metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of (η4-s-cis-1,3-butadiene)tri­carbonyl­iron(0)

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@uni-duesseldorf.de

(Received 16 September 2010; accepted 30 September 2010; online 9 October 2010)

The crystal structure of the title compound, [Fe(C4H6)(CO)3], was previously reported by Mills & Robinson [Acta Cryst. (1963)[Mills, O. S. & Robinson, G. (1963). Acta Cryst. 16, 758-761.], 16, 758–761]. The compound crystallizes in the centrosymmetric space goup Pnma with the complex located on a mirror plane. The redetermination of this structure at 100 K yielded almost equilibrated C—C bond lengths within the butadiene ligand according to a metal-to-ligand bonding–back-bonding mechanism. The C—C bond lengths presented herein are significantly shorter than those reported earlier. The H-atom positions that have not been reported so far were located by difference Fourier maps. The positional parameters of all H atoms and individual Uiso values were refined freely.

Related literature

For {Fe(CO)3} compounds and applications, see: Knölker (2000[Knölker, H.-J. (2000). Chem. Rev. 100, 2941-2961.]); Pearson (1983[Pearson, A. J. (1983). Transition Met. Chem. 6, 67-78.]); Sawyer et al. (2008[Sawyer, K. R., Glascoe, E. A., Cahoon, J. F., Schlegel, J. P. & Harris, C. B. (2008). Organometallics, 27, 4370-4379.] and references therein). For theoretical and experimental data for η4-s-cis-1,3-butadienetricarbonyl­iron(0), see: Bühl & Thiel (1997[Bühl, M. & Thiel, W. (1997). Inorg. Chem. 36, 2922-2924.]); Reihlen et al. (1930[Reihlen, H., Gruhl, A., v. Hessling, G. & Pfrengle, O. (1930). Liebigs Ann. Chem. 483, 161-182.]); Mills & Robinson (1963[Mills, O. S. & Robinson, G. (1963). Acta Cryst. 16, 758-761.]); Kukolich et al. (1993[Kukolich, S. G., Roebrig, M. A., Wallace, D. W. & Henderson, G. L. (1993). J. Am. Chem. Soc. 115, 2021-2027.]); Kruczynski & Takats (1976[Kruczynski, L. & Takats, J. (1976). Inorg. Chem. 15, 3140-3147.]). For related complexes, see: Reiss & Konietzny (2002[Reiss, G. J. & Konietzny, S. (2002). J. Chem. Soc. Dalton Trans. pp. 862-864.]); Davidson (1969[Davidson, G. (1969). Inorg. Chim. Acta, pp. 596-600.]); Immirzi & Allegra (1969[Immirzi, A. & Allegra, G. (1969). Acta Cryst. B25, 120-124.]); Porri et al. (1965[Porri, L., Lionelli, A., Allegra, G. & Immirzi, A. (1965). Chem. Commun. pp. 336-337.]); Reiss (2002[Reiss, G. J. (2002). Z. Naturforsch. Teil B, 57, 479-482.]). For librational corrected values for C—C bond lengths, see: Schomaker & Trueblood (1968[Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C4H6)(CO)3]

  • Mr = 193.97

  • Orthorhombic, P n m a

  • a = 11.4323 (6) Å

  • b = 10.9146 (6) Å

  • c = 6.1664 (4) Å

  • V = 769.44 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 100 K

  • 0.40 × 0.38 × 0.36 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.850, Tmax = 1.000

  • 13021 measured reflections

  • 1177 independent reflections

  • 1131 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 reference frames every 30 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.040

  • S = 1.04

  • 1177 reflections

  • 67 parameters

  • All H-atom parameters refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Olefine complexes containing the {Fe(CO)3} fragment are intensively studied and are used as catalysts in a wide range of applications (Knöker, 2000; Sawyer et al., 2008). Diene and dienyl complexes of iron are common intermediates in iron catalyzed organic reactions (Pearson, 1981). Butadiene complexes have been structurally characterized since the 60 s of the last century (Porri, Lionelli, Allegra & Immirzi, 1965; Immirzi & Allegra, 1969). The first synthesis of the title compound dates back to the 30 s of the last century (Reihlen et al. 1930). Vibrational spectroscopic (Davidson, 1969) and 13C-NMR spectroscopic studies (Kruczynski & Takats, 1976) were undertaken on the title compound. The structures of the title compound were derived from microwave spectroscopy (Kukolich et al., 1993) and quantum chemical calculations (Bühl und Thiel, 1997). The first crystal structure verified the constitution of the title complex consisting of three coordinated CO ligands and one η4-coordinated butadiene ligand (Mills & Robinson, 1963). This early structure determination, based on equi-inclination photographic data, did not report any information on the hydrogen atom positions. The standard uncertainties of the reported C—C bond lengths that range from 0.05 to 0.06 do not allow a detailed discussion of the bonding properties of the butadiene ligand.

The redetermination of η4-s-cis-1,3-butadienetricarbonyliron(0) at 100 K yielded significantly improved geometric parameters that enables a detailed discussion of the structure. The Fe(0) center of the title complex is coordinated by three carbonyl ligands and one s-cis-1,3-butadiene ligand. The different C—Fe(carbonyl) and CO bond lengths are equal within their standard uncertainties. The angles between the CO ligands are 93.11 (6) and 101.50 (4)°. The coordinated 1,3-butadiene ligand shows the well known s-cis-conformation with the C—C bond lengths equilibrated according to the s.u.'s derived from the X-ray diffraction experiment. The C—C bond lengths are significant shorter (C1—C2 1.423 (1); C1—C1i 1.418 (2) (librational corrected values; Schomaker and Trueblood, 1968)) than those reported for the crystal structure of this compound but they are in very good agreement to values derived from microwave spectra (Kukolich et al., 1993) and theoretical calculations (Bühl & Thiel, 1997). The values are in good agreement to values derived for the analogous bis(1,3-cyclohexadiene)monocarbonyliron(0) complex (Reiß, 2002). This equilibration is a consequence of a bonding-back bonding mechanism between the diene ligand and the metal center (Reiß & Konietzny, 2002).

The coordination figure at Fe(0) is best described as a square pyramid with the sterically more demanding s-cis-1,3-butadiene ligand occupying two coordination sites of the basis. The hydrogen atom of the coordinated s-cis-1,3-butadiene ligand are diplaced of the plane defined by its four carbon atoms. H1 and H2a are only slightly displaced by 11.8 (5)° and 11.1 (6)°, respectively, whereas H2b shows a dihedral angle of 43.4 (7)°. The refined hydrogen atom positions are in very good agreement to results from microwave spectroscopy (Kukolich et al., 1993).

This redetermination at low temperature yielded improved and significant shorter C—C bond lengths and locates the not yet reported hydrogen atom positions for the s-cis-1,3-butadiene ligand by crystallographic methods. All geometric parameters derived are in very good agreement with other experimental and theoretical results reported in the last decades.

Related literature top

For {Fe(CO)3} compounds and applications, see: Knölker (2000); Pearson (1983); Sawyer et al. (2008 and references therein). For theoretical and experimental data for η4-s-cis-1,3-butadienetricarbonyliron(0), see: Bühl & Thiel (1997); Reihlen et al. (1930); Mills & Robinson (1963); Kukolich et al. (1993); Kruczynski & Takats (1976). For related literature, see: Reiss & Konietzny (2002); Davidson (1969); Immirzi & Allegra (1969); Porri et al. (1965); Reiss (2002); Schomaker & Trueblood (1968).

Experimental top

The title compound was synthesizes according to procedures reported in the literature (Reihlen et al., 1930). The low melting Fe(0) complex crystallizes readily as block shaped crystals on slow cooling.

Refinement top

All hydrogen atoms were located from difference Fourier synthesis. In the final refinement the positional parameters of all atoms, the anisotropic displacement parameters of all non-hydrogen atoms and the Uiso values of all hydrogen atoms were refined freely.

Structure description top

Olefine complexes containing the {Fe(CO)3} fragment are intensively studied and are used as catalysts in a wide range of applications (Knöker, 2000; Sawyer et al., 2008). Diene and dienyl complexes of iron are common intermediates in iron catalyzed organic reactions (Pearson, 1981). Butadiene complexes have been structurally characterized since the 60 s of the last century (Porri, Lionelli, Allegra & Immirzi, 1965; Immirzi & Allegra, 1969). The first synthesis of the title compound dates back to the 30 s of the last century (Reihlen et al. 1930). Vibrational spectroscopic (Davidson, 1969) and 13C-NMR spectroscopic studies (Kruczynski & Takats, 1976) were undertaken on the title compound. The structures of the title compound were derived from microwave spectroscopy (Kukolich et al., 1993) and quantum chemical calculations (Bühl und Thiel, 1997). The first crystal structure verified the constitution of the title complex consisting of three coordinated CO ligands and one η4-coordinated butadiene ligand (Mills & Robinson, 1963). This early structure determination, based on equi-inclination photographic data, did not report any information on the hydrogen atom positions. The standard uncertainties of the reported C—C bond lengths that range from 0.05 to 0.06 do not allow a detailed discussion of the bonding properties of the butadiene ligand.

The redetermination of η4-s-cis-1,3-butadienetricarbonyliron(0) at 100 K yielded significantly improved geometric parameters that enables a detailed discussion of the structure. The Fe(0) center of the title complex is coordinated by three carbonyl ligands and one s-cis-1,3-butadiene ligand. The different C—Fe(carbonyl) and CO bond lengths are equal within their standard uncertainties. The angles between the CO ligands are 93.11 (6) and 101.50 (4)°. The coordinated 1,3-butadiene ligand shows the well known s-cis-conformation with the C—C bond lengths equilibrated according to the s.u.'s derived from the X-ray diffraction experiment. The C—C bond lengths are significant shorter (C1—C2 1.423 (1); C1—C1i 1.418 (2) (librational corrected values; Schomaker and Trueblood, 1968)) than those reported for the crystal structure of this compound but they are in very good agreement to values derived from microwave spectra (Kukolich et al., 1993) and theoretical calculations (Bühl & Thiel, 1997). The values are in good agreement to values derived for the analogous bis(1,3-cyclohexadiene)monocarbonyliron(0) complex (Reiß, 2002). This equilibration is a consequence of a bonding-back bonding mechanism between the diene ligand and the metal center (Reiß & Konietzny, 2002).

The coordination figure at Fe(0) is best described as a square pyramid with the sterically more demanding s-cis-1,3-butadiene ligand occupying two coordination sites of the basis. The hydrogen atom of the coordinated s-cis-1,3-butadiene ligand are diplaced of the plane defined by its four carbon atoms. H1 and H2a are only slightly displaced by 11.8 (5)° and 11.1 (6)°, respectively, whereas H2b shows a dihedral angle of 43.4 (7)°. The refined hydrogen atom positions are in very good agreement to results from microwave spectroscopy (Kukolich et al., 1993).

This redetermination at low temperature yielded improved and significant shorter C—C bond lengths and locates the not yet reported hydrogen atom positions for the s-cis-1,3-butadiene ligand by crystallographic methods. All geometric parameters derived are in very good agreement with other experimental and theoretical results reported in the last decades.

For {Fe(CO)3} compounds and applications, see: Knölker (2000); Pearson (1983); Sawyer et al. (2008 and references therein). For theoretical and experimental data for η4-s-cis-1,3-butadienetricarbonyliron(0), see: Bühl & Thiel (1997); Reihlen et al. (1930); Mills & Robinson (1963); Kukolich et al. (1993); Kruczynski & Takats (1976). For related literature, see: Reiss & Konietzny (2002); Davidson (1969); Immirzi & Allegra (1969); Porri et al. (1965); Reiss (2002); Schomaker & Trueblood (1968).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis ro (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 50% probability level. Symmetrie codes: i = x, -y+1/2, z.
(η4-s-cis-1,3-butadiene)tricarbonyliron(0) top
Crystal data top
[Fe(C4H6)(CO)3]F(000) = 392
Mr = 193.97Dx = 1.674 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 10152 reflections
a = 11.4323 (6) Åθ = 3.3–31.1°
b = 10.9146 (6) ŵ = 1.91 mm1
c = 6.1664 (4) ÅT = 100 K
V = 769.44 (8) Å3Prism, yellow
Z = 40.40 × 0.38 × 0.36 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1131 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 30.0°, θmin = 3.6°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.850, Tmax = 1.000l = 88
13021 measured reflections3 standard reflections every 30 min
1177 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: difference Fourier map
wR(F2) = 0.040All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.02P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
1177 reflections(Δ/σ)max = 0.001
67 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Fe(C4H6)(CO)3]V = 769.44 (8) Å3
Mr = 193.97Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.4323 (6) ŵ = 1.91 mm1
b = 10.9146 (6) ÅT = 100 K
c = 6.1664 (4) Å0.40 × 0.38 × 0.36 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1131 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Rint = 0.019
Tmin = 0.850, Tmax = 1.0003 standard reflections every 30 min
13021 measured reflections intensity decay: none
1177 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.040All H-atom parameters refined
S = 1.04Δρmax = 0.35 e Å3
1177 reflectionsΔρmin = 0.22 e Å3
67 parameters
Special details top

Experimental. Absorption correction details: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.422257 (14)0.25000.10001 (3)0.01195 (6)
C10.40416 (9)0.31478 (9)0.41329 (14)0.02025 (18)
H10.3372 (11)0.3551 (12)0.451 (2)0.025 (3)*
C20.50116 (10)0.37495 (11)0.31685 (16)0.0293 (2)
H2A0.4931 (13)0.4628 (14)0.294 (2)0.039 (4)*
H2B0.5783 (12)0.3456 (14)0.346 (2)0.033 (4)*
C30.54866 (12)0.25000.0711 (2)0.0220 (2)
O30.63206 (10)0.25000.1730 (2)0.0381 (3)
C40.33599 (8)0.36948 (8)0.02057 (14)0.01764 (16)
O40.28356 (7)0.44729 (7)0.09743 (12)0.02909 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01180 (8)0.01336 (9)0.01068 (9)0.0000.00004 (5)0.000
C10.0273 (4)0.0212 (4)0.0123 (4)0.0003 (3)0.0005 (3)0.0032 (3)
C20.0371 (5)0.0323 (5)0.0185 (4)0.0166 (4)0.0030 (4)0.0046 (4)
C30.0174 (5)0.0313 (7)0.0174 (5)0.0000.0004 (4)0.000
O30.0198 (5)0.0651 (8)0.0294 (6)0.0000.0089 (4)0.000
C40.0198 (4)0.0180 (4)0.0151 (4)0.0000 (3)0.0025 (3)0.0001 (3)
O40.0338 (4)0.0254 (4)0.0280 (4)0.0108 (3)0.0010 (3)0.0072 (3)
Geometric parameters (Å, º) top
Fe—C4i1.7961 (9)C1—C21.4194 (14)
Fe—C41.7961 (9)C1—C1i1.4142 (19)
Fe—C31.7893 (14)C1—H10.912 (13)
Fe—C12.0675 (9)C2—H2A0.974 (15)
Fe—C1i2.0675 (9)C2—H2B0.955 (14)
Fe—C22.1123 (10)C3—O31.1418 (18)
Fe—C2i2.1123 (10)C4—O41.1425 (11)
C4i—Fe—C493.11 (6)C1—Fe—C2i70.86 (4)
C4i—Fe—C3101.50 (4)C1i—Fe—C2i39.69 (4)
C4—Fe—C3101.50 (4)C2—Fe—C2i80.43 (7)
C4i—Fe—C1125.46 (4)C2—C1—C1i117.56 (6)
C4—Fe—C194.79 (4)C2—C1—Fe71.86 (5)
C3—Fe—C1129.18 (5)C1i—C1—Fe70.00 (3)
C4i—Fe—C1i94.79 (4)C2—C1—H1122.6 (8)
C4—Fe—C1i125.46 (4)C1i—C1—H1118.8 (8)
C3—Fe—C1i129.18 (5)Fe—C1—H1119.0 (8)
C1—Fe—C1i40.00 (5)C1—C2—Fe68.46 (5)
C4i—Fe—C2164.87 (4)C1—C2—H2A116.3 (9)
C4—Fe—C291.59 (4)Fe—C2—H2A120.3 (9)
C3—Fe—C291.63 (4)C1—C2—H2B119.2 (9)
C1—Fe—C239.69 (4)Fe—C2—H2B107.2 (9)
C1i—Fe—C270.86 (4)H2A—C2—H2B116.4 (13)
C4i—Fe—C2i91.59 (4)O3—C3—Fe177.25 (13)
C4—Fe—C2i164.87 (4)O4—C4—Fe178.28 (8)
C3—Fe—C2i91.63 (4)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C4H6)(CO)3]
Mr193.97
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)100
a, b, c (Å)11.4323 (6), 10.9146 (6), 6.1664 (4)
V3)769.44 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.40 × 0.38 × 0.36
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.850, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13021, 1177, 1131
Rint0.019
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.040, 1.04
No. of reflections1177
No. of parameters67
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), CrysAlis ro (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), publCIF (Westrip, 2010).

 

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBühl, M. & Thiel, W. (1997). Inorg. Chem. 36, 2922–2924.  PubMed Google Scholar
First citationDavidson, G. (1969). Inorg. Chim. Acta, pp. 596–600.  Google Scholar
First citationImmirzi, A. & Allegra, G. (1969). Acta Cryst. B25, 120–124.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKnölker, H.-J. (2000). Chem. Rev. 100, 2941–2961.  PubMed Google Scholar
First citationKruczynski, L. & Takats, J. (1976). Inorg. Chem. 15, 3140–3147.  CrossRef CAS Web of Science Google Scholar
First citationKukolich, S. G., Roebrig, M. A., Wallace, D. W. & Henderson, G. L. (1993). J. Am. Chem. Soc. 115, 2021–2027.  CrossRef CAS Web of Science Google Scholar
First citationMills, O. S. & Robinson, G. (1963). Acta Cryst. 16, 758–761.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPearson, A. J. (1983). Transition Met. Chem. 6, 67–78.  CrossRef Web of Science Google Scholar
First citationPorri, L., Lionelli, A., Allegra, G. & Immirzi, A. (1965). Chem. Commun. pp. 336–337.  Google Scholar
First citationReihlen, H., Gruhl, A., v. Hessling, G. & Pfrengle, O. (1930). Liebigs Ann. Chem. 483, 161–182.  Google Scholar
First citationReiss, G. J. (2002). Z. Naturforsch. Teil B, 57, 479–482.  CAS Google Scholar
First citationReiss, G. J. & Konietzny, S. (2002). J. Chem. Soc. Dalton Trans. pp. 862–864.  Web of Science CSD CrossRef Google Scholar
First citationSawyer, K. R., Glascoe, E. A., Cahoon, J. F., Schlegel, J. P. & Harris, C. B. (2008). Organometallics, 27, 4370–4379.  Web of Science CrossRef CAS Google Scholar
First citationSchomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63–76.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds