metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­iron(II)]-μ-5,5′-diazenediyldi­tetra­zolido] dihydrate]

aDepartment of Chemistry and Chemical Engineering, Xi'an University of Arts & Science, Xi'an 710065, Shaanxi, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, Shaanxi, People's Republic of China, and cCollege of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: sanpingchen@126.com

(Received 25 September 2010; accepted 4 October 2010; online 9 October 2010)

In the title compound, {[Fe(C2N10)(H2O)4]·2H2O}n, the coordin­ation geometry around the Fe(II) atom, which lies on a center of inversion, is distorted octa­hedral, with bonds to four O atoms and two N atoms. The azotetra­zolate ligand displays a bridging coordination mode, forming an infinite zigzag chain. Inter­molecular O—H⋯O and O—H⋯N hydrogen bonding and offset face-to-face ππ stacking inter­actions [centroid–centroid distance = 3.4738 (13) Å] lead to a three-dimensional network.

Related literature

For energetic complexes, see: Hammerl et al. (2001[Hammerl, A., Klapötke, T. M., Nöth, H. & Warchhold, M. (2001). Inorg. Chem. 40, 3570-3575.], 2002[Hammerl, A., Gerhard, H., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834-845.]); Jiao et al. (2007[Jiao, B. J., Chen, S. P., Zhao, F. Q., Hu, R. Z. & Gao, S. L. (2007). J. Hazard. Mater. 142, 550-554.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C2N10)(H2O)4]·2H2O

  • Mr = 328.07

  • Triclinic, [P \overline 1]

  • a = 6.2449 (5) Å

  • b = 6.9764 (6) Å

  • c = 7.8256 (6) Å

  • α = 76.424 (1)°

  • β = 74.135 (1)°

  • γ = 69.844 (1)°

  • V = 304.11 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 273 K

  • 0.30 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.699, Tmax = 0.861

  • 1564 measured reflections

  • 1061 independent reflections

  • 973 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.13

  • 1061 reflections

  • 106 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3 0.85 (1) 1.86 (1) 2.699 (2) 170 (2)
O1—H1A⋯O3i 0.85 (1) 1.87 (1) 2.715 (2) 171 (3)
O1—H1B⋯N5 0.85 (1) 2.23 (2) 2.926 (2) 139 (2)
O3—H3B⋯N3ii 0.84 (1) 2.01 (1) 2.839 (2) 169 (2)
O3—H3A⋯N2iii 0.85 (1) 2.00 (1) 2.843 (2) 173 (2)
O2—H2B⋯N3iv 0.85 (1) 2.69 (2) 3.439 (2) 148 (2)
O2—H2B⋯N4iv 0.85 (1) 1.99 (1) 2.840 (2) 173 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+1; (iii) x+1, y, z; (iv) x, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

After Thiele prepared metallic salts of azotetrazole and claimed these for use in initiators, salts of AT2- (AT = 5,5'-azotetrazolate) have been extensively investigated and have often been considered for practical use as a class of energetic materials. We report here the crystal structure of the title compound, [Fe(C2N10)(H20)4.2H20]n, (I).

Single-crystal analysis shows that (I) exists as a one-dimensional infinite chain. As shown in Figure 1, the coordination geometry around Fe2+ cation can be described a disordered octahedral arrangement with coordination number of 6, where O1, O2, O1A and O2A form the equatorial plane, and axial positions are occupied by N1 and N1A. Additionally, each AT2- provides two terminal nitrogen atoms (N1 and N1A) acting as bridging ligand to connect two [Fe(H2O)4]2+ to form an infinite zigzag chain.

In the crystal structure, the interactions of hydrogen bonding between the water molecules and the N atoms in the terazole rings, the off-set face to face π-π stacking interactions of the terazole rings link the complex to a three dimensional structure, as shown in Figure 2.

Related literature top

For related literature [on what subject?], see: Hammerl et al. (2001, 2002); Jiao et al. (2007).

Experimental top

Brown block-like crystal for X-ray diffraction analysis was obtained from the mixture of (NH4)2Fe(SO4)2.6H2O (0.392 g, 1 mmol), Na2AT.5H2O (0.304 g,1 mmol) and distilled H2O (20 ml), which was allowed to evaporate at room temperature for one week.

Refinement top

H atoms attached to O atoms were placed in calculated positions, with O—H distances of 0.86 Å. The Uiso(H) values were constrained to be -1.5Ueq of the carrier atom.

Structure description top

After Thiele prepared metallic salts of azotetrazole and claimed these for use in initiators, salts of AT2- (AT = 5,5'-azotetrazolate) have been extensively investigated and have often been considered for practical use as a class of energetic materials. We report here the crystal structure of the title compound, [Fe(C2N10)(H20)4.2H20]n, (I).

Single-crystal analysis shows that (I) exists as a one-dimensional infinite chain. As shown in Figure 1, the coordination geometry around Fe2+ cation can be described a disordered octahedral arrangement with coordination number of 6, where O1, O2, O1A and O2A form the equatorial plane, and axial positions are occupied by N1 and N1A. Additionally, each AT2- provides two terminal nitrogen atoms (N1 and N1A) acting as bridging ligand to connect two [Fe(H2O)4]2+ to form an infinite zigzag chain.

In the crystal structure, the interactions of hydrogen bonding between the water molecules and the N atoms in the terazole rings, the off-set face to face π-π stacking interactions of the terazole rings link the complex to a three dimensional structure, as shown in Figure 2.

For related literature [on what subject?], see: Hammerl et al. (2001, 2002); Jiao et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-labling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Three dimensional network of the title complex.
catena-Poly[[[tetraaquairon(II)]-µ-5,5'-diazenediylditetrazolido] dihydrate] top
Crystal data top
[Fe(C2N10)(H2O)4]·2H2OZ = 1
Mr = 328.07F(000) = 168
Triclinic, P1Dx = 1.791 Mg m3
a = 6.2449 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.9764 (6) ÅCell parameters from 1061 reflections
c = 7.8256 (6) Åθ = 2.7–25.1°
α = 76.424 (1)°µ = 1.29 mm1
β = 74.135 (1)°T = 273 K
γ = 69.844 (1)°Block, brown
V = 304.11 (4) Å30.30 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1061 independent reflections
Radiation source: fine-focus sealed tube973 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
φ and ω scansθmax = 25.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 76
Tmin = 0.699, Tmax = 0.861k = 78
1564 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.0115P]
where P = (Fo2 + 2Fc2)/3
1061 reflections(Δ/σ)max = 0.007
106 parametersΔρmax = 0.24 e Å3
6 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Fe(C2N10)(H2O)4]·2H2Oγ = 69.844 (1)°
Mr = 328.07V = 304.11 (4) Å3
Triclinic, P1Z = 1
a = 6.2449 (5) ÅMo Kα radiation
b = 6.9764 (6) ŵ = 1.29 mm1
c = 7.8256 (6) ÅT = 273 K
α = 76.424 (1)°0.30 × 0.18 × 0.12 mm
β = 74.135 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1061 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
973 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.861Rint = 0.012
1564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0266 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.24 e Å3
1061 reflectionsΔρmin = 0.35 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50001.00000.02375 (17)
N10.5314 (3)0.6482 (3)0.7101 (2)0.0240 (4)
N20.3404 (3)0.7685 (3)0.6503 (2)0.0287 (4)
N30.3949 (3)0.8147 (3)0.4742 (2)0.0323 (4)
N40.6210 (3)0.7259 (3)0.4135 (2)0.0287 (4)
N50.9299 (3)0.5062 (3)0.5738 (2)0.0253 (4)
O10.8288 (3)0.2802 (3)0.9369 (2)0.0340 (4)
O20.6617 (3)0.6912 (3)1.0508 (2)0.0403 (4)
O30.8598 (3)0.9497 (3)0.7946 (2)0.0342 (4)
C10.7009 (3)0.6250 (3)0.5618 (3)0.0228 (4)
H1A0.829 (4)0.172 (3)0.903 (3)0.034*
H2A0.710 (4)0.784 (3)0.975 (3)0.034*
H3A1.002 (2)0.886 (3)0.754 (3)0.034*
H1B0.922 (4)0.329 (4)0.851 (2)0.034*
H2B0.658 (4)0.707 (4)1.1563 (18)0.034*
H3B0.797 (4)1.008 (3)0.705 (2)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0192 (2)0.0327 (3)0.0151 (2)0.00481 (17)0.00252 (16)0.00163 (17)
N10.0186 (9)0.0307 (9)0.0172 (9)0.0021 (7)0.0026 (7)0.0026 (7)
N20.0214 (9)0.0379 (10)0.0198 (9)0.0024 (8)0.0035 (7)0.0022 (8)
N30.0273 (10)0.0406 (10)0.0218 (10)0.0020 (8)0.0073 (8)0.0014 (8)
N40.0242 (9)0.0389 (10)0.0168 (9)0.0043 (8)0.0021 (7)0.0034 (8)
N50.0211 (9)0.0336 (9)0.0162 (8)0.0053 (7)0.0002 (6)0.0033 (7)
O10.0260 (8)0.0398 (9)0.0283 (9)0.0044 (7)0.0020 (7)0.0033 (7)
O20.0526 (11)0.0589 (11)0.0188 (9)0.0333 (9)0.0034 (8)0.0035 (8)
O30.0234 (8)0.0433 (9)0.0255 (9)0.0014 (7)0.0055 (7)0.0017 (7)
C10.0210 (10)0.0285 (10)0.0154 (10)0.0059 (8)0.0023 (8)0.0010 (8)
Geometric parameters (Å, º) top
Fe1—O22.0868 (15)N4—C11.335 (3)
Fe1—O2i2.0868 (15)N5—N5ii1.245 (3)
Fe1—O1i2.1081 (16)N5—C11.400 (3)
Fe1—O12.1081 (16)O1—H1A0.854 (10)
Fe1—N12.2474 (16)O1—H1B0.851 (10)
Fe1—N1i2.2474 (16)O2—H2A0.848 (10)
N1—N21.333 (2)O2—H2B0.850 (10)
N1—C11.338 (3)O3—H3A0.852 (10)
N2—N31.315 (3)O3—H3B0.844 (10)
N3—N41.331 (3)
O2—Fe1—O2i180.0N2—N1—Fe1119.64 (12)
O2—Fe1—O1i90.39 (7)C1—N1—Fe1134.93 (13)
O2i—Fe1—O1i89.61 (7)N3—N2—N1109.13 (16)
O2—Fe1—O189.61 (7)N2—N3—N4110.32 (16)
O2i—Fe1—O190.39 (7)N3—N4—C1104.10 (16)
O1i—Fe1—O1180.0N5ii—N5—C1114.3 (2)
O2—Fe1—N191.16 (6)Fe1—O1—H1A116.1 (17)
O2i—Fe1—N188.84 (6)Fe1—O1—H1B112.4 (17)
O1i—Fe1—N189.55 (6)H1A—O1—H1B104 (2)
O1—Fe1—N190.45 (6)Fe1—O2—H2A126.3 (16)
O2—Fe1—N1i88.84 (6)Fe1—O2—H2B123.0 (16)
O2i—Fe1—N1i91.16 (6)H2A—O2—H2B109 (2)
O1i—Fe1—N1i90.45 (6)H3A—O3—H3B107 (2)
O1—Fe1—N1i89.55 (6)N4—C1—N1111.80 (17)
N1—Fe1—N1i180.0N4—C1—N5127.64 (18)
N2—N1—C1104.65 (15)N1—C1—N5120.57 (17)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.85 (1)1.86 (1)2.699 (2)170 (2)
O1—H1A···O3iii0.85 (1)1.87 (1)2.715 (2)171 (3)
O1—H1B···N50.85 (1)2.23 (2)2.926 (2)139 (2)
O3—H3B···N3iv0.84 (1)2.01 (1)2.839 (2)169 (2)
O3—H3A···N2v0.85 (1)2.00 (1)2.843 (2)173 (2)
O2—H2B···N3vi0.85 (1)2.69 (2)3.439 (2)148 (2)
O2—H2B···N4vi0.85 (1)1.99 (1)2.840 (2)173 (2)
Symmetry codes: (iii) x, y1, z; (iv) x+1, y+2, z+1; (v) x+1, y, z; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C2N10)(H2O)4]·2H2O
Mr328.07
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.2449 (5), 6.9764 (6), 7.8256 (6)
α, β, γ (°)76.424 (1), 74.135 (1), 69.844 (1)
V3)304.11 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.30 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.699, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
1564, 1061, 973
Rint0.012
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.13
No. of reflections1061
No. of parameters106
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O30.848 (10)1.860 (11)2.699 (2)170 (2)
O1—H1A···O3i0.854 (10)1.868 (11)2.715 (2)171 (3)
O1—H1B···N50.851 (10)2.226 (18)2.926 (2)139 (2)
O3—H3B···N3ii0.844 (10)2.007 (11)2.839 (2)169 (2)
O3—H3A···N2iii0.852 (10)1.996 (10)2.843 (2)173 (2)
O2—H2B···N3iv0.850 (10)2.691 (16)3.439 (2)148 (2)
O2—H2B···N4iv0.850 (10)1.994 (11)2.840 (2)173 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1; (iii) x+1, y, z; (iv) x, y, z+1.
 

Acknowledgements

We gratefully acknowledge the National Science Foundation of China (No. 20873100), the Natural Science Foundation of Shaanxi Province (2009JQ2015), the Special Foundation of the Education Department of Shaanxi Province (09 J K798) and the Research Foundation of Xi'an University of Arts and Science (kyc201026).

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHammerl, A., Gerhard, H., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834–845.  CSD CrossRef Google Scholar
First citationHammerl, A., Klapötke, T. M., Nöth, H. & Warchhold, M. (2001). Inorg. Chem. 40, 3570–3575.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJiao, B. J., Chen, S. P., Zhao, F. Q., Hu, R. Z. & Gao, S. L. (2007). J. Hazard. Mater. 142, 550–554.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds