-phenyl rings is 6.9 (6)° and 20.5 (5)°, respectively. While no classic hydrogen bonds are observed, weak intermolecular C—H···O (Table 1, Fig. 3) hydrogen bond interactions contribute to crystal stability.

Related literature top

For the biological activity of chalcones, see: Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Dinkova-Kostova et al. (1998). For their non-linear optical properties, see: Goto et al. (1991); Uchida et al. (1998);Tam et al. (1989); Indira et al. (2002); Sarojini et al. (2006). It has been speculated that more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals, see: Fichou et al. (1988). The molecular hyperpolarizability is strongly influenced not only by electronic effects, but also by the steric effect of the substituent, see: Cho et al. (1996). For related structures, see: Butcher et al. (2007a,b,c); Jasinski et al. (2010a,b,c,d,e); Dutkiewicz et al. (2010); Kant et al. (2009); Yathirajan et al. (2007).

Experimental top

1-(3-Bromophenyl)ethanone (1.99 g, 0.01 mol) was mixed with 4,5-dimethoxy-2-nitrobenzaldehyde (2.11 g, 0.01 mol) and dissolved in methanol (30 ml). To this, 3 ml of KOH (40%) was added and the reaction mixture was stirred for 6 h (Fig. 1). The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Pale yellow, small needle shaped crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the dimethylformamide solution at room temperature (m.p.: 409–411 K).

Refinement top

The parameters of all the H atoms have been constrained within the riding atom approximation. C—H bond lengths were constrained to 0.95 or 0.98 Å for aryl or methyl H atoms, Uiso(H) = 1.18–1.22Ueq(Caryl); Uiso(H) = 1.59–1.51Ueq(Cmethyl).

Structure description top

Chalcones have displayed an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer activities (Dinkova-Kostova et al., 1998) have been cited in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue-light transmittance and good crystallizability. They provide the necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002, Sarojini et al., 2006). Substitution on either of the benzene rings greatly influences the non-centrosymmetric crystal packing. It is speculated that, in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influenced, not only by the electronic effect, but also by the steric effect of the substituent (Cho et al., 1996). The crystal structure studies of 2,3-dibromo-1-(2,4-dichlorophenyl)-3-(4,5-dimethoxy-2-nitrophenyl) propan-1-one (Yathirajan et al., 2007); (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher et al., 2007a); (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007b); (2E)-3-(2-bromo-5-methoxyphenyl)-1-(2,4-dichlorophenyl) prop-2-en-1-one (Butcher et al., 2007c); (E)-3-(4-bromophenyl)-1-(3,4-dichlorophenyl)prop-2-en-1-one (Kant et al., 2009); (2E)-3-(4-bromophenyl)-1-(3-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010a); (2E)-1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (Dutkiewicz et al., 2010); (2E)-1-(2-bromophenyl)-3-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010b); (2E)-1-(2-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010c); (2E)-1-(2-bromophenyl)-3- (3,4,5-trimethoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010d) and (2E)-1-(2-bromophenyl)-3-(4-bromophenyl)prop-2-en-1-one (Jasinski et al., 2010e) have been reported. In continuation of our work on chalcones, the present paper reports the synthesis and crystal structure of a new chalcone, C17H14BrNO5.

In the title compound the dihedral angle between the 3-bromo-substituted benzene ring and the 4,5-dimethoxy-2-nitro-phenyl ring is 15.2 (1)° (Fig. 2). The dihedral angles between the mean plane of the propenone group and the mean planes of the 3-bromo-substituted benzene and 4,5-dimethoxy-2-nitro-phenyl rings is 6.9 (6)° and 20.5 (5)°, respectively. While no classic hydrogen bonds are observed, weak intermolecular C—H···O (Table 1, Fig. 3) hydrogen bond interactions contribute to crystal stability.

For the biological activity of chalcones, see: Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Dinkova-Kostova et al. (1998). For their non-linear optical properties, see: Goto et al. (1991); Uchida et al. (1998);Tam et al. (1989); Indira et al. (2002); Sarojini et al. (2006). It has been speculated that more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals, see: Fichou et al. (1988). The molecular hyperpolarizability is strongly influenced not only by electronic effects, but also by the steric effect of the substituent, see: Cho et al. (1996). For related structures, see: Butcher et al. (2007a,b,c); Jasinski et al. (2010a,b,c,d,e); Dutkiewicz et al. (2010); Kant et al. (2009); Yathirajan et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme for the title compound.
[Figure 2] Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate weak intermolecular C—H···O hydrogen bond interactions.
(2E)-1-(3-Bromophenyl)-3-(4,5-dimethoxy-2-nitrophenyl)prop-2-en-1-one top
Crystal data top
C17H14BrNO5F(000) = 792
Mr = 392.20Dx = 1.682 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 8339 reflections
a = 6.8547 (2) Åθ = 4.9–74.0°
b = 8.3205 (2) ŵ = 3.88 mm1
c = 27.1509 (6) ÅT = 123 K
V = 1548.54 (7) Å3Needle, colorless
Z = 40.55 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector3069 independent reflections
Radiation source: Enhance (Cu) X-ray Source3011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 5.6°
ω scansh = 85
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 910
Tmin = 0.490, Tmax = 1.000l = 3233
9914 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0497P)2 + 1.5041P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.003
3069 reflectionsΔρmax = 0.74 e Å3
219 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Flack (1983), 1228 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (2)
Crystal data top
C17H14BrNO5V = 1548.54 (7) Å3
Mr = 392.20Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.8547 (2) ŵ = 3.88 mm1
b = 8.3205 (2) ÅT = 123 K
c = 27.1509 (6) Å0.55 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector3069 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3011 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 1.000Rint = 0.040
9914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.74 e Å3
S = 1.07Δρmin = 0.42 e Å3
3069 reflectionsAbsolute structure: Flack (1983), 1228 Friedel pairs
219 parametersAbsolute structure parameter: 0.08 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.59396 (5)0.54840 (4)0.757218 (10)0.02935 (11)
O10.5372 (4)0.1224 (3)0.60992 (8)0.0329 (6)
O20.7701 (4)0.1958 (3)0.50347 (8)0.0314 (5)
O30.6537 (4)0.3581 (3)0.44871 (9)0.0332 (6)
O40.5820 (4)0.0031 (2)0.30190 (7)0.0240 (4)
O50.5346 (4)0.2869 (3)0.33757 (7)0.0258 (5)
N10.6855 (4)0.2223 (3)0.46423 (10)0.0227 (5)
C10.5862 (5)0.4042 (3)0.61065 (10)0.0200 (5)
C20.5815 (5)0.4043 (3)0.66260 (10)0.0227 (6)
H2A0.56850.30640.68030.027*
C30.5960 (4)0.5491 (4)0.68724 (9)0.0229 (5)
C40.6120 (5)0.6943 (4)0.66260 (11)0.0247 (6)
H4A0.61890.79250.68040.030*
C50.6179 (5)0.6939 (4)0.61128 (11)0.0246 (6)
H5A0.62960.79250.59380.030*
C60.6065 (4)0.5491 (4)0.58544 (10)0.0230 (5)
H6A0.61260.54940.55050.028*
C70.5701 (5)0.2433 (4)0.58575 (11)0.0233 (6)
C80.5993 (5)0.2348 (4)0.53138 (10)0.0224 (6)
H8A0.63230.32860.51320.027*
C90.5783 (5)0.0934 (3)0.50851 (10)0.0213 (5)
H9A0.54880.00270.52840.026*
C100.5971 (4)0.0665 (3)0.45512 (9)0.0191 (5)
C110.6283 (4)0.0843 (3)0.43402 (10)0.0199 (6)
C120.6209 (4)0.1121 (3)0.38335 (10)0.0206 (6)
H12A0.63780.21780.37080.025*
C130.5890 (5)0.0144 (3)0.35161 (9)0.0198 (5)
C140.5639 (5)0.1705 (3)0.37128 (10)0.0208 (6)
C150.5659 (4)0.1943 (3)0.42198 (10)0.0203 (6)
H15A0.54570.29950.43460.024*
C160.5963 (5)0.1555 (4)0.28128 (10)0.0255 (6)
H16A0.58660.14900.24530.038*
H16B0.49000.22230.29410.038*
H16C0.72190.20320.29040.038*
C170.5316 (6)0.4499 (4)0.35512 (11)0.0317 (7)
H17A0.52420.52360.32700.048*
H17B0.65090.47140.37390.048*
H17C0.41770.46570.37640.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04312 (19)0.03241 (16)0.01252 (15)0.00224 (15)0.00131 (12)0.00345 (11)
O10.0530 (16)0.0300 (11)0.0157 (10)0.0028 (11)0.0034 (10)0.0018 (9)
O20.0428 (14)0.0333 (12)0.0180 (11)0.0038 (11)0.0085 (10)0.0032 (9)
O30.0540 (16)0.0227 (11)0.0228 (11)0.0026 (10)0.0012 (10)0.0005 (9)
O40.0377 (12)0.0219 (9)0.0123 (8)0.0006 (9)0.0012 (9)0.0026 (7)
O50.0456 (14)0.0191 (10)0.0125 (9)0.0002 (9)0.0034 (9)0.0008 (8)
N10.0303 (13)0.0223 (12)0.0154 (11)0.0032 (10)0.0026 (10)0.0010 (10)
C10.0200 (13)0.0264 (13)0.0135 (12)0.0000 (12)0.0016 (12)0.0037 (10)
C20.0286 (15)0.0251 (13)0.0145 (13)0.0015 (13)0.0007 (13)0.0009 (10)
C30.0288 (14)0.0309 (14)0.0089 (11)0.0029 (16)0.0014 (11)0.0035 (11)
C40.0282 (16)0.0251 (13)0.0207 (14)0.0019 (13)0.0019 (14)0.0027 (11)
C50.0298 (16)0.0241 (14)0.0200 (14)0.0004 (13)0.0003 (13)0.0022 (11)
C60.0255 (14)0.0285 (14)0.0150 (12)0.0026 (15)0.0007 (11)0.0004 (11)
C70.0263 (15)0.0280 (14)0.0158 (13)0.0005 (13)0.0018 (12)0.0008 (11)
C80.0258 (14)0.0269 (13)0.0146 (13)0.0019 (14)0.0013 (12)0.0002 (11)
C90.0252 (14)0.0243 (13)0.0144 (12)0.0000 (12)0.0004 (12)0.0002 (10)
C100.0207 (12)0.0234 (13)0.0133 (12)0.0023 (13)0.0001 (11)0.0006 (10)
C110.0227 (15)0.0214 (13)0.0155 (13)0.0002 (11)0.0002 (11)0.0025 (10)
C120.0267 (16)0.0199 (12)0.0150 (13)0.0012 (12)0.0015 (12)0.0037 (10)
C130.0250 (14)0.0229 (13)0.0115 (11)0.0017 (12)0.0004 (11)0.0024 (10)
C140.0253 (15)0.0213 (13)0.0159 (13)0.0019 (12)0.0010 (11)0.0023 (11)
C150.0232 (15)0.0213 (13)0.0163 (13)0.0007 (11)0.0001 (11)0.0022 (10)
C160.0371 (16)0.0259 (14)0.0135 (12)0.0011 (14)0.0005 (14)0.0053 (10)
C170.056 (2)0.0186 (14)0.0210 (14)0.0006 (15)0.0011 (13)0.0006 (13)
Geometric parameters (Å, º) top
Br—C31.900 (3)C7—C81.491 (4)
O1—C71.222 (4)C8—C91.338 (4)
O2—N11.233 (4)C8—H8A0.9500
O3—N11.225 (4)C9—C101.472 (4)
O4—C131.354 (3)C9—H9A0.9500
O4—C161.436 (3)C10—C111.395 (4)
O5—C141.348 (4)C10—C151.410 (4)
O5—C171.437 (4)C11—C121.396 (4)
N1—C111.465 (4)C12—C131.378 (4)
C1—C61.393 (4)C12—H12A0.9500
C1—C21.411 (4)C13—C141.415 (4)
C1—C71.504 (4)C14—C151.391 (4)
C2—C31.382 (4)C15—H15A0.9500
C2—H2A0.9500C16—H16A0.9800
C3—C41.386 (4)C16—H16B0.9800
C4—C51.394 (4)C16—H16C0.9800
C4—H4A0.9500C17—H17A0.9800
C5—C61.397 (4)C17—H17B0.9800
C5—H5A0.9500C17—H17C0.9800
C6—H6A0.9500
C13—O4—C16116.8 (2)C10—C9—H9A117.2
C14—O5—C17117.1 (2)C11—C10—C15116.1 (2)
O3—N1—O2123.1 (3)C11—C10—C9123.7 (3)
O3—N1—C11118.9 (3)C15—C10—C9120.0 (2)
O2—N1—C11118.0 (2)C10—C11—C12123.3 (3)
C6—C1—C2119.5 (2)C10—C11—N1121.1 (2)
C6—C1—C7123.8 (2)C12—C11—N1115.5 (2)
C2—C1—C7116.6 (2)C13—C12—C11119.7 (3)
C3—C2—C1118.9 (3)C13—C12—H12A120.2
C3—C2—H2A120.6C11—C12—H12A120.2
C1—C2—H2A120.6O4—C13—C12125.1 (2)
C2—C3—C4122.2 (2)O4—C13—C14115.9 (2)
C2—C3—Br118.8 (2)C12—C13—C14119.0 (2)
C4—C3—Br119.1 (2)O5—C14—C15124.8 (3)
C3—C4—C5118.9 (3)O5—C14—C13114.9 (2)
C3—C4—H4A120.6C15—C14—C13120.2 (3)
C5—C4—H4A120.6C14—C15—C10121.7 (3)
C4—C5—C6120.2 (3)C14—C15—H15A119.1
C4—C5—H5A119.9C10—C15—H15A119.1
C6—C5—H5A119.9O4—C16—H16A109.5
C1—C6—C5120.4 (2)O4—C16—H16B109.5
C1—C6—H6A119.8H16A—C16—H16B109.5
C5—C6—H6A119.8O4—C16—H16C109.5
O1—C7—C8121.2 (3)H16A—C16—H16C109.5
O1—C7—C1120.3 (3)H16B—C16—H16C109.5
C8—C7—C1118.5 (3)O5—C17—H17A109.5
C9—C8—C7119.1 (3)O5—C17—H17B109.5
C9—C8—H8A120.5H17A—C17—H17B109.5
C7—C8—H8A120.5O5—C17—H17C109.5
C8—C9—C10125.5 (3)H17A—C17—H17C109.5
C8—C9—H9A117.2H17B—C17—H17C109.5
C6—C1—C2—C30.4 (5)C9—C10—C11—N113.0 (5)
C7—C1—C2—C3179.9 (3)O3—N1—C11—C10157.6 (3)
C1—C2—C3—C41.0 (5)O2—N1—C11—C1025.0 (4)
C1—C2—C3—Br178.9 (3)O3—N1—C11—C1226.6 (4)
C2—C3—C4—C51.4 (5)O2—N1—C11—C12150.9 (3)
Br—C3—C4—C5178.6 (3)C10—C11—C12—C132.7 (5)
C3—C4—C5—C60.4 (5)N1—C11—C12—C13173.1 (3)
C2—C1—C6—C51.4 (5)C16—O4—C13—C124.4 (5)
C7—C1—C6—C5179.1 (3)C16—O4—C13—C14176.6 (3)
C4—C5—C6—C11.0 (5)C11—C12—C13—O4178.8 (3)
C6—C1—C7—O1174.2 (3)C11—C12—C13—C140.2 (5)
C2—C1—C7—O16.3 (5)C17—O5—C14—C158.8 (5)
C6—C1—C7—C87.0 (5)C17—O5—C14—C13172.7 (3)
C2—C1—C7—C8172.5 (3)O4—C13—C14—O50.6 (4)
O1—C7—C8—C93.7 (5)C12—C13—C14—O5179.7 (3)
C1—C7—C8—C9177.6 (3)O4—C13—C14—C15179.1 (3)
C7—C8—C9—C10178.3 (3)C12—C13—C14—C151.8 (5)
C8—C9—C10—C11161.5 (3)O5—C14—C15—C10179.9 (3)
C8—C9—C10—C1524.4 (5)C13—C14—C15—C101.5 (5)
C15—C10—C11—C122.9 (4)C11—C10—C15—C140.8 (4)
C9—C10—C11—C12171.4 (3)C9—C10—C15—C14173.8 (3)
C15—C10—C11—N1172.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O5i0.982.463.383 (3)157
C17—H17B···O3ii0.982.483.116 (4)123
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14BrNO5
Mr392.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)6.8547 (2), 8.3205 (2), 27.1509 (6)
V3)1548.54 (7)
Z4
Radiation typeCu Kα
µ (mm1)3.88
Crystal size (mm)0.55 × 0.12 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.490, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9914, 3069, 3011
Rint0.040
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.07
No. of reflections3069
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.42
Absolute structureFlack (1983), 1228 Friedel pairs
Absolute structure parameter0.08 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O5i0.982.463.383 (3)157.4
C17—H17B···O3ii0.982.483.116 (4)122.5
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z.
π-π hydrogen-bond geometry (Å) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
Cg···CgD···A
Cg1···Cg2i3.7072 (18)
Cg1···Cg2ii3.6326 (18)
Symmetry codes: (i) -1/2+x, 1/2-y, 1-z; (ii) 1/2+x, 1/2-y, 1-z.
 

Acknowledgements

CSC thanks the University of Mysore for the research facilities and HSY thanks the University of Mysore for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Mayekar, A. N. (2007c). Acta Cryst. E63, o4253–o4254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007b). Acta Cryst. E63, o3833.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007a). Acta Cryst. E63, o3680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996). Bull. Korean Chem. Soc. 17, 693–695.  CAS Google Scholar
First citationDinkova-Kostova, A. T., Abey-Gunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287–5296.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243–o1244.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429–430.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010c). Acta Cryst. E66, o1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010d). Acta Cryst. E66, o1676.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010e). Acta Cryst. E<66, o1701.  Google Scholar
First citationKant, R., Kamni,, Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o836.  Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832.  Web of Science CrossRef PubMed Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951–1954.  Web of Science CrossRef PubMed Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96.  CSD CrossRef CAS Web of Science Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationYathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2196–o2197.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds