organic compounds
(2E)-1-(3-Bromophenyl)-3-(4,5-dimethoxy-2-nitrophenyl)prop-2-en-1-one
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dSequent Scientif Limited, New Mangalore 57 011, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C17H14BrNO5, the dihedral angle between the 3-bromo-substituted benzene ring and the 4,5-dimethoxy-2-nitro-phenyl ring is 15.2 (1)°. The dihedral angles between the mean plane of the propenone group and the mean planes of the 3-bromo-substituted benzene and 4,5-dimethoxy-2-nitrophenyl rings are 6.9 (6) and 20.5 (5)°, respectively. Weak intermolecular C—H⋯O interactions contribute to crystal stability and π–π interactions [centroid–centroid distances = 3.7072 (18) and 3.6326 (18) Å] are also observed.
Related literature
For the biological activity of et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Dinkova-Kostova et al. (1998). For their non-linear optical properties, see: Goto et al. (1991); Uchida et al. (1998);Tam et al. (1989); Indira et al. (2002); Sarojini et al. (2006). For the effect of bulky substituents on the spontaneous polarization of non-centrosymmetric crystals, see: Fichou et al. (1988). For the influence of the of the substituent on the molecular hyperpolarizability, see: Cho et al. (1996). For related structures, see: Butcher et al. (2007a,b,c); Jasinski et al. (2010a,b,c,d,e); Dutkiewicz et al. (2010); Kant et al. (2009); Yathirajan et al. (2007).
see: LiuExperimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810041292/lx2178sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041292/lx2178Isup2.hkl
1-(3-Bromophenyl)ethanone (1.99 g, 0.01 mol) was mixed with 4,5-dimethoxy-2-nitrobenzaldehyde (2.11 g, 0.01 mol) and dissolved in methanol (30 ml). To this, 3 ml of KOH (40%) was added and the reaction mixture was stirred for 6 h (Fig. 1). The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Pale yellow, small needle shaped crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the dimethylformamide solution at room temperature (m.p.: 409–411 K).
The parameters of all the H atoms have been constrained within the riding atom approximation. C—H bond lengths were constrained to 0.95 or 0.98 Å for aryl or methyl H atoms, Uiso(H) = 1.18–1.22Ueq(Caryl); Uiso(H) = 1.59–1.51Ueq(Cmethyl).
Chalcones have displayed an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer activities (Dinkova-Kostova et al., 1998) have been cited in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue-light transmittance and good crystallizability. They provide the necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002, Sarojini et al., 2006). Substitution on either of the benzene rings greatly influences the non-centrosymmetric crystal packing. It is speculated that, in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influenced, not only by the electronic effect, but also by the
of the substituent (Cho et al., 1996). The studies of 2,3-dibromo-1-(2,4-dichlorophenyl)-3-(4,5-dimethoxy-2-nitrophenyl) propan-1-one (Yathirajan et al., 2007); (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher et al., 2007a); (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007b); (2E)-3-(2-bromo-5-methoxyphenyl)-1-(2,4-dichlorophenyl) prop-2-en-1-one (Butcher et al., 2007c); (E)-3-(4-bromophenyl)-1-(3,4-dichlorophenyl)prop-2-en-1-one (Kant et al., 2009); (2E)-3-(4-bromophenyl)-1-(3-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010a); (2E)-1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (Dutkiewicz et al., 2010); (2E)-1-(2-bromophenyl)-3-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010b); (2E)-1-(2-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010c); (2E)-1-(2-bromophenyl)-3- (3,4,5-trimethoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010d) and (2E)-1-(2-bromophenyl)-3-(4-bromophenyl)prop-2-en-1-one (Jasinski et al., 2010e) have been reported. In continuation of our work on the present paper reports the synthesis and of a new chalcone, C17H14BrNO5.In the title compound the dihedral angle between the 3-bromo-substituted benzene ring and the 4,5-dimethoxy-2-nitro-phenyl ring is 15.2 (1)° (Fig. 2). The dihedral angles between the mean plane of the propenone group and the mean planes of the 3-bromo-substituted benzene and 4,5-dimethoxy-2-nitro-phenyl rings is 6.9 (6)° and 20.5 (5)°, respectively. While no classic hydrogen bonds are observed, weak intermolecular C—H···O (Table 1, Fig. 3) hydrogen bond interactions contribute to crystal stability.
For the biological activity of
see: Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Dinkova-Kostova et al. (1998). For their non-linear optical properties, see: Goto et al. (1991); Uchida et al. (1998);Tam et al. (1989); Indira et al. (2002); Sarojini et al. (2006). It has been speculated that more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals, see: Fichou et al. (1988). The molecular hyperpolarizability is strongly influenced not only by electronic effects, but also by the of the substituent, see: Cho et al. (1996). For related structures, see: Butcher et al. (2007a,b,c); Jasinski et al. (2010a,b,c,d,e); Dutkiewicz et al. (2010); Kant et al. (2009); Yathirajan et al. (2007).Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H14BrNO5 | F(000) = 792 |
Mr = 392.20 | Dx = 1.682 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 8339 reflections |
a = 6.8547 (2) Å | θ = 4.9–74.0° |
b = 8.3205 (2) Å | µ = 3.88 mm−1 |
c = 27.1509 (6) Å | T = 123 K |
V = 1548.54 (7) Å3 | Needle, colorless |
Z = 4 | 0.55 × 0.12 × 0.06 mm |
Oxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector | 3069 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3011 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 74.1°, θmin = 5.6° |
ω scans | h = −8→5 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −9→10 |
Tmin = 0.490, Tmax = 1.000 | l = −32→33 |
9914 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0497P)2 + 1.5041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.003 |
3069 reflections | Δρmax = 0.74 e Å−3 |
219 parameters | Δρmin = −0.42 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1228 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.08 (2) |
C17H14BrNO5 | V = 1548.54 (7) Å3 |
Mr = 392.20 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 6.8547 (2) Å | µ = 3.88 mm−1 |
b = 8.3205 (2) Å | T = 123 K |
c = 27.1509 (6) Å | 0.55 × 0.12 × 0.06 mm |
Oxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector | 3069 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 3011 reflections with I > 2σ(I) |
Tmin = 0.490, Tmax = 1.000 | Rint = 0.040 |
9914 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.086 | Δρmax = 0.74 e Å−3 |
S = 1.07 | Δρmin = −0.42 e Å−3 |
3069 reflections | Absolute structure: Flack (1983), 1228 Friedel pairs |
219 parameters | Absolute structure parameter: 0.08 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.59396 (5) | 0.54840 (4) | 0.757218 (10) | 0.02935 (11) | |
O1 | 0.5372 (4) | 0.1224 (3) | 0.60992 (8) | 0.0329 (6) | |
O2 | 0.7701 (4) | −0.1958 (3) | 0.50347 (8) | 0.0314 (5) | |
O3 | 0.6537 (4) | −0.3581 (3) | 0.44871 (9) | 0.0332 (6) | |
O4 | 0.5820 (4) | 0.0031 (2) | 0.30190 (7) | 0.0240 (4) | |
O5 | 0.5346 (4) | 0.2869 (3) | 0.33757 (7) | 0.0258 (5) | |
N1 | 0.6855 (4) | −0.2223 (3) | 0.46423 (10) | 0.0227 (5) | |
C1 | 0.5862 (5) | 0.4042 (3) | 0.61065 (10) | 0.0200 (5) | |
C2 | 0.5815 (5) | 0.4043 (3) | 0.66260 (10) | 0.0227 (6) | |
H2A | 0.5685 | 0.3064 | 0.6803 | 0.027* | |
C3 | 0.5960 (4) | 0.5491 (4) | 0.68724 (9) | 0.0229 (5) | |
C4 | 0.6120 (5) | 0.6943 (4) | 0.66260 (11) | 0.0247 (6) | |
H4A | 0.6189 | 0.7925 | 0.6804 | 0.030* | |
C5 | 0.6179 (5) | 0.6939 (4) | 0.61128 (11) | 0.0246 (6) | |
