organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Fluoro­phen­­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 27 September 2010; accepted 30 September 2010; online 9 October 2010)

In the crystal structure of the title compound, C21H15FNO2+·CF3SO3, the cations form inversion dimers through C—H⋯O, C—F⋯π and ππ inter­actions. These dimers are further linked by ππ inter­actions. The cations and anions are connected through C—H⋯O, C—F⋯π and S—O⋯π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 74.1 (1)°. The carboxyl­ate group is twisted at an angle of 4.4 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel or inclined at an angle of 55.4 (1)° in the crystal structure.

Related literature

For general background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­methane­sulfonates, see: Brown et al. (2009[Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386-394.]); King et al. (2007[King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169-4176.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2005[Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690-o694.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313-o1314.]). For inter­molecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Sikorski et al. (2005[Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690-o694.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FNO2+·CF3SO3

  • Mr = 481.41

  • Monoclinic, C 2/c

  • a = 20.854 (3) Å

  • b = 7.8092 (12) Å

  • c = 25.690 (4) Å

  • β = 100.893 (15)°

  • V = 4108.2 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.38 × 0.29 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.676, Tmax = 0.985

  • 15588 measured reflections

  • 3634 independent reflections

  • 1978 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 0.91

  • 3634 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O17i 0.93 2.49 3.299 (3) 146
C4—H4⋯O27 0.93 2.46 3.185 (3) 134
C5—H5⋯O27ii 0.93 2.53 3.200 (4) 130
C22—H22⋯O29iii 0.93 2.54 3.399 (3) 153
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
C—F⋯π and S—O⋯π inter­actions (Å,°)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.

X I J IJ XJ XIJ
C21 F24 Cg2i 3.870 (2) 3.616 (3) 69.12 (12)
C30 F33 Cg2iv 3.835 (2) 4.951 (4) 143.41 (19)
S26 O29 Cg1ii 3.646 (2) 5.055 (15) 170.66 (13)
Symmetry codes: (i) −x, −y, −z; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iv) −x, y, −z + [{1\over 2}].

Table 3
ππ inter­actions (Å,°)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12, C5–C8/C13/C14 and C18–C23 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 4v 3.572 (2) 5.04 (11) 3.408 (1) 1.089 (2)
2 4i 3.856 (2) 4.29 (13) 3.596 (2) 1.392 (2)
3 4v 3.898 (2) 4.66 (12) 3.380 (2) 1.942 (2)
4 1v 3.572 (2) 5.04 (11) 3.472 (1) 0.839 (2)
4 2i 3.856 (2) 4.29 (13) 3.502 (1) 1.614 (2)
4 3v 3.898 (2) 4.66 (12) 3.483 (1) 1.750 (2)
Symmetry codes: (i) −x, −y, −z; (v) −x, −y + 1, −z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized with hydrogen peroxide in alkaline media, which produces light. It has been found that this process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence - crucial for analytical applications - is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0288 (3) Å and 0.0081 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 74.1 (1)°. The carboxyl group is twisted at an angle of 4.4 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 55.4 (1)° in the lattice.

In the crystal structure, the inversely oriented cations form dimers through multidirectional C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and π-π (Table 3, Fig. 2) interactions. These dimers are further linked by π-π (Table 3, Fig. 2) interactions. The adjacent cations (dimers) and anions are connected through C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and S-O···π (Table 2, Fig. 2) interactions. The C-H···O interactions are of the hydrogen bond type (Bianchi et al. 2004; Novoa et al. 2006). C-F···π (Dorn et al., 2005), S-O···π (Dorn et al., 2005) and the π-π (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006). For the synthesis, see: Sato (1996); Sikorski et al. (2005).

Experimental top

The compound was synthesized in two steps (Sikorski et al., 2005). First, 9-(chlorocarbonyl)acridine, obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride, was esterified with 4-fluorophenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). Second, the product - 4-fluorophenylacridine-9-carboxylate, purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v) - was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 474-475 K).

Refinement top

H atoms were positioned geometrically, with C–H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Structure description top

9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009). The cations of these salts are oxidized with hydrogen peroxide in alkaline media, which produces light. It has been found that this process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence - crucial for analytical applications - is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of 9-(4-fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0288 (3) Å and 0.0081 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 74.1 (1)°. The carboxyl group is twisted at an angle of 4.4 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 55.4 (1)° in the lattice.

In the crystal structure, the inversely oriented cations form dimers through multidirectional C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and π-π (Table 3, Fig. 2) interactions. These dimers are further linked by π-π (Table 3, Fig. 2) interactions. The adjacent cations (dimers) and anions are connected through C-H···O (Table 1, Fig. 2), C-F···π (Table 2, Fig. 2) and S-O···π (Table 2, Fig. 2) interactions. The C-H···O interactions are of the hydrogen bond type (Bianchi et al. 2004; Novoa et al. 2006). C-F···π (Dorn et al., 2005), S-O···π (Dorn et al., 2005) and the π-π (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006). For the synthesis, see: Sato (1996); Sikorski et al. (2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. The C-H···O interaction is represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C-H···O interactions are represented by dashed lines, the C-F···π, S-O···π and π-π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -x, -y, -z; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iii) x - 1/2, -y + 1/2, z - 1/2; (iv) -x, y, -z + 1/2; (v) -x, -y + 1, -z.]
9-(4-Fluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C21H15FNO2+·CF3SO3F(000) = 1968
Mr = 481.41Dx = 1.557 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3994 reflections
a = 20.854 (3) Åθ = 3.0–24.9°
b = 7.8092 (12) ŵ = 0.23 mm1
c = 25.690 (4) ÅT = 295 K
β = 100.893 (15)°Plate, yellow
V = 4108.2 (11) Å30.38 × 0.29 × 0.05 mm
Z = 8
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3634 independent reflections
Radiation source: Enhanced (Mo) X-ray Source1978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.1°
ω scansh = 2324
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 99
Tmin = 0.676, Tmax = 0.985l = 3030
15588 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
3634 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H15FNO2+·CF3SO3V = 4108.2 (11) Å3
Mr = 481.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.854 (3) ŵ = 0.23 mm1
b = 7.8092 (12) ÅT = 295 K
c = 25.690 (4) Å0.38 × 0.29 × 0.05 mm
β = 100.893 (15)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3634 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1978 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.985Rint = 0.045
15588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.91Δρmax = 0.17 e Å3
3634 reflectionsΔρmin = 0.25 e Å3
299 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03283 (13)0.1193 (3)0.11048 (10)0.0600 (7)
H10.00110.10230.08020.072*
C20.02112 (15)0.0689 (4)0.15766 (12)0.0797 (9)
H20.01860.01860.16020.096*
C30.06910 (18)0.0924 (5)0.20305 (12)0.0860 (10)
H30.06080.05600.23560.103*
C40.12683 (16)0.1660 (4)0.20108 (10)0.0707 (8)
H40.15780.17920.23200.085*
C50.27041 (13)0.4437 (4)0.09888 (12)0.0660 (7)
H50.30200.45860.12930.079*
C60.28130 (13)0.5020 (4)0.05259 (13)0.0733 (8)
H60.32050.55720.05140.088*
C70.23522 (14)0.4824 (4)0.00556 (11)0.0698 (8)
H70.24350.52620.02620.084*
C80.17902 (13)0.3997 (3)0.00688 (9)0.0568 (7)
H80.14880.38520.02440.068*
C90.10650 (12)0.2530 (3)0.05781 (9)0.0441 (6)
N100.19775 (10)0.3032 (3)0.14935 (8)0.0539 (6)
C110.09265 (12)0.1981 (3)0.10599 (9)0.0471 (6)
C120.14047 (13)0.2230 (3)0.15271 (9)0.0508 (6)
C130.16483 (12)0.3344 (3)0.05474 (9)0.0475 (6)
C140.21142 (11)0.3595 (3)0.10230 (9)0.0503 (6)
C150.05947 (12)0.2166 (3)0.00717 (9)0.0465 (6)
O160.00735 (8)0.3201 (2)0.00150 (6)0.0547 (5)
O170.06869 (8)0.1103 (2)0.02370 (6)0.0632 (5)
C180.03879 (12)0.3069 (3)0.04620 (9)0.0463 (6)
C190.02424 (12)0.3744 (3)0.09170 (9)0.0544 (6)
H190.01610.42520.09170.065*
C200.07040 (12)0.3656 (3)0.13730 (9)0.0584 (7)
H200.06190.40930.16900.070*
C210.12898 (12)0.2915 (3)0.13526 (10)0.0573 (7)
C220.14428 (12)0.2281 (3)0.09000 (10)0.0589 (7)
H220.18510.18000.09000.071*
C230.09828 (12)0.2366 (3)0.04435 (10)0.0541 (6)
H230.10740.19520.01260.065*
F240.17440 (7)0.2840 (2)0.18049 (6)0.0861 (5)
C250.24602 (14)0.3310 (4)0.19848 (10)0.0818 (9)
H25A0.27550.42070.19300.123*
H25B0.27020.22730.20790.123*
H25C0.22380.36290.22650.123*
S260.15240 (4)0.38413 (11)0.35642 (3)0.0719 (3)
O270.15245 (13)0.2321 (3)0.32563 (8)0.1034 (8)
O280.11971 (11)0.3678 (3)0.40094 (7)0.0928 (7)
O290.21189 (9)0.4779 (3)0.36698 (9)0.1031 (8)
C300.09881 (15)0.5223 (5)0.31287 (13)0.0770 (9)
F310.11978 (10)0.5488 (3)0.26795 (7)0.1135 (7)
F320.09350 (10)0.6752 (3)0.33429 (9)0.1138 (7)
F330.03935 (9)0.4604 (3)0.30042 (8)0.1163 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0610 (18)0.0645 (16)0.0525 (16)0.0065 (14)0.0053 (13)0.0087 (14)
C20.078 (2)0.095 (2)0.071 (2)0.0137 (17)0.0241 (18)0.0010 (17)
C30.098 (3)0.112 (3)0.0518 (18)0.003 (2)0.0229 (18)0.0057 (17)
C40.077 (2)0.092 (2)0.0400 (16)0.0092 (18)0.0029 (14)0.0005 (15)
C50.0481 (16)0.0763 (19)0.0671 (19)0.0031 (14)0.0056 (14)0.0100 (16)
C60.0557 (18)0.079 (2)0.086 (2)0.0064 (16)0.0130 (17)0.0049 (18)
C70.0716 (19)0.0736 (19)0.0665 (18)0.0049 (16)0.0190 (16)0.0019 (15)
C80.0601 (17)0.0600 (16)0.0462 (15)0.0010 (14)0.0000 (12)0.0017 (12)
C90.0509 (15)0.0377 (12)0.0391 (14)0.0074 (11)0.0028 (11)0.0044 (10)
N100.0524 (14)0.0609 (13)0.0419 (13)0.0078 (11)0.0074 (10)0.0062 (10)
C110.0519 (15)0.0430 (13)0.0439 (15)0.0066 (12)0.0026 (12)0.0042 (11)
C120.0584 (17)0.0512 (15)0.0398 (15)0.0114 (13)0.0017 (12)0.0043 (11)
C130.0466 (15)0.0447 (14)0.0469 (15)0.0063 (12)0.0016 (12)0.0054 (11)
C140.0462 (15)0.0529 (15)0.0466 (15)0.0067 (12)0.0045 (12)0.0038 (12)
C150.0499 (15)0.0449 (14)0.0409 (14)0.0005 (12)0.0011 (12)0.0005 (11)
O160.0563 (10)0.0565 (10)0.0448 (9)0.0131 (9)0.0070 (8)0.0087 (8)
O170.0652 (12)0.0623 (11)0.0540 (11)0.0152 (9)0.0090 (9)0.0200 (9)
C180.0475 (15)0.0457 (13)0.0406 (14)0.0093 (12)0.0047 (11)0.0024 (11)
C190.0432 (14)0.0631 (16)0.0541 (16)0.0029 (12)0.0016 (12)0.0018 (13)
C200.0553 (17)0.0742 (17)0.0432 (14)0.0011 (14)0.0027 (13)0.0031 (13)
C210.0463 (16)0.0646 (17)0.0527 (16)0.0050 (13)0.0116 (13)0.0039 (13)
C220.0426 (15)0.0630 (17)0.0661 (19)0.0024 (13)0.0027 (14)0.0048 (14)
C230.0532 (16)0.0524 (15)0.0571 (16)0.0047 (13)0.0111 (13)0.0099 (12)
F240.0617 (10)0.1201 (13)0.0636 (10)0.0034 (9)0.0210 (8)0.0016 (9)
C250.0658 (19)0.120 (3)0.0491 (16)0.0003 (18)0.0162 (14)0.0050 (16)
S260.0683 (5)0.0884 (5)0.0517 (4)0.0159 (4)0.0074 (4)0.0033 (4)
O270.145 (2)0.0928 (16)0.0634 (13)0.0384 (15)0.0047 (13)0.0118 (12)
O280.1093 (17)0.1221 (18)0.0467 (11)0.0021 (14)0.0142 (11)0.0038 (11)
O290.0523 (12)0.138 (2)0.1089 (17)0.0033 (13)0.0110 (11)0.0050 (15)
C300.069 (2)0.095 (3)0.068 (2)0.0111 (18)0.0138 (17)0.0039 (19)
F310.1171 (15)0.1541 (19)0.0703 (12)0.0225 (13)0.0202 (11)0.0343 (12)
F320.1120 (16)0.0935 (15)0.1339 (17)0.0282 (12)0.0182 (13)0.0020 (13)
F330.0566 (11)0.164 (2)0.1149 (15)0.0014 (12)0.0169 (10)0.0110 (14)
Geometric parameters (Å, º) top
C1—C21.340 (4)C13—C141.423 (3)
C1—C111.415 (3)C15—O171.188 (3)
C1—H10.9300C15—O161.340 (3)
C2—C31.398 (4)O16—C181.412 (3)
C2—H20.9300C18—C231.366 (3)
C3—C41.344 (4)C18—C191.368 (3)
C3—H30.9300C19—C201.370 (3)
C4—C121.399 (4)C19—H190.9300
C4—H40.9300C20—C211.362 (4)
C5—C61.332 (4)C20—H200.9300
C5—C141.412 (4)C21—F241.355 (3)
C5—H50.9300C21—C221.356 (3)
C6—C71.403 (4)C22—C231.369 (3)
C6—H60.9300C22—H220.9300
C7—C81.344 (3)C23—H230.9300
C7—H70.9300C25—H25A0.9600
C8—C131.413 (3)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C131.388 (3)S26—O291.422 (2)
C9—C111.391 (3)S26—O271.427 (2)
C9—C151.501 (3)S26—O281.444 (2)
N10—C141.366 (3)S26—C301.787 (3)
N10—C121.366 (3)C30—F331.313 (3)
N10—C251.474 (3)C30—F311.325 (3)
C11—C121.421 (3)C30—F321.328 (4)
C2—C1—C11121.0 (2)C5—C14—C13118.1 (2)
C2—C1—H1119.5O17—C15—O16125.4 (2)
C11—C1—H1119.5O17—C15—C9123.3 (2)
C1—C2—C3119.5 (3)O16—C15—C9111.3 (2)
C1—C2—H2120.3C15—O16—C18117.11 (17)
C3—C2—H2120.3C23—C18—C19122.3 (2)
C4—C3—C2122.0 (3)C23—C18—O16118.3 (2)
C4—C3—H3119.0C19—C18—O16119.3 (2)
C2—C3—H3119.0C18—C19—C20118.5 (2)
C3—C4—C12120.2 (3)C18—C19—H19120.7
C3—C4—H4119.9C20—C19—H19120.7
C12—C4—H4119.9C21—C20—C19118.6 (2)
C6—C5—C14120.8 (2)C21—C20—H20120.7
C6—C5—H5119.6C19—C20—H20120.7
C14—C5—H5119.6F24—C21—C22118.7 (2)
C5—C6—C7121.8 (3)F24—C21—C20118.2 (2)
C5—C6—H6119.1C22—C21—C20123.1 (2)
C7—C6—H6119.1C21—C22—C23118.4 (2)
C8—C7—C6119.3 (3)C21—C22—H22120.8
C8—C7—H7120.3C23—C22—H22120.8
C6—C7—H7120.3C18—C23—C22118.9 (2)
C7—C8—C13121.5 (2)C18—C23—H23120.5
C7—C8—H8119.3C22—C23—H23120.5
C13—C8—H8119.3N10—C25—H25A109.5
C13—C9—C11121.6 (2)N10—C25—H25B109.5
C13—C9—C15118.3 (2)H25A—C25—H25B109.5
C11—C9—C15120.1 (2)N10—C25—H25C109.5
C14—N10—C12122.33 (19)H25A—C25—H25C109.5
C14—N10—C25119.2 (2)H25B—C25—H25C109.5
C12—N10—C25118.5 (2)O29—S26—O27116.26 (16)
C9—C11—C1122.8 (2)O29—S26—O28114.84 (13)
C9—C11—C12118.6 (2)O27—S26—O28114.55 (15)
C1—C11—C12118.6 (2)O29—S26—C30103.21 (15)
N10—C12—C4121.9 (2)O27—S26—C30102.78 (15)
N10—C12—C11119.5 (2)O28—S26—C30102.50 (14)
C4—C12—C11118.6 (3)F33—C30—F31107.3 (2)
C9—C13—C8123.0 (2)F33—C30—F32106.4 (3)
C9—C13—C14118.5 (2)F31—C30—F32106.7 (3)
C8—C13—C14118.4 (2)F33—C30—S26112.4 (2)
N10—C14—C5122.3 (2)F31—C30—S26111.7 (2)
N10—C14—C13119.5 (2)F32—C30—S26112.0 (2)
C11—C1—C2—C30.9 (4)C6—C5—C14—C131.7 (4)
C1—C2—C3—C40.7 (5)C9—C13—C14—N100.1 (3)
C2—C3—C4—C120.4 (5)C8—C13—C14—N10177.6 (2)
C14—C5—C6—C70.1 (4)C9—C13—C14—C5179.5 (2)
C5—C6—C7—C81.3 (4)C8—C13—C14—C52.0 (3)
C6—C7—C8—C131.1 (4)C13—C9—C15—O1771.6 (3)
C13—C9—C11—C1178.1 (2)C11—C9—C15—O17105.2 (3)
C15—C9—C11—C15.2 (3)C13—C9—C15—O16107.5 (2)
C13—C9—C11—C121.5 (3)C11—C9—C15—O1675.7 (3)
C15—C9—C11—C12175.2 (2)O17—C15—O16—C183.1 (4)
C2—C1—C11—C9179.6 (2)C9—C15—O16—C18175.98 (19)
C2—C1—C11—C120.0 (4)C15—O16—C18—C23109.5 (2)
C14—N10—C12—C4179.9 (2)C15—O16—C18—C1974.8 (3)
C25—N10—C12—C40.5 (4)C23—C18—C19—C202.3 (4)
C14—N10—C12—C110.7 (3)O16—C18—C19—C20177.8 (2)
C25—N10—C12—C11178.7 (2)C18—C19—C20—C210.6 (4)
C3—C4—C12—N10177.9 (3)C19—C20—C21—F24179.8 (2)
C3—C4—C12—C111.3 (4)C19—C20—C21—C221.0 (4)
C9—C11—C12—N101.5 (3)F24—C21—C22—C23179.8 (2)
C1—C11—C12—N10178.2 (2)C20—C21—C22—C231.1 (4)
C9—C11—C12—C4179.3 (2)C19—C18—C23—C222.3 (4)
C1—C11—C12—C41.1 (3)O16—C18—C23—C22177.9 (2)
C11—C9—C13—C8176.6 (2)C21—C22—C23—C180.6 (4)
C15—C9—C13—C86.6 (3)O29—S26—C30—F33176.9 (2)
C11—C9—C13—C140.8 (3)O27—S26—C30—F3361.8 (3)
C15—C9—C13—C14176.0 (2)O28—S26—C30—F3357.3 (3)
C7—C8—C13—C9178.0 (2)O29—S26—C30—F3162.5 (3)
C7—C8—C13—C140.6 (4)O27—S26—C30—F3158.8 (3)
C12—N10—C14—C5179.4 (2)O28—S26—C30—F31177.9 (2)
C25—N10—C14—C50.1 (4)O29—S26—C30—F3257.1 (3)
C12—N10—C14—C130.1 (3)O27—S26—C30—F32178.4 (2)
C25—N10—C14—C13179.5 (2)O28—S26—C30—F3262.5 (3)
C6—C5—C14—N10177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O17i0.932.493.299 (3)146
C4—H4···O270.932.463.185 (3)134
C5—H5···O27ii0.932.533.200 (4)130
C22—H22···O29iii0.932.543.399 (3)153
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H15FNO2+·CF3SO3
Mr481.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)20.854 (3), 7.8092 (12), 25.690 (4)
β (°) 100.893 (15)
V3)4108.2 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.38 × 0.29 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.676, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
15588, 3634, 1978
Rint0.045
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 0.91
No. of reflections3634
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O17i0.932.493.299 (3)146
C4—H4···O270.932.463.185 (3)134
C5—H5···O27ii0.932.533.200 (4)130
C22—H22···O29iii0.932.543.399 (3)153
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
C-F···π and S-O···π interactions (Å,°). top
XIJI···JX···JX-I···J
C21F24Cg2i3.870 (2)3.616 (3)69.12 (12)
C30F33Cg2iv3.835 (2)4.951 (4)143.41 (19)
S26O29Cg1ii3.646 (2)5.055 (15)170.66 (13)
Symmetry codes: (i) -x, -y, -z; (ii) -x + 1/2, y + 1/2, -z + 1/2; (iv) -x, y, -z + 1/2.

Notes: Cg1 and Cg2 are the centroids of the C9/N10/C11-C14 and C1-C4/C11/C12 rings, respectively.
π-π interactions (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
14v3.572 (2)5.04 (11)3.408 (1)1.089 (2)
24i3.856 (2)4.29 (13)3.596 (2)1.392 (2)
34v3.898 (2)4.66 (12)3.380 (2)1.942 (2)
41v3.572 (2)5.04 (11)3.472 (1)0.839 (2)
42i3.856 (2)4.29 (13)3.502 (1)1.614 (2)
43v3.898 (2)4.66 (12)3.483 (1)1.750 (2)
Symmetry codes: (i) -x, -y, -z; (v) -x, -y + 1, -z.

Notes: Cg1, Cg2, Cg3 and Cg4 are the centroids of the C9/N10/C11-C14, C1-C4/C11/C12, C5-C8/C13/C14 and C18-C23 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. DS/8820-4-0087-0).

References

First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKing, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005). Acta Cryst. C61, o690–o694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds