organic compounds
9-(4-Fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 21H15FNO2+·CF3SO3−, the cations form inversion dimers through C—H⋯O, C—F⋯π and π–π interactions. These dimers are further linked by π–π interactions. The cations and anions are connected through C—H⋯O, C—F⋯π and S—O⋯π interactions. The acridine and benzene ring systems are oriented at a dihedral angle of 74.1 (1)°. The carboxylate group is twisted at an angle of 4.4 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel or inclined at an angle of 55.4 (1)° in the crystal structure.
of the title compound, CRelated literature
For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006). For the synthesis, see: Sato (1996); Sikorski et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810039231/ng5037sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810039231/ng5037Isup2.hkl
The compound was synthesized in two steps (Sikorski et al., 2005). First, 9-(chlorocarbonyl)acridine, obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride, was esterified with 4-fluorophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). Second, the product - 4-fluorophenylacridine-9-carboxylate, purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) - was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 474-475 K).
H atoms were positioned geometrically, with C–H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized with hydrogen peroxide in alkaline media, which produces light. It has been found that this process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of
- crucial for analytical applications - is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0288 (3) Å and 0.0081 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 74.1 (1)°. The carboxyl group is twisted at an angle of 4.4 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 55.4 (1)° in the lattice.
In the π (Table 2, Fig. 2) and π-π (Table 3, Fig. 2) interactions. These dimers are further linked by π-π (Table 3, Fig. 2) interactions. The adjacent cations (dimers) and anions are connected through C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and S-O···π (Table 2, Fig. 2) interactions. The C-H···O interactions are of the hydrogen bond type (Bianchi et al. 2004; Novoa et al. 2006). C-F···π (Dorn et al., 2005), S-O···π (Dorn et al., 2005) and the π-π (Hunter et al., 2001) interactions should be of an attractive nature. The is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.
the inversely oriented cations form dimers through multidirectional C-H···O (Table 1, Fig. 2), C-F···For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006). For the synthesis, see: Sato (1996); Sikorski et al. (2005).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C-H···O interaction is represented by dashed lines. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C-H···O interactions are represented by dashed lines, the C-F···π, S-O···π and π-π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x, -y, -z; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iii) x - 1/2, -y + 1/2, z - 1/2; (iv) -x, y, -z + 1/2; (v) -x, -y + 1, -z.] |
C21H15FNO2+·CF3SO3− | F(000) = 1968 |
Mr = 481.41 | Dx = 1.557 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3994 reflections |
a = 20.854 (3) Å | θ = 3.0–24.9° |
b = 7.8092 (12) Å | µ = 0.23 mm−1 |
c = 25.690 (4) Å | T = 295 K |
β = 100.893 (15)° | Plate, yellow |
V = 4108.2 (11) Å3 | 0.38 × 0.29 × 0.05 mm |
Z = 8 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3634 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 1978 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.1° |
ω scans | h = −23→24 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −9→9 |
Tmin = 0.676, Tmax = 0.985 | l = −30→30 |
15588 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.068P)2] where P = (Fo2 + 2Fc2)/3 |
3634 reflections | (Δ/σ)max < 0.001 |
299 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C21H15FNO2+·CF3SO3− | V = 4108.2 (11) Å3 |
Mr = 481.41 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 20.854 (3) Å | µ = 0.23 mm−1 |
b = 7.8092 (12) Å | T = 295 K |
c = 25.690 (4) Å | 0.38 × 0.29 × 0.05 mm |
β = 100.893 (15)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3634 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1978 reflections with I > 2σ(I) |
Tmin = 0.676, Tmax = 0.985 | Rint = 0.045 |
15588 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.17 e Å−3 |
3634 reflections | Δρmin = −0.25 e Å−3 |
299 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.03283 (13) | 0.1193 (3) | 0.11048 (10) | 0.0600 (7) | |
H1 | 0.0011 | 0.1023 | 0.0802 | 0.072* | |
C2 | 0.02112 (15) | 0.0689 (4) | 0.15766 (12) | 0.0797 (9) | |
H2 | −0.0186 | 0.0186 | 0.1602 | 0.096* | |
C3 | 0.06910 (18) | 0.0924 (5) | 0.20305 (12) | 0.0860 (10) | |
H3 | 0.0608 | 0.0560 | 0.2356 | 0.103* | |
C4 | 0.12683 (16) | 0.1660 (4) | 0.20108 (10) | 0.0707 (8) | |
H4 | 0.1578 | 0.1792 | 0.2320 | 0.085* | |
C5 | 0.27041 (13) | 0.4437 (4) | 0.09888 (12) | 0.0660 (7) | |
H5 | 0.3020 | 0.4586 | 0.1293 | 0.079* | |
C6 | 0.28130 (13) | 0.5020 (4) | 0.05259 (13) | 0.0733 (8) | |
H6 | 0.3205 | 0.5572 | 0.0514 | 0.088* | |
C7 | 0.23522 (14) | 0.4824 (4) | 0.00556 (11) | 0.0698 (8) | |
H7 | 0.2435 | 0.5262 | −0.0262 | 0.084* | |
C8 | 0.17902 (13) | 0.3997 (3) | 0.00688 (9) | 0.0568 (7) | |
H8 | 0.1488 | 0.3852 | −0.0244 | 0.068* | |
C9 | 0.10650 (12) | 0.2530 (3) | 0.05781 (9) | 0.0441 (6) | |
N10 | 0.19775 (10) | 0.3032 (3) | 0.14935 (8) | 0.0539 (6) | |
C11 | 0.09265 (12) | 0.1981 (3) | 0.10599 (9) | 0.0471 (6) | |
C12 | 0.14047 (13) | 0.2230 (3) | 0.15271 (9) | 0.0508 (6) | |
C13 | 0.16483 (12) | 0.3344 (3) | 0.05474 (9) | 0.0475 (6) | |
C14 | 0.21142 (11) | 0.3595 (3) | 0.10230 (9) | 0.0503 (6) | |
C15 | 0.05947 (12) | 0.2166 (3) | 0.00717 (9) | 0.0465 (6) | |
O16 | 0.00735 (8) | 0.3201 (2) | 0.00150 (6) | 0.0547 (5) | |
O17 | 0.06869 (8) | 0.1103 (2) | −0.02370 (6) | 0.0632 (5) | |
C18 | −0.03879 (12) | 0.3069 (3) | −0.04620 (9) | 0.0463 (6) | |
C19 | −0.02424 (12) | 0.3744 (3) | −0.09170 (9) | 0.0544 (6) | |
H19 | 0.0161 | 0.4252 | −0.0917 | 0.065* | |
C20 | −0.07040 (12) | 0.3656 (3) | −0.13730 (9) | 0.0584 (7) | |
H20 | −0.0619 | 0.4093 | −0.1690 | 0.070* | |
C21 | −0.12898 (12) | 0.2915 (3) | −0.13526 (10) | 0.0573 (7) | |
C22 | −0.14428 (12) | 0.2281 (3) | −0.09000 (10) | 0.0589 (7) | |
H22 | −0.1851 | 0.1800 | −0.0900 | 0.071* | |
C23 | −0.09828 (12) | 0.2366 (3) | −0.04435 (10) | 0.0541 (6) | |
H23 | −0.1074 | 0.1952 | −0.0126 | 0.065* | |
F24 | −0.17440 (7) | 0.2840 (2) | −0.18049 (6) | 0.0861 (5) | |
C25 | 0.24602 (14) | 0.3310 (4) | 0.19848 (10) | 0.0818 (9) | |
H25A | 0.2755 | 0.4207 | 0.1930 | 0.123* | |
H25B | 0.2702 | 0.2273 | 0.2079 | 0.123* | |
H25C | 0.2238 | 0.3629 | 0.2265 | 0.123* | |
S26 | 0.15240 (4) | 0.38413 (11) | 0.35642 (3) | 0.0719 (3) | |
O27 | 0.15245 (13) | 0.2321 (3) | 0.32563 (8) | 0.1034 (8) | |
O28 | 0.11971 (11) | 0.3678 (3) | 0.40094 (7) | 0.0928 (7) | |
O29 | 0.21189 (9) | 0.4779 (3) | 0.36698 (9) | 0.1031 (8) | |
C30 | 0.09881 (15) | 0.5223 (5) | 0.31287 (13) | 0.0770 (9) | |
F31 | 0.11978 (10) | 0.5488 (3) | 0.26795 (7) | 0.1135 (7) | |
F32 | 0.09350 (10) | 0.6752 (3) | 0.33429 (9) | 0.1138 (7) | |
F33 | 0.03935 (9) | 0.4604 (3) | 0.30042 (8) | 0.1163 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0610 (18) | 0.0645 (16) | 0.0525 (16) | −0.0065 (14) | 0.0053 (13) | −0.0087 (14) |
C2 | 0.078 (2) | 0.095 (2) | 0.071 (2) | −0.0137 (17) | 0.0241 (18) | −0.0010 (17) |
C3 | 0.098 (3) | 0.112 (3) | 0.0518 (18) | −0.003 (2) | 0.0229 (18) | 0.0057 (17) |
C4 | 0.077 (2) | 0.092 (2) | 0.0400 (16) | 0.0092 (18) | 0.0029 (14) | −0.0005 (15) |
C5 | 0.0481 (16) | 0.0763 (19) | 0.0671 (19) | −0.0031 (14) | −0.0056 (14) | −0.0100 (16) |
C6 | 0.0557 (18) | 0.079 (2) | 0.086 (2) | −0.0064 (16) | 0.0130 (17) | −0.0049 (18) |
C7 | 0.0716 (19) | 0.0736 (19) | 0.0665 (18) | −0.0049 (16) | 0.0190 (16) | 0.0019 (15) |
C8 | 0.0601 (17) | 0.0600 (16) | 0.0462 (15) | −0.0010 (14) | 0.0000 (12) | 0.0017 (12) |
C9 | 0.0509 (15) | 0.0377 (12) | 0.0391 (14) | 0.0074 (11) | −0.0028 (11) | −0.0044 (10) |
N10 | 0.0524 (14) | 0.0609 (13) | 0.0419 (13) | 0.0078 (11) | −0.0074 (10) | −0.0062 (10) |
C11 | 0.0519 (15) | 0.0430 (13) | 0.0439 (15) | 0.0066 (12) | 0.0026 (12) | −0.0042 (11) |
C12 | 0.0584 (17) | 0.0512 (15) | 0.0398 (15) | 0.0114 (13) | 0.0017 (12) | −0.0043 (11) |
C13 | 0.0466 (15) | 0.0447 (14) | 0.0469 (15) | 0.0063 (12) | −0.0016 (12) | −0.0054 (11) |
C14 | 0.0462 (15) | 0.0529 (15) | 0.0466 (15) | 0.0067 (12) | −0.0045 (12) | −0.0038 (12) |
C15 | 0.0499 (15) | 0.0449 (14) | 0.0409 (14) | 0.0005 (12) | −0.0011 (12) | 0.0005 (11) |
O16 | 0.0563 (10) | 0.0565 (10) | 0.0448 (9) | 0.0131 (9) | −0.0070 (8) | −0.0087 (8) |
O17 | 0.0652 (12) | 0.0623 (11) | 0.0540 (11) | 0.0152 (9) | −0.0090 (9) | −0.0200 (9) |
C18 | 0.0475 (15) | 0.0457 (13) | 0.0406 (14) | 0.0093 (12) | −0.0047 (11) | −0.0024 (11) |
C19 | 0.0432 (14) | 0.0631 (16) | 0.0541 (16) | −0.0029 (12) | 0.0016 (12) | −0.0018 (13) |
C20 | 0.0553 (17) | 0.0742 (17) | 0.0432 (14) | 0.0011 (14) | 0.0027 (13) | 0.0031 (13) |
C21 | 0.0463 (16) | 0.0646 (17) | 0.0527 (16) | 0.0050 (13) | −0.0116 (13) | −0.0039 (13) |
C22 | 0.0426 (15) | 0.0630 (17) | 0.0661 (19) | −0.0024 (13) | −0.0027 (14) | 0.0048 (14) |
C23 | 0.0532 (16) | 0.0524 (15) | 0.0571 (16) | 0.0047 (13) | 0.0111 (13) | 0.0099 (12) |
F24 | 0.0617 (10) | 0.1201 (13) | 0.0636 (10) | −0.0034 (9) | −0.0210 (8) | 0.0016 (9) |
C25 | 0.0658 (19) | 0.120 (3) | 0.0491 (16) | −0.0003 (18) | −0.0162 (14) | −0.0050 (16) |
S26 | 0.0683 (5) | 0.0884 (5) | 0.0517 (4) | 0.0159 (4) | −0.0074 (4) | −0.0033 (4) |
O27 | 0.145 (2) | 0.0928 (16) | 0.0634 (13) | 0.0384 (15) | −0.0047 (13) | −0.0118 (12) |
O28 | 0.1093 (17) | 0.1221 (18) | 0.0467 (11) | 0.0021 (14) | 0.0142 (11) | 0.0038 (11) |
O29 | 0.0523 (12) | 0.138 (2) | 0.1089 (17) | 0.0033 (13) | −0.0110 (11) | 0.0050 (15) |
C30 | 0.069 (2) | 0.095 (3) | 0.068 (2) | 0.0111 (18) | 0.0138 (17) | 0.0039 (19) |
F31 | 0.1171 (15) | 0.1541 (19) | 0.0703 (12) | 0.0225 (13) | 0.0202 (11) | 0.0343 (12) |
F32 | 0.1120 (16) | 0.0935 (15) | 0.1339 (17) | 0.0282 (12) | 0.0182 (13) | 0.0020 (13) |
F33 | 0.0566 (11) | 0.164 (2) | 0.1149 (15) | 0.0014 (12) | −0.0169 (10) | 0.0110 (14) |
C1—C2 | 1.340 (4) | C13—C14 | 1.423 (3) |
C1—C11 | 1.415 (3) | C15—O17 | 1.188 (3) |
C1—H1 | 0.9300 | C15—O16 | 1.340 (3) |
C2—C3 | 1.398 (4) | O16—C18 | 1.412 (3) |
C2—H2 | 0.9300 | C18—C23 | 1.366 (3) |
C3—C4 | 1.344 (4) | C18—C19 | 1.368 (3) |
C3—H3 | 0.9300 | C19—C20 | 1.370 (3) |
C4—C12 | 1.399 (4) | C19—H19 | 0.9300 |
C4—H4 | 0.9300 | C20—C21 | 1.362 (4) |
C5—C6 | 1.332 (4) | C20—H20 | 0.9300 |
C5—C14 | 1.412 (4) | C21—F24 | 1.355 (3) |
C5—H5 | 0.9300 | C21—C22 | 1.356 (3) |
C6—C7 | 1.403 (4) | C22—C23 | 1.369 (3) |
C6—H6 | 0.9300 | C22—H22 | 0.9300 |
C7—C8 | 1.344 (3) | C23—H23 | 0.9300 |
C7—H7 | 0.9300 | C25—H25A | 0.9600 |
C8—C13 | 1.413 (3) | C25—H25B | 0.9600 |
C8—H8 | 0.9300 | C25—H25C | 0.9600 |
C9—C13 | 1.388 (3) | S26—O29 | 1.422 (2) |
C9—C11 | 1.391 (3) | S26—O27 | 1.427 (2) |
C9—C15 | 1.501 (3) | S26—O28 | 1.444 (2) |
N10—C14 | 1.366 (3) | S26—C30 | 1.787 (3) |
N10—C12 | 1.366 (3) | C30—F33 | 1.313 (3) |
N10—C25 | 1.474 (3) | C30—F31 | 1.325 (3) |
C11—C12 | 1.421 (3) | C30—F32 | 1.328 (4) |
C2—C1—C11 | 121.0 (2) | C5—C14—C13 | 118.1 (2) |
C2—C1—H1 | 119.5 | O17—C15—O16 | 125.4 (2) |
C11—C1—H1 | 119.5 | O17—C15—C9 | 123.3 (2) |
C1—C2—C3 | 119.5 (3) | O16—C15—C9 | 111.3 (2) |
C1—C2—H2 | 120.3 | C15—O16—C18 | 117.11 (17) |
C3—C2—H2 | 120.3 | C23—C18—C19 | 122.3 (2) |
C4—C3—C2 | 122.0 (3) | C23—C18—O16 | 118.3 (2) |
C4—C3—H3 | 119.0 | C19—C18—O16 | 119.3 (2) |
C2—C3—H3 | 119.0 | C18—C19—C20 | 118.5 (2) |
C3—C4—C12 | 120.2 (3) | C18—C19—H19 | 120.7 |
C3—C4—H4 | 119.9 | C20—C19—H19 | 120.7 |
C12—C4—H4 | 119.9 | C21—C20—C19 | 118.6 (2) |
C6—C5—C14 | 120.8 (2) | C21—C20—H20 | 120.7 |
C6—C5—H5 | 119.6 | C19—C20—H20 | 120.7 |
C14—C5—H5 | 119.6 | F24—C21—C22 | 118.7 (2) |
C5—C6—C7 | 121.8 (3) | F24—C21—C20 | 118.2 (2) |
C5—C6—H6 | 119.1 | C22—C21—C20 | 123.1 (2) |
C7—C6—H6 | 119.1 | C21—C22—C23 | 118.4 (2) |
C8—C7—C6 | 119.3 (3) | C21—C22—H22 | 120.8 |
C8—C7—H7 | 120.3 | C23—C22—H22 | 120.8 |
C6—C7—H7 | 120.3 | C18—C23—C22 | 118.9 (2) |
C7—C8—C13 | 121.5 (2) | C18—C23—H23 | 120.5 |
C7—C8—H8 | 119.3 | C22—C23—H23 | 120.5 |
C13—C8—H8 | 119.3 | N10—C25—H25A | 109.5 |
C13—C9—C11 | 121.6 (2) | N10—C25—H25B | 109.5 |
C13—C9—C15 | 118.3 (2) | H25A—C25—H25B | 109.5 |
C11—C9—C15 | 120.1 (2) | N10—C25—H25C | 109.5 |
C14—N10—C12 | 122.33 (19) | H25A—C25—H25C | 109.5 |
C14—N10—C25 | 119.2 (2) | H25B—C25—H25C | 109.5 |
C12—N10—C25 | 118.5 (2) | O29—S26—O27 | 116.26 (16) |
C9—C11—C1 | 122.8 (2) | O29—S26—O28 | 114.84 (13) |
C9—C11—C12 | 118.6 (2) | O27—S26—O28 | 114.55 (15) |
C1—C11—C12 | 118.6 (2) | O29—S26—C30 | 103.21 (15) |
N10—C12—C4 | 121.9 (2) | O27—S26—C30 | 102.78 (15) |
N10—C12—C11 | 119.5 (2) | O28—S26—C30 | 102.50 (14) |
C4—C12—C11 | 118.6 (3) | F33—C30—F31 | 107.3 (2) |
C9—C13—C8 | 123.0 (2) | F33—C30—F32 | 106.4 (3) |
C9—C13—C14 | 118.5 (2) | F31—C30—F32 | 106.7 (3) |
C8—C13—C14 | 118.4 (2) | F33—C30—S26 | 112.4 (2) |
N10—C14—C5 | 122.3 (2) | F31—C30—S26 | 111.7 (2) |
N10—C14—C13 | 119.5 (2) | F32—C30—S26 | 112.0 (2) |
C11—C1—C2—C3 | −0.9 (4) | C6—C5—C14—C13 | 1.7 (4) |
C1—C2—C3—C4 | 0.7 (5) | C9—C13—C14—N10 | 0.1 (3) |
C2—C3—C4—C12 | 0.4 (5) | C8—C13—C14—N10 | 177.6 (2) |
C14—C5—C6—C7 | −0.1 (4) | C9—C13—C14—C5 | −179.5 (2) |
C5—C6—C7—C8 | −1.3 (4) | C8—C13—C14—C5 | −2.0 (3) |
C6—C7—C8—C13 | 1.1 (4) | C13—C9—C15—O17 | 71.6 (3) |
C13—C9—C11—C1 | 178.1 (2) | C11—C9—C15—O17 | −105.2 (3) |
C15—C9—C11—C1 | −5.2 (3) | C13—C9—C15—O16 | −107.5 (2) |
C13—C9—C11—C12 | −1.5 (3) | C11—C9—C15—O16 | 75.7 (3) |
C15—C9—C11—C12 | 175.2 (2) | O17—C15—O16—C18 | −3.1 (4) |
C2—C1—C11—C9 | −179.6 (2) | C9—C15—O16—C18 | 175.98 (19) |
C2—C1—C11—C12 | 0.0 (4) | C15—O16—C18—C23 | 109.5 (2) |
C14—N10—C12—C4 | −179.9 (2) | C15—O16—C18—C19 | −74.8 (3) |
C25—N10—C12—C4 | −0.5 (4) | C23—C18—C19—C20 | −2.3 (4) |
C14—N10—C12—C11 | −0.7 (3) | O16—C18—C19—C20 | −177.8 (2) |
C25—N10—C12—C11 | 178.7 (2) | C18—C19—C20—C21 | 0.6 (4) |
C3—C4—C12—N10 | 177.9 (3) | C19—C20—C21—F24 | 179.8 (2) |
C3—C4—C12—C11 | −1.3 (4) | C19—C20—C21—C22 | 1.0 (4) |
C9—C11—C12—N10 | 1.5 (3) | F24—C21—C22—C23 | −179.8 (2) |
C1—C11—C12—N10 | −178.2 (2) | C20—C21—C22—C23 | −1.1 (4) |
C9—C11—C12—C4 | −179.3 (2) | C19—C18—C23—C22 | 2.3 (4) |
C1—C11—C12—C4 | 1.1 (3) | O16—C18—C23—C22 | 177.9 (2) |
C11—C9—C13—C8 | −176.6 (2) | C21—C22—C23—C18 | −0.6 (4) |
C15—C9—C13—C8 | 6.6 (3) | O29—S26—C30—F33 | −176.9 (2) |
C11—C9—C13—C14 | 0.8 (3) | O27—S26—C30—F33 | 61.8 (3) |
C15—C9—C13—C14 | −176.0 (2) | O28—S26—C30—F33 | −57.3 (3) |
C7—C8—C13—C9 | 178.0 (2) | O29—S26—C30—F31 | 62.5 (3) |
C7—C8—C13—C14 | 0.6 (4) | O27—S26—C30—F31 | −58.8 (3) |
C12—N10—C14—C5 | 179.4 (2) | O28—S26—C30—F31 | −177.9 (2) |
C25—N10—C14—C5 | 0.1 (4) | O29—S26—C30—F32 | −57.1 (3) |
C12—N10—C14—C13 | −0.1 (3) | O27—S26—C30—F32 | −178.4 (2) |
C25—N10—C14—C13 | −179.5 (2) | O28—S26—C30—F32 | 62.5 (3) |
C6—C5—C14—N10 | −177.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O17i | 0.93 | 2.49 | 3.299 (3) | 146 |
C4—H4···O27 | 0.93 | 2.46 | 3.185 (3) | 134 |
C5—H5···O27ii | 0.93 | 2.53 | 3.200 (4) | 130 |
C22—H22···O29iii | 0.93 | 2.54 | 3.399 (3) | 153 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C21H15FNO2+·CF3SO3− |
Mr | 481.41 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 20.854 (3), 7.8092 (12), 25.690 (4) |
β (°) | 100.893 (15) |
V (Å3) | 4108.2 (11) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.38 × 0.29 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.676, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15588, 3634, 1978 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.117, 0.91 |
No. of reflections | 3634 |
No. of parameters | 299 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.25 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O17i | 0.93 | 2.49 | 3.299 (3) | 146 |
C4—H4···O27 | 0.93 | 2.46 | 3.185 (3) | 134 |
C5—H5···O27ii | 0.93 | 2.53 | 3.200 (4) | 130 |
C22—H22···O29iii | 0.93 | 2.54 | 3.399 (3) | 153 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z−1/2. |
X | I | J | I···J | X···J | X-I···J |
C21 | F24 | Cg2i | 3.870 (2) | 3.616 (3) | 69.12 (12) |
C30 | F33 | Cg2iv | 3.835 (2) | 4.951 (4) | 143.41 (19) |
S26 | O29 | Cg1ii | 3.646 (2) | 5.055 (15) | 170.66 (13) |
Symmetry codes: (i) -x, -y, -z; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iv) -x, y, -z + 1/2. Notes: Cg1 and Cg2 are the centroids of the C9/N10/C11-C14 and C1-C4/C11/C12 rings, respectively. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 4v | 3.572 (2) | 5.04 (11) | 3.408 (1) | 1.089 (2) |
2 | 4i | 3.856 (2) | 4.29 (13) | 3.596 (2) | 1.392 (2) |
3 | 4v | 3.898 (2) | 4.66 (12) | 3.380 (2) | 1.942 (2) |
4 | 1v | 3.572 (2) | 5.04 (11) | 3.472 (1) | 0.839 (2) |
4 | 2i | 3.856 (2) | 4.29 (13) | 3.502 (1) | 1.614 (2) |
4 | 3v | 3.898 (2) | 4.66 (12) | 3.483 (1) | 1.750 (2) |
Symmetry codes: (i) -x, -y, -z; (v) -x, -y + 1, -z. Notes: Cg1, Cg2, Cg3 and Cg4 are the centroids of the C9/N10/C11-C14, C1-C4/C11/C12, C5-C8/C13/C14 and C18-C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. DS/8820-4-0087-0).
References
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394. Web of Science CrossRef PubMed CAS Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. Web of Science CrossRef PubMed CAS Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008. Web of Science CrossRef PubMed CAS Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313–o1314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized with hydrogen peroxide in alkaline media, which produces light. It has been found that this process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence - crucial for analytical applications - is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0288 (3) Å and 0.0081 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 74.1 (1)°. The carboxyl group is twisted at an angle of 4.4 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 55.4 (1)° in the lattice.
In the crystal structure, the inversely oriented cations form dimers through multidirectional C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and π-π (Table 3, Fig. 2) interactions. These dimers are further linked by π-π (Table 3, Fig. 2) interactions. The adjacent cations (dimers) and anions are connected through C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and S-O···π (Table 2, Fig. 2) interactions. The C-H···O interactions are of the hydrogen bond type (Bianchi et al. 2004; Novoa et al. 2006). C-F···π (Dorn et al., 2005), S-O···π (Dorn et al., 2005) and the π-π (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.