H5A | 0.6296 | 0.7925 | 0.5938 | 0.030* | |
C6 | 0.6065 (4) | 0.5491 (4) | 0.58544 (10) | 0.0230 (5) | |
H6A | 0.6126 | 0.5494 | 0.5505 | 0.028* | |
C7 | 0.5701 (5) | 0.2433 (4) | 0.58575 (11) | 0.0233 (6) | |
C8 | 0.5993 (5) | 0.2348 (4) | 0.53138 (10) | 0.0224 (6) | |
H8A | 0.6323 | 0.3286 | 0.5132 | 0.027* | |
C9 | 0.5783 (5) | 0.0934 (3) | 0.50851 (10) | 0.0213 (5) | |
H9A | 0.5488 | 0.0027 | 0.5284 | 0.026* | |
C10 | 0.5971 (4) | 0.0665 (3) | 0.45512 (9) | 0.0191 (5) | |
C11 | 0.6283 (4) | −0.0843 (3) | 0.43402 (10) | 0.0199 (6) | |
C12 | 0.6209 (4) | −0.1121 (3) | 0.38335 (10) | 0.0206 (6) | |
H12A | 0.6378 | −0.2178 | 0.3708 | 0.025* | |
C13 | 0.5890 (5) | 0.0144 (3) | 0.35161 (9) | 0.0198 (5) | |
C14 | 0.5639 (5) | 0.1705 (3) | 0.37128 (10) | 0.0208 (6) | |
C15 | 0.5659 (4) | 0.1943 (3) | 0.42198 (10) | 0.0203 (6) | |
H15A | 0.5457 | 0.2995 | 0.4346 | 0.024* | |
C16 | 0.5963 (5) | −0.1555 (4) | 0.28128 (10) | 0.0255 (6) | |
H16A | 0.5866 | −0.1490 | 0.2453 | 0.038* | |
H16B | 0.4900 | −0.2223 | 0.2941 | 0.038* | |
H16C | 0.7219 | −0.2032 | 0.2904 | 0.038* | |
C17 | 0.5316 (6) | 0.4499 (4) | 0.35512 (11) | 0.0317 (7) | |
H17A | 0.5242 | 0.5236 | 0.3270 | 0.048* | |
H17B | 0.6509 | 0.4714 | 0.3739 | 0.048* | |
H17C | 0.4177 | 0.4657 | 0.3764 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.04312 (19) | 0.03241 (16) | 0.01252 (15) | 0.00224 (15) | −0.00131 (12) | −0.00345 (11) |
O1 | 0.0530 (16) | 0.0300 (11) | 0.0157 (10) | −0.0028 (11) | 0.0034 (10) | −0.0018 (9) |
O2 | 0.0428 (14) | 0.0333 (12) | 0.0180 (11) | 0.0038 (11) | −0.0085 (10) | 0.0032 (9) |
O3 | 0.0540 (16) | 0.0227 (11) | 0.0228 (11) | 0.0026 (10) | 0.0012 (10) | 0.0005 (9) |
O4 | 0.0377 (12) | 0.0219 (9) | 0.0123 (8) | −0.0006 (9) | −0.0012 (9) | −0.0026 (7) |
O5 | 0.0456 (14) | 0.0191 (10) | 0.0125 (9) | −0.0002 (9) | −0.0034 (9) | 0.0008 (8) |
N1 | 0.0303 (13) | 0.0223 (12) | 0.0154 (11) | 0.0032 (10) | 0.0026 (10) | 0.0010 (10) |
C1 | 0.0200 (13) | 0.0264 (13) | 0.0135 (12) | 0.0000 (12) | −0.0016 (12) | −0.0037 (10) |
C2 | 0.0286 (15) | 0.0251 (13) | 0.0145 (13) | 0.0015 (13) | 0.0007 (13) | −0.0009 (10) |
C3 | 0.0288 (14) | 0.0309 (14) | 0.0089 (11) | 0.0029 (16) | −0.0014 (11) | −0.0035 (11) |
C4 | 0.0282 (16) | 0.0251 (13) | 0.0207 (14) | 0.0019 (13) | 0.0019 (14) | −0.0027 (11) |
C5 | 0.0298 (16) | 0.0241 (14) | 0.0200 (14) | 0.0004 (13) | −0.0003 (13) | 0.0022 (11) |
C6 | 0.0255 (14) | 0.0285 (14) | 0.0150 (12) | 0.0026 (15) | −0.0007 (11) | −0.0004 (11) |
C7 | 0.0263 (15) | 0.0280 (14) | 0.0158 (13) | 0.0005 (13) | −0.0018 (12) | −0.0008 (11) |
C8 | 0.0258 (14) | 0.0269 (13) | 0.0146 (13) | −0.0019 (14) | 0.0013 (12) | 0.0002 (11) |
C9 | 0.0252 (14) | 0.0243 (13) | 0.0144 (12) | 0.0000 (12) | 0.0004 (12) | 0.0002 (10) |
C10 | 0.0207 (12) | 0.0234 (13) | 0.0133 (12) | −0.0023 (13) | 0.0001 (11) | −0.0006 (10) |
C11 | 0.0227 (15) | 0.0214 (13) | 0.0155 (13) | −0.0002 (11) | 0.0002 (11) | 0.0025 (10) |
C12 | 0.0267 (16) | 0.0199 (12) | 0.0150 (13) | −0.0012 (12) | 0.0015 (12) | −0.0037 (10) |
C13 | 0.0250 (14) | 0.0229 (13) | 0.0115 (11) | −0.0017 (12) | 0.0004 (11) | −0.0024 (10) |
C14 | 0.0253 (15) | 0.0213 (13) | 0.0159 (13) | −0.0019 (12) | 0.0010 (11) | 0.0023 (11) |
C15 | 0.0232 (15) | 0.0213 (13) | 0.0163 (13) | −0.0007 (11) | −0.0001 (11) | −0.0022 (10) |
C16 | 0.0371 (16) | 0.0259 (14) | 0.0135 (12) | 0.0011 (14) | −0.0005 (14) | −0.0053 (10) |
C17 | 0.056 (2) | 0.0186 (14) | 0.0210 (14) | −0.0006 (15) | 0.0011 (13) | 0.0006 (13) |
Br—C3 | 1.900 (3) | C7—C8 | 1.491 (4) |
O1—C7 | 1.222 (4) | C8—C9 | 1.338 (4) |
O2—N1 | 1.233 (4) | C8—H8A | 0.9500 |
O3—N1 | 1.225 (4) | C9—C10 | 1.472 (4) |
O4—C13 | 1.354 (3) | C9—H9A | 0.9500 |
O4—C16 | 1.436 (3) | C10—C11 | 1.395 (4) |
O5—C14 | 1.348 (4) | C10—C15 | 1.410 (4) |
O5—C17 | 1.437 (4) | C11—C12 | 1.396 (4) |
N1—C11 | 1.465 (4) | C12—C13 | 1.378 (4) |
C1—C6 | 1.393 (4) | C12—H12A | 0.9500 |
C1—C2 | 1.411 (4) | C13—C14 | 1.415 (4) |
C1—C7 | 1.504 (4) | C14—C15 | 1.391 (4) |
C2—C3 | 1.382 (4) | C15—H15A | 0.9500 |
C2—H2A | 0.9500 | C16—H16A | 0.9800 |
C3—C4 | 1.386 (4) | C16—H16B | 0.9800 |
C4—C5 | 1.394 (4) | C16—H16C | 0.9800 |
C4—H4A | 0.9500 | C17—H17A | 0.9800 |
C5—C6 | 1.397 (4) | C17—H17B | 0.9800 |
C5—H5A | 0.9500 | C17—H17C | 0.9800 |
C6—H6A | 0.9500 | ||
C13—O4—C16 | 116.8 (2) | C10—C9—H9A | 117.2 |
C14—O5—C17 | 117.1 (2) | C11—C10—C15 | 116.1 (2) |
O3—N1—O2 | 123.1 (3) | C11—C10—C9 | 123.7 (3) |
O3—N1—C11 | 118.9 (3) | C15—C10—C9 | 120.0 (2) |
O2—N1—C11 | 118.0 (2) | C10—C11—C12 | 123.3 (3) |
C6—C1—C2 | 119.5 (2) | C10—C11—N1 | 121.1 (2) |
C6—C1—C7 | 123.8 (2) | C12—C11—N1 | 115.5 (2) |
C2—C1—C7 | 116.6 (2) | C13—C12—C11 | 119.7 (3) |
C3—C2—C1 | 118.9 (3) | C13—C12—H12A | 120.2 |
C3—C2—H2A | 120.6 | C11—C12—H12A | 120.2 |
C1—C2—H2A | 120.6 | O4—C13—C12 | 125.1 (2) |
C2—C3—C4 | 122.2 (2) | O4—C13—C14 | 115.9 (2) |
C2—C3—Br | 118.8 (2) | C12—C13—C14 | 119.0 (2) |
C4—C3—Br | 119.1 (2) | O5—C14—C15 | 124.8 (3) |
C3—C4—C5 | 118.9 (3) | O5—C14—C13 | 114.9 (2) |
C3—C4—H4A | 120.6 | C15—C14—C13 | 120.2 (3) |
C5—C4—H4A | 120.6 | C14—C15—C10 | 121.7 (3) |
C4—C5—C6 | 120.2 (3) | C14—C15—H15A | 119.1 |
C4—C5—H5A | 119.9 | C10—C15—H15A | 119.1 |
C6—C5—H5A | 119.9 | O4—C16—H16A | 109.5 |
C1—C6—C5 | 120.4 (2) | O4—C16—H16B | 109.5 |
C1—C6—H6A | 119.8 | H16A—C16—H16B | 109.5 |
C5—C6—H6A | 119.8 | O4—C16—H16C | 109.5 |
O1—C7—C8 | 121.2 (3) | H16A—C16—H16C | 109.5 |
O1—C7—C1 | 120.3 (3) | H16B—C16—H16C | 109.5 |
C8—C7—C1 | 118.5 (3) | O5—C17—H17A | 109.5 |
C9—C8—C7 | 119.1 (3) | O5—C17—H17B | 109.5 |
C9—C8—H8A | 120.5 | H17A—C17—H17B | 109.5 |
C7—C8—H8A | 120.5 | O5—C17—H17C | 109.5 |
C8—C9—C10 | 125.5 (3) | H17A—C17—H17C | 109.5 |
C8—C9—H9A | 117.2 | H17B—C17—H17C | 109.5 |
C6—C1—C2—C3 | 0.4 (5) | C9—C10—C11—N1 | −13.0 (5) |
C7—C1—C2—C3 | 179.9 (3) | O3—N1—C11—C10 | 157.6 (3) |
C1—C2—C3—C4 | 1.0 (5) | O2—N1—C11—C10 | −25.0 (4) |
C1—C2—C3—Br | −178.9 (3) | O3—N1—C11—C12 | −26.6 (4) |
C2—C3—C4—C5 | −1.4 (5) | O2—N1—C11—C12 | 150.9 (3) |
Br—C3—C4—C5 | 178.6 (3) | C10—C11—C12—C13 | 2.7 (5) |
C3—C4—C5—C6 | 0.4 (5) | N1—C11—C12—C13 | −173.1 (3) |
C2—C1—C6—C5 | −1.4 (5) | C16—O4—C13—C12 | 4.4 (5) |
C7—C1—C6—C5 | 179.1 (3) | C16—O4—C13—C14 | −176.6 (3) |
C4—C5—C6—C1 | 1.0 (5) | C11—C12—C13—O4 | 178.8 (3) |
C6—C1—C7—O1 | −174.2 (3) | C11—C12—C13—C14 | −0.2 (5) |
C2—C1—C7—O1 | 6.3 (5) | C17—O5—C14—C15 | 8.8 (5) |
C6—C1—C7—C8 | 7.0 (5) | C17—O5—C14—C13 | −172.7 (3) |
C2—C1—C7—C8 | −172.5 (3) | O4—C13—C14—O5 | 0.6 (4) |
O1—C7—C8—C9 | 3.7 (5) | C12—C13—C14—O5 | 179.7 (3) |
C1—C7—C8—C9 | −177.6 (3) | O4—C13—C14—C15 | 179.1 (3) |
C7—C8—C9—C10 | 178.3 (3) | C12—C13—C14—C15 | −1.8 (5) |
C8—C9—C10—C11 | 161.5 (3) | O5—C14—C15—C10 | 179.9 (3) |
C8—C9—C10—C15 | −24.4 (5) | C13—C14—C15—C10 | 1.5 (5) |
C15—C10—C11—C12 | −2.9 (4) | C11—C10—C15—C14 | 0.8 (4) |
C9—C10—C11—C12 | 171.4 (3) | C9—C10—C15—C14 | −173.8 (3) |
C15—C10—C11—N1 | 172.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16A···O5i | 0.98 | 2.46 | 3.383 (3) | 157 |
C17—H17B···O3ii | 0.98 | 2.48 | 3.116 (4) | 123 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C17H14BrNO5 |
Mr | 392.20 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 123 |
a, b, c (Å) | 6.8547 (2), 8.3205 (2), 27.1509 (6) |
V (Å3) | 1548.54 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 3.88 |
Crystal size (mm) | 0.55 × 0.12 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Diffractometer with Ruby Gemini detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.490, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9914, 3069, 3011 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.086, 1.07 |
No. of reflections | 3069 |
No. of parameters | 219 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.42 |
Absolute structure | Flack (1983), 1228 Friedel pairs |
Absolute structure parameter | 0.08 (2) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16A···O5i | 0.98 | 2.46 | 3.383 (3) | 157.4 |
C17—H17B···O3ii | 0.98 | 2.48 | 3.116 (4) | 122.5 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y+1, z. |
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively. |
Cg···Cg | D···A |
Cg1···Cg2i | 3.7072 (18) |
Cg1···Cg2ii | 3.6326 (18) |
Symmetry codes: (i) -1/2+x, 1/2-y, 1-z; (ii) 1/2+x, 1/2-y, 1-z. |
Acknowledgements
CSC thanks the University of Mysore for the research facilities and HSY thanks the University of Mysore for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Mayekar, A. N. (2007c). Acta Cryst. E63, o4253–o4254. Web of Science CSD CrossRef IUCr Journals Google Scholar
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Veena, K. (2007b). Acta Cryst. E63, o3833. Web of Science CSD CrossRef IUCr Journals Google Scholar
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007a). Acta Cryst. E63, o3680. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996). Bull. Korean Chem. Soc. 17, 693–695. CAS Google Scholar
Dinkova-Kostova, A. T., Abey-Gunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287–5296. Web of Science CrossRef CAS PubMed Google Scholar
Dutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243–o1244. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429–430. CrossRef Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698. CrossRef CAS Web of Science Google Scholar
Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214. Web of Science CrossRef CAS Google Scholar
Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1638. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010c). Acta Cryst. E66, o1661. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010d). Acta Cryst. E66, o1676. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2010e). Acta Cryst. E<66, o1701. Google Scholar
Kant, R., Kamni,, Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o836. Google Scholar
Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem. 11, 2729–2738. Web of Science CrossRef PubMed CAS Google Scholar
Nielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832. Web of Science CrossRef PubMed Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951–1954. Web of Science CrossRef PubMed Google Scholar
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, S. H. (1989). Chem. Phys. Lett. 154, 93–96. CSD CrossRef CAS Web of Science Google Scholar
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140. Web of Science CrossRef Google Scholar
Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o2196–o2197. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones have displayed an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer activities (Dinkova-Kostova et al., 1998) have been cited in the literature. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue-light transmittance and good crystallizability. They provide the necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Goto et al., 1991; Uchida et al., 1998; Tam et al., 1989; Indira et al., 2002, Sarojini et al., 2006). Substitution on either of the benzene rings greatly influences the non-centrosymmetric crystal packing. It is speculated that, in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influenced, not only by the electronic effect, but also by the steric effect of the substituent (Cho et al., 1996). The crystal structure studies of 2,3-dibromo-1-(2,4-dichlorophenyl)-3-(4,5-dimethoxy-2-nitrophenyl) propan-1-one (Yathirajan et al., 2007); (2E)-1-(4-methylphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (Butcher et al., 2007a); (E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher et al., 2007b); (2E)-3-(2-bromo-5-methoxyphenyl)-1-(2,4-dichlorophenyl) prop-2-en-1-one (Butcher et al., 2007c); (E)-3-(4-bromophenyl)-1-(3,4-dichlorophenyl)prop-2-en-1-one (Kant et al., 2009); (2E)-3-(4-bromophenyl)-1-(3-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010a); (2E)-1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (Dutkiewicz et al., 2010); (2E)-1-(2-bromophenyl)-3-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al., 2010b); (2E)-1-(2-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010c); (2E)-1-(2-bromophenyl)-3- (3,4,5-trimethoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010d) and (2E)-1-(2-bromophenyl)-3-(4-bromophenyl)prop-2-en-1-one (Jasinski et al., 2010e) have been reported. In continuation of our work on chalcones, the present paper reports the synthesis and crystal structure of a new chalcone, C17H14BrNO5.
In the title compound the dihedral angle between the 3-bromo-substituted benzene ring and the 4,5-dimethoxy-2-nitro-phenyl ring is 15.2 (1)° (Fig. 2). The dihedral angles between the mean plane of the propenone group and the mean planes of the 3-bromo-substituted benzene and 4,5-dimethoxy-2-nitro-phenyl rings is 6.9 (6)° and 20.5 (5)°, respectively. While no classic hydrogen bonds are observed, weak intermolecular C—H···O (Table 1, Fig. 3) hydrogen bond interactions contribute to crystal stability.