metal-organic compounds
Chlorido(η4-cycloocta-1,5-diene)(N,N′-diethylthiourea-κS)rhodium(I)
aDip. di Chimica Inorganica Chimica Analitica e Chimica Fisica, Universitá degli Studi di Messina, Via Salita Sperone 31, I-98166 Vill. S. Agata - Messina, Italy
*Correspondence e-mail: gbrancatelli@unime.it
In the title rhodium(I) complex, [RhCl(C8H12)(C5H12N2S)], N,N′-diethylthiourea acts as a monodenate S-donor ligand. The rhodium(I) coordination sphere is completed by the Cl atom and the COD [= 1,5-cyclooctadiene] ligand interacting through the π-electrons of the double bonds. If the midpoints of these two bonds are taken into account, the Rh atom exhibits a distorted square-planar coordination. The syn conformation of the N,N′-diethylthiourea ligand with respect to the Cl atom is stabilized by an intramolecular N—H⋯Cl hydrogen bond. A weak intermolecular N—H⋯Cl interaction links molecules along the a axis.
Related literature
For coordination modes of thiourea and thiourea-based ligands, see: Wilkinson (1987); Gibson et al. (1994); Robinson et al. (2000). For the application of thioureas as ligands for metal precursors in asymmetric catalysis, see: Breuzard et al. (2000). For related Rh(I) complexes containing thiourea ligands, see: Cauzzi et al. (1995, 1997). For structural data of the N,N′-diethylthiourea ligand, see: Ramnathan et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810039644/ng5033sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810039644/ng5033Isup2.hkl
The compound was prepared by reacting [Rh(COD)(µ-Cl)]2 (0.050 g, 0.10 mmol) with the N,N'-diethylthiourea ligand (0.0264 g, 0.2 mmol) in CH2Cl2 solution at room temperature for 30 min. After evaporation of the solvent in vacuo, the residue was dissolved in dichloromethane. Recrystallization from CH2Cl2/hexane gave orange crystals of the complex.
Several H atoms were located in a difference Fourier map and placed in idealized positions using the riding-model technique with C—H = 0.93Å and N—H = 0.86Å for aliphatic and thioamide H atoms, respectively.
Thiourea and thiourea-based ligands form complexes with a number of transition metals (Wilkinson, 1987; Gibson et al., 1994; Robinson et al., 2000) and their application as ligands for metal catalyst in styrene hydroformylation has been recently shown (Breuzard et al., 2000).
In order to investigate the coordination chemistry of symmetrically substituted thiourea derivatives as ligands for metal complexes applicable in asymmetric catalysis, the reaction between chloro(η4-1,5-cyclooctadiene)rhodium(I) dimer and N,N'-diethylthiourea has been performed in dichloromethane. The obtained crystals were identified as the title compound by single-crystal X-ray diffraction. Figure 1 shows that in the compound (I) structure the N,N'-diethylthiourea acts as a monodenate S-donor ligand. Therefore the rhodium(I) coordination sphere is completed by a chlorine atom and COD [= 1,5-cyclooctadiene] ligand interacting with the metal center through the π-electrons of the double bonds. If the midpoints of these two bonds are taken into account the rhodium atom displays a distorted square planar coordination, as evidenced by the angles at Rh(1) [M(2)—Rh(1)—S(1) 86.4 (8)°, M(1)—Rh(1)—Cl(1) 88.9 (8)°, M(2)—Rh(1)—M(1) 87.8 (1)°, S(1)—Rh(1)—Cl(1) 96.97 (3)°]. In the thiourea moiety the distance S(1)—C(1) [1.732 (2) Å] is slightly longer than that found in the crystallographic structure of the N,N'-diethythiourea [1.707 (3) Å] (Ramnathan et al., 1995). This lengthening of the S—C bond is consistent with the decreasing double bond character due to the coordination at the metal center. Further the C(1)—S(1)—Rh(1) bond angle value [115.00 (8)°] indicates that the thiourea sulfur is bound to rhodium(I) primarily via a lone pair in a non-bonding sp2 sulfur orbital. C(1)—N(1) and C(1)—N(2) bond lengths [1.331 (3)Å and 1.343 (3) Å] are almost equivalent as expected for symmetrically substituted thiourea molecules. The value of Rh—S bond [2.403 (1) Å] is comparable with those found in similar complexes (Cauzzi et al., 1995, 1997). The syn conformation of the substituent on the sulfur with respect to the chlorine atom is stabilized by the intramolecular N(1)—H(1)···Cl(1) hydrogen bonding interaction.
The crystal packing arrangement is stabilized by van der Walls forces and the very weak intermolecular N(2)—H(2)···Cl(1) A hydrogen interaction along the a axis (Fig. 2) between the thioamide N(2) and the Cl(1) A of the neighbor complex molecule generated by applying the crystallographic (x + 1, y, z) symmetry operation.
For coordination modes of thiourea and thiourea-based ligands, see: Wilkinson (1987); Gibson et al. (1994); Robinson et al. (2000). For the application of thioureas as ligands for metal precursors in asymmetric catalysis, see: Breuzard et al. (2000). For related Rh(I) complexes containing thiourea ligands, see: Cauzzi et al. (1995, 1997). For structural data of the N,N'-diethylthiourea ligand, see: Ramnathan et al. (1995).
Data collection: COLLECT (Nonius, 1998); cell
DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).[RhCl(C8H12)(C5H12N2S)] | Z = 2 |
Mr = 378.76 | F(000) = 388 |
Triclinic, P1 | Dx = 1.656 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 7.295 (5) Å | Cell parameters from 93 reflections |
b = 8.705 (5) Å | θ = 5.3–22.3° |
c = 12.602 (5) Å | µ = 1.42 mm−1 |
α = 101.727 (5)° | T = 293 K |
β = 102.058 (5)° | Plate, orange |
γ = 94.765 (5)° | 0.60 × 0.24 × 0.16 mm |
V = 759.7 (7) Å3 |
Bruker–Nonius Kappa APEXII CCD diffractometer | 2585 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
ω scans | θmax = 25°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −8→8 |
Tmin = 0.540, Tmax = 0.710 | k = −10→10 |
12830 measured reflections | l = −14→14 |
2656 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0121P)2 + 1.6925P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.042 | (Δ/σ)max = 0.01 |
S = 0.97 | Δρmax = 0.41 e Å−3 |
2656 reflections | Δρmin = −0.35 e Å−3 |
165 parameters |
[RhCl(C8H12)(C5H12N2S)] | γ = 94.765 (5)° |
Mr = 378.76 | V = 759.7 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.295 (5) Å | Mo Kα radiation |
b = 8.705 (5) Å | µ = 1.42 mm−1 |
c = 12.602 (5) Å | T = 293 K |
α = 101.727 (5)° | 0.60 × 0.24 × 0.16 mm |
β = 102.058 (5)° |
Bruker–Nonius Kappa APEXII CCD diffractometer | 2656 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2585 reflections with I > 2σ(I) |
Tmin = 0.540, Tmax = 0.710 | Rint = 0.015 |
12830 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 0 restraints |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.41 e Å−3 |
2656 reflections | Δρmin = −0.35 e Å−3 |
165 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6141 (3) | 0.3714 (2) | 0.14001 (16) | 0.0101 (4) | |
C2 | 0.6911 (3) | 0.6516 (2) | 0.13529 (18) | 0.0130 (4) | |
H2A | 0.678 | 0.6272 | 0.0552 | 0.016* | |
H2B | 0.8245 | 0.6631 | 0.1708 | 0.016* | |
C3 | 0.6120 (3) | 0.8048 (2) | 0.17068 (19) | 0.0156 (4) | |
H3A | 0.6701 | 0.8867 | 0.143 | 0.023* | |
H3B | 0.6381 | 0.8348 | 0.2505 | 0.023* | |
H3C | 0.4778 | 0.7899 | 0.1409 | 0.023* | |
C4 | 0.8012 (3) | 0.1765 (2) | 0.05213 (18) | 0.0137 (4) | |
H4A | 0.6878 | 0.1021 | 0.0172 | 0.016* | |
H4B | 0.8673 | 0.1429 | 0.1169 | 0.016* | |
C5 | 0.9280 (3) | 0.1800 (3) | −0.02977 (18) | 0.0170 (5) | |
H5A | 0.8697 | 0.2283 | −0.088 | 0.026* | |
H5B | 0.9458 | 0.0738 | −0.0614 | 0.026* | |
H5C | 1.0484 | 0.24 | 0.0086 | 0.026* | |
C6 | 0.1778 (3) | 0.4127 (3) | 0.43845 (18) | 0.0150 (4) | |
H6 | 0.1543 | 0.5227 | 0.4421 | 0.018* | |
C7 | 0.0334 (3) | 0.3011 (3) | 0.36521 (18) | 0.0143 (4) | |
H7 | −0.0725 | 0.3469 | 0.3272 | 0.017* | |
C8 | −0.0210 (3) | 0.1390 (3) | 0.38650 (19) | 0.0172 (5) | |
H8A | −0.1559 | 0.108 | 0.3576 | 0.021* | |
H8B | 0.0066 | 0.1461 | 0.4662 | 0.021* | |
C9 | 0.0857 (3) | 0.0111 (3) | 0.33158 (18) | 0.0165 (4) | |
H9A | 0.1004 | −0.0689 | 0.3752 | 0.02* | |
H9B | 0.0104 | −0.0398 | 0.2578 | 0.02* | |
C10 | 0.2795 (3) | 0.0767 (2) | 0.32166 (18) | 0.0133 (4) | |
H10 | 0.3337 | 0.0055 | 0.2693 | 0.016* | |
C11 | 0.4153 (3) | 0.1802 (3) | 0.40867 (18) | 0.0146 (4) | |
H11 | 0.5463 | 0.1679 | 0.4052 | 0.018* | |
C12 | 0.3872 (3) | 0.2309 (3) | 0.52713 (18) | 0.0189 (5) | |
H12A | 0.5085 | 0.2448 | 0.5797 | 0.023* | |
H12B | 0.3058 | 0.1479 | 0.542 | 0.023* | |
C13 | 0.2989 (3) | 0.3865 (3) | 0.54479 (18) | 0.0193 (5) | |
H13A | 0.222 | 0.3849 | 0.5988 | 0.023* | |
H13B | 0.3993 | 0.4745 | 0.5753 | 0.023* | |
N1 | 0.5883 (2) | 0.52268 (19) | 0.16738 (14) | 0.0110 (3) | |
H1 | 0.5065 | 0.5463 | 0.2062 | 0.013* | |
N2 | 0.7506 (2) | 0.3357 (2) | 0.08595 (14) | 0.0121 (4) | |
H2 | 0.8134 | 0.4123 | 0.0699 | 0.014* | |
S1 | 0.47935 (7) | 0.22159 (6) | 0.17216 (4) | 0.01184 (11) | |
Cl1 | 0.18218 (7) | 0.52815 (6) | 0.21639 (4) | 0.01583 (11) | |
Rh1 | 0.27945 (2) | 0.309577 (18) | 0.295374 (13) | 0.00866 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0092 (10) | 0.0124 (10) | 0.0074 (9) | −0.0004 (8) | 0.0005 (8) | 0.0020 (8) |
C2 | 0.0123 (10) | 0.0113 (10) | 0.0160 (11) | −0.0002 (8) | 0.0036 (8) | 0.0049 (8) |
C3 | 0.0151 (11) | 0.0120 (10) | 0.0190 (11) | 0.0001 (8) | 0.0026 (9) | 0.0041 (9) |
C4 | 0.0173 (11) | 0.0115 (10) | 0.0147 (11) | 0.0053 (8) | 0.0064 (9) | 0.0040 (8) |
C5 | 0.0199 (11) | 0.0212 (11) | 0.0150 (11) | 0.0092 (9) | 0.0090 (9) | 0.0078 (9) |
C6 | 0.0155 (11) | 0.0165 (11) | 0.0138 (11) | 0.0033 (9) | 0.0081 (9) | 0.0004 (9) |
C7 | 0.0115 (10) | 0.0195 (11) | 0.0137 (10) | 0.0037 (8) | 0.0074 (8) | 0.0027 (9) |
C8 | 0.0150 (11) | 0.0210 (12) | 0.0159 (11) | −0.0029 (9) | 0.0072 (9) | 0.0035 (9) |
C9 | 0.0195 (11) | 0.0161 (11) | 0.0148 (11) | −0.0030 (9) | 0.0067 (9) | 0.0048 (9) |
C10 | 0.0179 (11) | 0.0107 (10) | 0.0148 (10) | 0.0038 (8) | 0.0074 (9) | 0.0062 (8) |
C11 | 0.0135 (10) | 0.0186 (11) | 0.0147 (11) | 0.0047 (9) | 0.0038 (8) | 0.0086 (9) |
C12 | 0.0196 (11) | 0.0260 (12) | 0.0100 (10) | 0.0004 (9) | 0.0007 (9) | 0.0055 (9) |
C13 | 0.0198 (12) | 0.0225 (12) | 0.0127 (11) | −0.0033 (9) | 0.0052 (9) | −0.0016 (9) |
N1 | 0.0119 (9) | 0.0085 (8) | 0.0139 (9) | 0.0010 (7) | 0.0073 (7) | 0.0012 (7) |
N2 | 0.0140 (9) | 0.0088 (8) | 0.0160 (9) | 0.0013 (7) | 0.0076 (7) | 0.0046 (7) |
S1 | 0.0144 (3) | 0.0085 (2) | 0.0149 (3) | 0.00119 (19) | 0.0084 (2) | 0.00302 (19) |
Cl1 | 0.0110 (2) | 0.0151 (3) | 0.0245 (3) | 0.00368 (19) | 0.0050 (2) | 0.0100 (2) |
Rh1 | 0.00837 (9) | 0.00896 (9) | 0.00903 (9) | 0.00087 (6) | 0.00293 (6) | 0.00200 (6) |
C1—N1 | 1.331 (3) | C7—H7 | 0.98 |
C1—N2 | 1.342 (3) | C8—C9 | 1.543 (3) |
C1—S1 | 1.732 (2) | C8—H8A | 0.97 |
C2—N1 | 1.469 (3) | C8—H8B | 0.97 |
C2—C3 | 1.518 (3) | C9—C10 | 1.519 (3) |
C2—H2A | 0.97 | C9—H9A | 0.97 |
C2—H2B | 0.97 | C9—H9B | 0.97 |
C3—H3A | 0.96 | C10—C11 | 1.411 (3) |
C3—H3B | 0.96 | C10—Rh1 | 2.120 (2) |
C3—H3C | 0.96 | C10—H10 | 0.98 |
C4—N2 | 1.466 (3) | C11—C12 | 1.530 (3) |
C4—C5 | 1.526 (3) | C11—Rh1 | 2.130 (2) |
C4—H4A | 0.97 | C11—H11 | 0.98 |
C4—H4B | 0.97 | C12—C13 | 1.543 (3) |
C5—H5A | 0.96 | C12—H12A | 0.97 |
C5—H5B | 0.96 | C12—H12B | 0.97 |
C5—H5C | 0.96 | C13—H13A | 0.97 |
C6—C7 | 1.401 (3) | C13—H13B | 0.97 |
C6—C13 | 1.514 (3) | N1—H1 | 0.86 |
C6—Rh1 | 2.149 (2) | N2—H2 | 0.86 |
C6—H6 | 0.98 | S1—Rh1 | 2.4026 (10) |
C7—C8 | 1.525 (3) | Cl1—Rh1 | 2.4111 (11) |
C7—Rh1 | 2.160 (2) | ||
N1—C1—N2 | 118.06 (18) | C8—C9—H9B | 109 |
N1—C1—S1 | 122.42 (16) | H9A—C9—H9B | 107.8 |
N2—C1—S1 | 119.52 (16) | C11—C10—C9 | 124.75 (19) |
N1—C2—C3 | 109.49 (17) | C11—C10—Rh1 | 71.01 (12) |
N1—C2—H2A | 109.8 | C9—C10—Rh1 | 110.88 (14) |
C3—C2—H2A | 109.8 | C11—C10—H10 | 114.1 |
N1—C2—H2B | 109.8 | C9—C10—H10 | 114.1 |
C3—C2—H2B | 109.8 | Rh1—C10—H10 | 114.1 |
H2A—C2—H2B | 108.2 | C10—C11—C12 | 123.07 (19) |
C2—C3—H3A | 109.5 | C10—C11—Rh1 | 70.20 (12) |
C2—C3—H3B | 109.5 | C12—C11—Rh1 | 114.30 (15) |
H3A—C3—H3B | 109.5 | C10—C11—H11 | 114 |
C2—C3—H3C | 109.5 | C12—C11—H11 | 114 |
H3A—C3—H3C | 109.5 | Rh1—C11—H11 | 114 |
H3B—C3—H3C | 109.5 | C11—C12—C13 | 112.13 (18) |
N2—C4—C5 | 108.76 (17) | C11—C12—H12A | 109.2 |
N2—C4—H4A | 109.9 | C13—C12—H12A | 109.2 |
C5—C4—H4A | 109.9 | C11—C12—H12B | 109.2 |
N2—C4—H4B | 109.9 | C13—C12—H12B | 109.2 |
C5—C4—H4B | 109.9 | H12A—C12—H12B | 107.9 |
H4A—C4—H4B | 108.3 | C6—C13—C12 | 112.96 (18) |
C4—C5—H5A | 109.5 | C6—C13—H13A | 109 |
C4—C5—H5B | 109.5 | C12—C13—H13A | 109 |
H5A—C5—H5B | 109.5 | C6—C13—H13B | 109 |
C4—C5—H5C | 109.5 | C12—C13—H13B | 109 |
H5A—C5—H5C | 109.5 | H13A—C13—H13B | 107.8 |
H5B—C5—H5C | 109.5 | C1—N1—C2 | 123.97 (17) |
C7—C6—C13 | 124.7 (2) | C1—N1—H1 | 118 |
C7—C6—Rh1 | 71.44 (12) | C2—N1—H1 | 118 |
C13—C6—Rh1 | 111.45 (15) | C1—N2—C4 | 125.27 (17) |
C7—C6—H6 | 113.9 | C1—N2—H2 | 117.4 |
C13—C6—H6 | 113.9 | C4—N2—H2 | 117.4 |
Rh1—C6—H6 | 113.9 | C1—S1—Rh1 | 115.00 (8) |
C6—C7—C8 | 122.7 (2) | C10—Rh1—C11 | 38.78 (8) |
C6—C7—Rh1 | 70.61 (12) | C10—Rh1—C6 | 97.75 (8) |
C8—C7—Rh1 | 112.66 (14) | C11—Rh1—C6 | 81.39 (9) |
C6—C7—H7 | 114.4 | C10—Rh1—C7 | 82.10 (8) |
C8—C7—H7 | 114.4 | C11—Rh1—C7 | 90.31 (9) |
Rh1—C7—H7 | 114.4 | C6—Rh1—C7 | 37.95 (8) |
C7—C8—C9 | 112.29 (17) | C10—Rh1—S1 | 83.28 (6) |
C7—C8—H8A | 109.1 | C11—Rh1—S1 | 89.52 (7) |
C9—C8—H8A | 109.1 | C6—Rh1—S1 | 163.50 (6) |
C7—C8—H8B | 109.1 | C7—Rh1—S1 | 156.79 (6) |
C9—C8—H8B | 109.1 | C10—Rh1—Cl1 | 159.79 (6) |
H8A—C8—H8B | 107.9 | C11—Rh1—Cl1 | 160.89 (6) |
C10—C9—C8 | 113.14 (18) | C6—Rh1—Cl1 | 87.71 (7) |
C10—C9—H9A | 109 | C7—Rh1—Cl1 | 90.67 (6) |
C8—C9—H9A | 109 | S1—Rh1—Cl1 | 96.98 (3) |
C10—C9—H9B | 109 | ||
C13—C6—C7—C8 | 1.3 (3) | C12—C11—Rh1—C10 | −118.3 (2) |
Rh1—C6—C7—C8 | 105.03 (19) | C10—C11—Rh1—C6 | 113.96 (14) |
C13—C6—C7—Rh1 | −103.7 (2) | C12—C11—Rh1—C6 | −4.32 (16) |
C6—C7—C8—C9 | −92.6 (2) | C10—C11—Rh1—C7 | 76.94 (13) |
Rh1—C7—C8—C9 | −11.7 (2) | C12—C11—Rh1—C7 | −41.35 (16) |
C7—C8—C9—C10 | 29.4 (3) | C10—C11—Rh1—S1 | −79.85 (12) |
C8—C9—C10—C11 | 47.8 (3) | C12—C11—Rh1—S1 | 161.87 (15) |
C8—C9—C10—Rh1 | −33.1 (2) | C10—C11—Rh1—Cl1 | 169.87 (14) |
C9—C10—C11—C12 | 4.0 (3) | C12—C11—Rh1—Cl1 | 51.6 (3) |
Rh1—C10—C11—C12 | 106.7 (2) | C7—C6—Rh1—C10 | −66.43 (14) |
C9—C10—C11—Rh1 | −102.7 (2) | C13—C6—Rh1—C10 | 54.45 (16) |
C10—C11—C12—C13 | −92.5 (3) | C7—C6—Rh1—C11 | −101.71 (14) |
Rh1—C11—C12—C13 | −11.1 (2) | C13—C6—Rh1—C11 | 19.17 (15) |
C7—C6—C13—C12 | 50.9 (3) | C13—C6—Rh1—C7 | 120.9 (2) |
Rh1—C6—C13—C12 | −30.8 (2) | C7—C6—Rh1—S1 | −158.94 (17) |
C11—C12—C13—C6 | 27.4 (3) | C13—C6—Rh1—S1 | −38.1 (3) |
N2—C1—N1—C2 | 4.4 (3) | C7—C6—Rh1—Cl1 | 94.03 (13) |
S1—C1—N1—C2 | −175.86 (15) | C13—C6—Rh1—Cl1 | −145.09 (15) |
C3—C2—N1—C1 | 174.37 (18) | C6—C7—Rh1—C10 | 113.53 (14) |
N1—C1—N2—C4 | 178.38 (18) | C8—C7—Rh1—C10 | −4.79 (15) |
S1—C1—N2—C4 | −1.3 (3) | C6—C7—Rh1—C11 | 75.50 (14) |
C5—C4—N2—C1 | 166.75 (19) | C8—C7—Rh1—C11 | −42.81 (16) |
N1—C1—S1—Rh1 | −9.74 (19) | C8—C7—Rh1—C6 | −118.3 (2) |
N2—C1—S1—Rh1 | 169.97 (13) | C6—C7—Rh1—S1 | 164.99 (12) |
C9—C10—Rh1—C11 | 120.9 (2) | C8—C7—Rh1—S1 | 46.7 (2) |
C11—C10—Rh1—C6 | −65.76 (14) | C6—C7—Rh1—Cl1 | −85.41 (13) |
C9—C10—Rh1—C6 | 55.16 (16) | C8—C7—Rh1—Cl1 | 156.27 (15) |
C11—C10—Rh1—C7 | −100.44 (14) | C1—S1—Rh1—C10 | −160.61 (10) |
C9—C10—Rh1—C7 | 20.48 (15) | C1—S1—Rh1—C11 | −122.23 (10) |
C11—C10—Rh1—S1 | 97.64 (13) | C1—S1—Rh1—C6 | −66.0 (2) |
C9—C10—Rh1—S1 | −141.43 (15) | C1—S1—Rh1—C7 | 148.12 (16) |
C11—C10—Rh1—Cl1 | −170.40 (13) | C1—S1—Rh1—Cl1 | 39.75 (8) |
C9—C10—Rh1—Cl1 | −49.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.86 | 2.39 | 3.152 (3) | 148 |
N2—H2···Cl1i | 0.86 | 2.89 | 3.356 (3) | 116 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [RhCl(C8H12)(C5H12N2S)] |
Mr | 378.76 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.295 (5), 8.705 (5), 12.602 (5) |
α, β, γ (°) | 101.727 (5), 102.058 (5), 94.765 (5) |
V (Å3) | 759.7 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.42 |
Crystal size (mm) | 0.60 × 0.24 × 0.16 |
Data collection | |
Diffractometer | Bruker–Nonius Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.540, 0.710 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12830, 2656, 2585 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.016, 0.042, 0.97 |
No. of reflections | 2656 |
No. of parameters | 165 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.35 |
Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.86 | 2.39 | 3.152 (3) | 148 |
N2—H2···Cl1i | 0.86 | 2.89 | 3.356 (3) | 115.5 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The authors would like to thank the University of Messina and the MIUR (Ministero dell'Istruzione, dell'Universitá e della Ricerca) for financial support.
References
Breuzard, J. A. J., Tommasino, M. L., Touchard, F., Lemaire, M. & Bonnet, M. C. (2000). J. Mol. Catal. A, 156, 223–232. CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cauzzi, D., Costa, M., Gonsalvi, L., Pellinghelli, M. A., Predieri, G., Tiripicchio, A. & Zanoni, R. (1997). J. Organomet. Chem. 541, 377–389. CSD CrossRef CAS Web of Science Google Scholar
Cauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115–125. CSD CrossRef CAS Web of Science Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gibson, V. C., Redshaw, C., Clegg, W. & Elsegood, M. R. J. (1994). J. Chem. Soc. Chem. Commun. pp. 2635–2636. CrossRef Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Ramnathan, A., Sivakumar, K., Subramanian, K., Janarthanan, N., Ramadas, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2446–2450. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Robinson, S. D., Sahajpal, A. & Steed, J. W. (2000). Inorg. Chim. Acta, 306, 205–210. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilkinson, G. (1987). Comprehensive Coordination Chemistry, ch. 16.6, pp. 639–640. Oxford: Pergamon Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and thiourea-based ligands form complexes with a number of transition metals (Wilkinson, 1987; Gibson et al., 1994; Robinson et al., 2000) and their application as ligands for metal catalyst in styrene hydroformylation has been recently shown (Breuzard et al., 2000).
In order to investigate the coordination chemistry of symmetrically substituted thiourea derivatives as ligands for metal complexes applicable in asymmetric catalysis, the reaction between chloro(η4-1,5-cyclooctadiene)rhodium(I) dimer and N,N'-diethylthiourea has been performed in dichloromethane. The obtained crystals were identified as the title compound by single-crystal X-ray diffraction. Figure 1 shows that in the compound (I) structure the N,N'-diethylthiourea acts as a monodenate S-donor ligand. Therefore the rhodium(I) coordination sphere is completed by a chlorine atom and COD [= 1,5-cyclooctadiene] ligand interacting with the metal center through the π-electrons of the double bonds. If the midpoints of these two bonds are taken into account the rhodium atom displays a distorted square planar coordination, as evidenced by the angles at Rh(1) [M(2)—Rh(1)—S(1) 86.4 (8)°, M(1)—Rh(1)—Cl(1) 88.9 (8)°, M(2)—Rh(1)—M(1) 87.8 (1)°, S(1)—Rh(1)—Cl(1) 96.97 (3)°]. In the thiourea moiety the distance S(1)—C(1) [1.732 (2) Å] is slightly longer than that found in the crystallographic structure of the N,N'-diethythiourea [1.707 (3) Å] (Ramnathan et al., 1995). This lengthening of the S—C bond is consistent with the decreasing double bond character due to the coordination at the metal center. Further the C(1)—S(1)—Rh(1) bond angle value [115.00 (8)°] indicates that the thiourea sulfur is bound to rhodium(I) primarily via a lone pair in a non-bonding sp2 sulfur orbital. C(1)—N(1) and C(1)—N(2) bond lengths [1.331 (3)Å and 1.343 (3) Å] are almost equivalent as expected for symmetrically substituted thiourea molecules. The value of Rh—S bond [2.403 (1) Å] is comparable with those found in similar complexes (Cauzzi et al., 1995, 1997). The syn conformation of the substituent on the sulfur with respect to the chlorine atom is stabilized by the intramolecular N(1)—H(1)···Cl(1) hydrogen bonding interaction.
The crystal packing arrangement is stabilized by van der Walls forces and the very weak intermolecular N(2)—H(2)···Cl(1) A hydrogen interaction along the a axis (Fig. 2) between the thioamide N(2) and the Cl(1) A of the neighbor complex molecule generated by applying the crystallographic (x + 1, y, z) symmetry operation.