metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­calcium(II)]-μ4-1H-imidazole-4,5-di­carboxyl­ato]

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw

(Received 27 September 2010; accepted 29 September 2010; online 9 October 2010)

In the title compound, [Ca(C5H2N2O4)(H2O)]n, the Ca2+ cations are eigthtfold coordinated by six O atoms and one N atom of four symmetry-related anions and one water mol­ecule within an irregular polyhedron. These CaO7N polyhedra are connected via the anions into a three-dimensional network. The anions are additionally linked by N—H⋯O and O—H⋯O hydrogen bonding.

Related literature

For general background to metal coordination polymers, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For related structures, see: Gao et al. (2004[Gao, S., Zhang, X.-F., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m1790-m1792.]); Starosta & Leciejewicz (2006[Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C5H2N2O4)(H2O)]

  • Mr = 212.18

  • Monoclinic, P 21 /n

  • a = 6.4752 (4) Å

  • b = 9.7627 (6) Å

  • c = 10.9079 (6) Å

  • β = 103.041 (2)°

  • V = 671.76 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 295 K

  • 0.45 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008)[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.681, Tmax = 0.874

  • 6029 measured reflections

  • 1665 independent reflections

  • 1619 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.08

  • 1665 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.85 2.13 2.9552 (14) 162
O5—H5B⋯O1ii 0.85 2.23 3.0109 (14) 153
N2—H2A⋯O4iii 0.86 1.86 2.7220 (13) 176
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of metal coordination polymers has been a intense research due to their interesting topologies and potential applications (Kitagawa, et al., 2004). The imidazole-4,5-dicarboxylic acid (H3IDC) has been successively applied to construct two calcium complexes (Gao, et al., 2004; Starosta, et al., 2006). In our ongoing investigations in this field we report here the structure of a new Ca compound with the anionic imidazole-4,5-dicarboxylato ligand.

The asymmetric unit of the title compound conists of one Ca atom, one carboxylate ligand and one coordinated water molecule all of them located in general positions (Figure 1). The Ca center is eight-coordinated by six oxygen atoms and one nitrogen atom of four carboxylate ligands and one oxygen atom of a coordinated water molecule within an irregular polyhedron. The Ca—O distances range from 2.3197 (11) to 2.8777 (12) Å and the Ca—N distance amount to 2.4215 (10)Å. The CaO7N polyhedra are connected via the anions into a three-dimensional network and are further linked by N—H···O and O—H···O hydrogen bonding (Fig. 2 and Table 1).

Related literature top

For general background to metal coordination polymers, see: Kitagawa et al. (2004). For related structures, see: Gao et al. (2004); Starosta et al. (2006).

Experimental top

imidazole-4,5-dicarboxylic acid (C5H4N2O4, 0.0752 g, 0.45 mmol) and Ca(NO3)2.4H2O (0.2361 g, 1 mmol) were reacted in 10 mL of H2O in a Teflon-lined digestion bomb with an internal volume of 23 ml l. The reaction mixture was heated to 453 K for 5 d followed by slow cooling at 6 K/h to room temperature. The product consits of transparent colorless crystals.

Refinement top

H atoms were constrained to ideal geometries, with C—H = 0.93 Å, O—H = 0.85 Å and N—H = 0.86 Å and refined with Uiso(H) = 1.2Ueq(1.5 for water H atoms) using a riding model.

Structure description top

The synthesis of metal coordination polymers has been a intense research due to their interesting topologies and potential applications (Kitagawa, et al., 2004). The imidazole-4,5-dicarboxylic acid (H3IDC) has been successively applied to construct two calcium complexes (Gao, et al., 2004; Starosta, et al., 2006). In our ongoing investigations in this field we report here the structure of a new Ca compound with the anionic imidazole-4,5-dicarboxylato ligand.

The asymmetric unit of the title compound conists of one Ca atom, one carboxylate ligand and one coordinated water molecule all of them located in general positions (Figure 1). The Ca center is eight-coordinated by six oxygen atoms and one nitrogen atom of four carboxylate ligands and one oxygen atom of a coordinated water molecule within an irregular polyhedron. The Ca—O distances range from 2.3197 (11) to 2.8777 (12) Å and the Ca—N distance amount to 2.4215 (10)Å. The CaO7N polyhedra are connected via the anions into a three-dimensional network and are further linked by N—H···O and O—H···O hydrogen bonding (Fig. 2 and Table 1).

For general background to metal coordination polymers, see: Kitagawa et al. (2004). For related structures, see: Gao et al. (2004); Starosta et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) -x - 1/2, y + 1/2, -z + 1/2; (iii) -x, -y + 1, -z + 1.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the crystallographic b axis.
Poly[[aquacalcium(II)]-µ4-1H-imidazole-4,5-dicarboxylato] top
Crystal data top
[Ca(C5H2N2O4)(H2O)]F(000) = 432
Mr = 212.18Dx = 2.098 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4091 reflections
a = 6.4752 (4) Åθ = 2.8–28.3°
b = 9.7627 (6) ŵ = 0.92 mm1
c = 10.9079 (6) ÅT = 295 K
β = 103.041 (2)°Columnar, colourless
V = 671.76 (7) Å30.45 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1665 independent reflections
Radiation source: fine-focus sealed tube1619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.8°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1212
Tmin = 0.681, Tmax = 0.874l = 1414
6029 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.2825P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1665 reflectionsΔρmax = 0.33 e Å3
119 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.092 (5)
Crystal data top
[Ca(C5H2N2O4)(H2O)]V = 671.76 (7) Å3
Mr = 212.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.4752 (4) ŵ = 0.92 mm1
b = 9.7627 (6) ÅT = 295 K
c = 10.9079 (6) Å0.45 × 0.20 × 0.15 mm
β = 103.041 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1665 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1619 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.874Rint = 0.024
6029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
1665 reflectionsΔρmin = 0.35 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.08356 (4)0.55299 (2)0.17359 (2)0.01629 (12)
O10.22252 (16)0.39733 (10)0.20098 (8)0.0226 (2)
O20.25830 (16)0.22314 (10)0.70724 (8)0.0239 (2)
O30.40728 (15)0.13090 (9)0.52331 (8)0.0202 (2)
O40.30507 (15)0.19962 (9)0.28239 (8)0.0201 (2)
O50.38501 (16)0.60082 (11)0.08033 (10)0.0293 (2)
H5A0.51470.61140.11640.044*
H5B0.37630.58450.00280.044*
C10.26916 (17)0.32726 (12)0.28690 (10)0.0140 (2)
C20.27309 (17)0.39902 (11)0.40685 (10)0.0132 (2)
C30.31453 (17)0.22884 (12)0.58996 (11)0.0143 (2)
C40.23120 (19)0.57835 (12)0.53133 (11)0.0160 (2)
H4A0.21280.66870.55860.019*
C50.27759 (17)0.35991 (11)0.52820 (10)0.0129 (2)
N10.24822 (16)0.47378 (10)0.60526 (9)0.0152 (2)
N20.24362 (16)0.53860 (10)0.41286 (10)0.0147 (2)
H2A0.23470.59110.35100.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.02062 (16)0.01716 (16)0.01057 (16)0.00256 (8)0.00247 (10)0.00080 (8)
O10.0348 (5)0.0199 (5)0.0159 (4)0.0034 (4)0.0118 (4)0.0003 (3)
O20.0332 (5)0.0246 (5)0.0121 (4)0.0058 (4)0.0009 (4)0.0035 (3)
O30.0297 (5)0.0141 (4)0.0160 (4)0.0067 (3)0.0032 (4)0.0002 (3)
O40.0305 (5)0.0138 (4)0.0184 (4)0.0033 (3)0.0103 (4)0.0037 (3)
O50.0252 (5)0.0310 (6)0.0326 (5)0.0034 (4)0.0082 (4)0.0045 (4)
C10.0155 (5)0.0141 (5)0.0128 (5)0.0003 (4)0.0038 (4)0.0012 (4)
C20.0151 (5)0.0111 (5)0.0133 (5)0.0002 (4)0.0032 (4)0.0001 (4)
C30.0159 (5)0.0141 (5)0.0130 (5)0.0004 (4)0.0033 (4)0.0015 (4)
C40.0197 (5)0.0125 (5)0.0157 (5)0.0007 (4)0.0041 (4)0.0023 (4)
C50.0146 (5)0.0120 (5)0.0116 (5)0.0011 (4)0.0020 (4)0.0014 (4)
N10.0194 (5)0.0131 (4)0.0129 (5)0.0015 (4)0.0030 (4)0.0026 (4)
N20.0196 (5)0.0115 (5)0.0138 (5)0.0003 (3)0.0054 (4)0.0009 (3)
Geometric parameters (Å, º) top
Ca1—O3i2.3211 (9)O3—Ca1v2.4408 (9)
Ca1—N1ii2.4215 (10)O4—C11.2665 (14)
Ca1—O4i2.4336 (9)O4—Ca1vi2.4336 (9)
Ca1—O3iii2.4408 (9)O5—H5A0.8497
Ca1—O52.4411 (11)O5—H5B0.8496
Ca1—O12.5679 (10)C1—C21.4895 (15)
Ca1—O2ii2.6614 (10)C2—N21.3755 (14)
Ca1—O2iii2.8776 (10)C2—C51.3842 (15)
Ca1—C3iii3.0181 (12)C3—C51.4904 (16)
Ca1—Ca1iv3.8384 (5)C3—Ca1v3.0182 (12)
O1—C11.2511 (14)C4—N11.3209 (16)
O2—C31.2498 (14)C4—N21.3342 (15)
O2—Ca1ii2.6613 (10)C4—H4A0.9300
O2—Ca1v2.8777 (10)C5—N11.3806 (14)
O3—C31.2675 (14)N1—Ca1ii2.4215 (10)
O3—Ca1vi2.3212 (9)N2—H2A0.8600
O3i—Ca1—N1ii166.21 (3)O5—Ca1—Ca1iv73.40 (3)
O3i—Ca1—O4i76.01 (3)O1—Ca1—Ca1iv84.38 (2)
N1ii—Ca1—O4i92.65 (3)O2ii—Ca1—Ca1iv134.22 (2)
O3i—Ca1—O3iii72.60 (3)O2iii—Ca1—Ca1iv83.473 (19)
N1ii—Ca1—O3iii121.18 (3)C3iii—Ca1—Ca1iv59.22 (2)
O4i—Ca1—O3iii134.15 (3)C1—O1—Ca1137.21 (8)
O3i—Ca1—O579.88 (4)C3—O2—Ca1ii117.19 (8)
N1ii—Ca1—O5102.83 (4)C3—O2—Ca1v84.15 (7)
O4i—Ca1—O5131.87 (3)Ca1ii—O2—Ca1v158.66 (4)
O3iii—Ca1—O573.62 (3)C3—O3—Ca1vi148.04 (8)
O3i—Ca1—O194.03 (3)C3—O3—Ca1v104.46 (7)
N1ii—Ca1—O189.89 (3)Ca1vi—O3—Ca1v107.40 (3)
O4i—Ca1—O172.51 (3)C1—O4—Ca1vi135.14 (8)
O3iii—Ca1—O177.25 (3)Ca1—O5—H5A129.0
O5—Ca1—O1150.74 (3)Ca1—O5—H5B119.9
O3i—Ca1—O2ii104.41 (3)H5A—O5—H5B108.7
N1ii—Ca1—O2ii63.83 (3)O1—C1—O4125.60 (10)
O4i—Ca1—O2ii70.90 (3)O1—C1—C2117.11 (10)
O3iii—Ca1—O2ii149.31 (3)O4—C1—C2117.22 (10)
O5—Ca1—O2ii75.80 (3)N2—C2—C5105.09 (10)
O1—Ca1—O2ii133.11 (3)N2—C2—C1118.56 (10)
O3i—Ca1—O2iii120.77 (3)C5—C2—C1135.93 (10)
N1ii—Ca1—O2iii73.01 (3)O2—C3—O3122.99 (11)
O4i—Ca1—O2iii141.64 (3)O2—C3—C5117.48 (10)
O3iii—Ca1—O2iii48.30 (3)O3—C3—C5119.48 (10)
O5—Ca1—O2iii86.41 (3)O2—C3—Ca1v71.53 (7)
O1—Ca1—O2iii72.09 (3)O3—C3—Ca1v51.54 (6)
O2ii—Ca1—O2iii127.387 (11)C5—C3—Ca1v170.99 (8)
O3i—Ca1—C3iii96.57 (3)N1—C4—N2111.80 (11)
N1ii—Ca1—C3iii97.22 (3)N1—C4—H4A124.1
O4i—Ca1—C3iii144.90 (3)N2—C4—H4A124.1
O3iii—Ca1—C3iii23.99 (3)N1—C5—C2109.29 (10)
O5—Ca1—C3iii78.38 (3)N1—C5—C3115.48 (10)
O1—Ca1—C3iii73.91 (3)C2—C5—C3135.17 (10)
O2ii—Ca1—C3iii142.98 (3)C4—N1—C5105.64 (10)
O2iii—Ca1—C3iii24.33 (3)C4—N1—Ca1ii127.80 (8)
O3i—Ca1—Ca1iv37.36 (2)C5—N1—Ca1ii119.26 (7)
N1ii—Ca1—Ca1iv156.42 (3)C4—N2—C2108.16 (10)
O4i—Ca1—Ca1iv107.26 (2)C4—N2—H2A125.9
O3iii—Ca1—Ca1iv35.24 (2)C2—N2—H2A125.9
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y+1/2, z1/2; (iv) x, y+1, z; (v) x1/2, y+1/2, z+1/2; (vi) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4vii0.852.132.9552 (14)162
O5—H5B···O1iv0.852.233.0109 (14)153
N2—H2A···O4i0.861.862.7220 (13)176
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (iv) x, y+1, z; (vii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ca(C5H2N2O4)(H2O)]
Mr212.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)6.4752 (4), 9.7627 (6), 10.9079 (6)
β (°) 103.041 (2)
V3)671.76 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.45 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.681, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
6029, 1665, 1619
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.08
No. of reflections1665
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.852.132.9552 (14)162.2
O5—H5B···O1ii0.852.233.0109 (14)153.2
N2—H2A···O4iii0.861.862.7220 (13)175.6
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the National Science Council, Taiwan (NSC99–2113-M-033–005-MY2).

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, S., Zhang, X.-F., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m1790–m1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds