organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-Phenyl-3-(3-pyridyl­meth­ylamino)­but-2-en-1-one

aSchool of Chemistry, Yangzhou University, 180 SiWangTing Road, Yangzhou 225002, People's Republic of China, and bDepartment of Chemical Engineering, Nantong Vocational College, Nantong 226007, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn

(Received 28 September 2010; accepted 13 October 2010; online 20 October 2010)

The reaction of 3-C5H4NCH2NH2 and C6H5COCH2COCH3 affords the title compound, C16H16N2O. The O=C—C=C—N portion is essentially planar [maximum deviation = 0.046 (2) Å] and is aligned at dihedral angles of 22.6 (1) and 78.9 (1)° to the phenyl and pyridyl rings, respectively. The N—H and O=C groups are linked by an intra­molecular hydrogen bond. In the crystal, C—H⋯O hydrogen bonds and C—H⋯π inter­actions occur.

Related literature

For background to enamino­nes in coordination chemistry and organic synthesis, see: Jones et al. (1998[Jones, D., Roberts, A., Cavell, K., Keim, W., Englert, U., Skelton, B. W. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. pp. 255-262.]); Elassar & El-Khair (2003[Elassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463-8480.]). For related structures, see: Shi et al. (2004[Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15-21.], 2005[Shi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363-371.], 2006[Shi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407-m410.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O

  • Mr = 252.31

  • Monoclinic, P 21 /c

  • a = 10.256 (2) Å

  • b = 10.5851 (13) Å

  • c = 12.7122 (14) Å

  • β = 99.111 (17)°

  • V = 1362.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.21 × 0.14 × 0.11 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.965, Tmax = 0.987

  • 2821 measured reflections

  • 2668 independent reflections

  • 1833 reflections with I > 2σ(I)

  • Rint = 0.029

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 1.04

  • 2668 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.86 2.01 2.684 (2) 134
C14—H14⋯Cg2i 0.93 2.80 3.632 (2) 149
C16—H16⋯O1ii 0.93 2.57 3.190 (3) 124
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently enaminones and related compounds have been used as ligands in coordination chemistry (Jones et al., 1998) and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003).

It has been shown that primay amines, Ar'NH2, react smoothly with β–diketones, ArCOCH2COR, to give enaminones, ArCOCH C(NHAr')R, in good yields (Shi et al., 2004). As part of an ongoing investigation of the chemistry of enaminones and related compounds (Shi et al., 2005; Shi et al., 2006), the title compound has been synthesized via the reaction of 3–C5H4NCH2NH2 and C6H5COCH2COCH3 (Fig. 1).

As noted in the compounds previously reported, the O C—CC—N moiety is planar and the bond lengths indicate electron delocalization (Shi et al., 2004)(Table 1). The OC—CC—N plane is twisted with respect to the benzene and pyridine rings by 22.60 (10) and 78.79 (10)°. Furthermore, the N—H and OC form a strong intramolecular hydrogen bond (Table 2).

Related literature top

For background to enaminones in coordination chemistry and organic synthesis, see: Jones et al. (1998); Elassar & El-Khair (2003). For related structures, see: Shi et al. (2004, 2005, 2006).

Experimental top

A solution of ferrocenoylacetone (5 mmol) and 3–aminomethylpyridine (5 mmol) in anhydrous ethanol (25 ml) was refluxed for 15 h. After removal of the solvent, the resulting solid was purified by chromatography on alumina with dichloromethane-ethyl acetate (v/v, 1:1) as eluant to give the colourless solid. Recrystallization from dichloromethane/petroleum ether solution affords single crystals of the title compound. M.p. 353.45–354.35 K. IR (KBr): 3079 (m, NH), 1594 (versus, OC), 1478 (m, CC) cm-1. 1H NMR (600 MHz, CDCl3, δ, p.p.m.): 11.77 (s, 1H, NH), 8.57–8.60, 7.88–7.89, 7.69–7.71, 7.41–7.47, 7.33–7.35 (t, 2H, d, 1H, s, 1H, q, 4H, t, 1H, C5H4N, C6H5), 5.81 (s, 1H, CH), 4.58–4.59 (d,2H, CH2), 2.11 (s, 3H, CH3). UV (in DMF,λmax (ε×104)): 259 (0.41), 343 (0.98) nm.

Refinement top

All H atoms were placed at geometrically idealized positions and subsequently treated as riding atoms, with C—H = 0.93 (aromatic and olefinic), 0.97 (CH2), 0.96 (CH3) and N—H = 0.86Å and Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Recently enaminones and related compounds have been used as ligands in coordination chemistry (Jones et al., 1998) and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003).

It has been shown that primay amines, Ar'NH2, react smoothly with β–diketones, ArCOCH2COR, to give enaminones, ArCOCH C(NHAr')R, in good yields (Shi et al., 2004). As part of an ongoing investigation of the chemistry of enaminones and related compounds (Shi et al., 2005; Shi et al., 2006), the title compound has been synthesized via the reaction of 3–C5H4NCH2NH2 and C6H5COCH2COCH3 (Fig. 1).

As noted in the compounds previously reported, the O C—CC—N moiety is planar and the bond lengths indicate electron delocalization (Shi et al., 2004)(Table 1). The OC—CC—N plane is twisted with respect to the benzene and pyridine rings by 22.60 (10) and 78.79 (10)°. Furthermore, the N—H and OC form a strong intramolecular hydrogen bond (Table 2).

For background to enaminones in coordination chemistry and organic synthesis, see: Jones et al. (1998); Elassar & El-Khair (2003). For related structures, see: Shi et al. (2004, 2005, 2006).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius,1989); cell refinement: CAD-4 Software (Enraf–Nonius,1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
(Z)-1-Phenyl-3-(3-pyridylmethylamino)but-2-en-1-one top
Crystal data top
C16H16N2OF(000) = 536
Mr = 252.31Dx = 1.230 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.256 (2) Åθ = 9–15°
b = 10.5851 (13) ŵ = 0.08 mm1
c = 12.7122 (14) ÅT = 295 K
β = 99.111 (17)°Block, colorless
V = 1362.6 (4) Å30.21 × 0.14 × 0.11 mm
Z = 4
Data collection top
Enraf-Nonius CAD4
diffractometer
1833 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.965, Tmax = 0.987l = 1515
2821 measured reflections3 standard reflections every 200 reflections
2668 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.068P)2 + 0.2036P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2668 reflectionsΔρmax = 0.19 e Å3
174 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.109 (7)
Crystal data top
C16H16N2OV = 1362.6 (4) Å3
Mr = 252.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.256 (2) ŵ = 0.08 mm1
b = 10.5851 (13) ÅT = 295 K
c = 12.7122 (14) Å0.21 × 0.14 × 0.11 mm
β = 99.111 (17)°
Data collection top
Enraf-Nonius CAD4
diffractometer
1833 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.965, Tmax = 0.9873 standard reflections every 200 reflections
2821 measured reflections intensity decay: none
2668 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2668 reflectionsΔρmin = 0.15 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73670 (14)0.56511 (13)0.69319 (11)0.0534 (4)
N10.59836 (16)0.37872 (14)0.58418 (13)0.0458 (4)
H1N0.61490.42070.64270.055*
N20.5078 (2)0.05640 (17)0.67650 (16)0.0637 (5)
C31.0847 (2)0.8702 (2)0.6330 (2)0.0707 (7)
H31.14850.93340.63840.085*
C21.0519 (2)0.8161 (2)0.7229 (2)0.0695 (7)
H21.09330.84260.78970.083*
C10.9572 (2)0.7219 (2)0.71505 (18)0.0578 (6)
H10.93450.68680.77670.069*
C60.89565 (18)0.67926 (17)0.61661 (15)0.0438 (5)
C50.9296 (2)0.7356 (2)0.52626 (18)0.0589 (6)
H50.88890.70900.45930.071*
C41.0232 (3)0.8308 (2)0.5344 (2)0.0722 (7)
H41.04450.86820.47320.087*
C70.79188 (18)0.57881 (16)0.61283 (15)0.0418 (5)
C80.7605 (2)0.50372 (17)0.52032 (15)0.0460 (5)
H80.80730.51830.46460.055*
C90.6656 (2)0.41061 (16)0.50683 (15)0.0438 (5)
C100.6336 (2)0.3439 (2)0.40183 (17)0.0612 (6)
H10A0.63440.25430.41340.092*
H10B0.69820.36540.35780.092*
H10C0.54760.36930.36700.092*
C110.49955 (19)0.27955 (18)0.57884 (17)0.0493 (5)
H11A0.45340.27410.50620.059*
H11B0.43540.30330.62380.059*
C120.55373 (18)0.14986 (16)0.61276 (14)0.0400 (5)
C130.6826 (2)0.11570 (19)0.61395 (18)0.0547 (6)
H130.74270.17330.59410.066*
C140.7228 (2)0.0054 (2)0.64491 (18)0.0612 (6)
H140.80970.03080.64540.073*
C150.6321 (3)0.0869 (2)0.67473 (18)0.0606 (6)
H150.65950.16830.69490.073*
C160.4712 (2)0.06032 (19)0.64491 (16)0.0509 (5)
H160.38340.08270.64460.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0686 (9)0.0467 (8)0.0480 (8)0.0072 (7)0.0187 (7)0.0037 (6)
N10.0604 (10)0.0310 (8)0.0459 (9)0.0031 (7)0.0075 (8)0.0012 (7)
N20.0774 (14)0.0387 (10)0.0768 (13)0.0103 (9)0.0176 (10)0.0049 (9)
C30.0578 (14)0.0544 (14)0.101 (2)0.0145 (11)0.0143 (14)0.0093 (14)
C20.0729 (15)0.0539 (14)0.0740 (16)0.0084 (12)0.0124 (13)0.0042 (12)
C10.0692 (14)0.0463 (12)0.0538 (13)0.0040 (11)0.0025 (10)0.0033 (10)
C60.0460 (10)0.0349 (10)0.0509 (11)0.0046 (8)0.0088 (9)0.0007 (8)
C50.0703 (14)0.0540 (13)0.0559 (13)0.0150 (11)0.0210 (11)0.0062 (10)
C40.0820 (17)0.0626 (15)0.0790 (18)0.0224 (13)0.0337 (14)0.0054 (13)
C70.0484 (11)0.0315 (9)0.0455 (11)0.0049 (8)0.0071 (9)0.0045 (8)
C80.0620 (12)0.0343 (10)0.0430 (11)0.0017 (9)0.0122 (9)0.0022 (8)
C90.0602 (12)0.0295 (9)0.0403 (10)0.0054 (9)0.0040 (9)0.0033 (8)
C100.0906 (17)0.0444 (12)0.0473 (12)0.0074 (11)0.0069 (11)0.0037 (10)
C110.0511 (11)0.0376 (11)0.0591 (12)0.0007 (9)0.0086 (9)0.0001 (9)
C120.0502 (11)0.0335 (10)0.0369 (10)0.0014 (8)0.0085 (8)0.0030 (8)
C130.0559 (12)0.0439 (11)0.0668 (14)0.0015 (10)0.0176 (10)0.0118 (10)
C140.0670 (14)0.0470 (12)0.0729 (15)0.0150 (11)0.0214 (12)0.0100 (11)
C150.0880 (17)0.0346 (11)0.0609 (14)0.0062 (11)0.0174 (12)0.0038 (10)
C160.0562 (12)0.0416 (11)0.0560 (12)0.0049 (10)0.0121 (10)0.0006 (9)
Geometric parameters (Å, º) top
O1—C71.252 (2)C7—C81.414 (3)
N1—C91.331 (2)C8—C91.377 (3)
N1—C111.453 (2)C8—H80.9300
N1—H1N0.8600C9—C101.500 (3)
N2—C151.319 (3)C10—H10A0.9600
N2—C161.335 (3)C10—H10B0.9600
C3—C21.368 (3)C10—H10C0.9600
C3—C41.375 (3)C11—C121.518 (3)
C3—H30.9300C11—H11A0.9700
C2—C11.384 (3)C11—H11B0.9700
C2—H20.9300C12—C131.368 (3)
C1—C61.385 (3)C12—C161.375 (3)
C1—H10.9300C13—C141.385 (3)
C6—C51.386 (3)C13—H130.9300
C6—C71.500 (3)C14—C151.365 (3)
C5—C41.385 (3)C14—H140.9300
C5—H50.9300C15—H150.9300
C4—H40.9300C16—H160.9300
C9—N1—H1N117.0C8—C9—C10119.91 (18)
C11—N1—H1N117.0C9—N1—C11126.01 (17)
C15—N2—C16116.63 (18)C9—C10—H10A109.5
C2—C3—C4119.8 (2)C9—C10—H10B109.5
C2—C3—H3120.1H10A—C10—H10B109.5
C4—C3—H3120.1C9—C10—H10C109.5
C3—C2—C1120.3 (2)H10A—C10—H10C109.5
C3—C2—H2119.9H10B—C10—H10C109.5
C1—C2—H2119.9N1—C11—C12114.76 (16)
C2—C1—C6120.9 (2)N1—C11—H11A108.6
C2—C1—H1119.5C12—C11—H11A108.6
C6—C1—H1119.5N1—C11—H11B108.6
C1—C6—C5118.07 (19)C12—C11—H11B108.6
C1—C6—C7118.65 (18)H11A—C11—H11B107.6
C5—C6—C7123.23 (18)C13—C12—C16116.98 (18)
C4—C5—C6120.8 (2)C13—C12—C11123.50 (17)
C4—C5—H5119.6C16—C12—C11119.53 (17)
C6—C5—H5119.6C12—C13—C14119.4 (2)
C3—C4—C5120.1 (2)C12—C13—H13120.3
C3—C4—H4119.9C14—C13—H13120.3
C5—C4—H4119.9C15—C14—C13118.6 (2)
O1—C7—C6117.78 (17)C15—C14—H14120.7
O1—C7—C8122.73 (18)C13—C14—H14120.7
C6—C7—C8119.49 (17)N2—C15—C14123.6 (2)
C7—C8—C9124.71 (18)N2—C15—H15118.2
C9—C8—H8117.6C14—C15—H15118.2
C7—C8—H8117.6N2—C16—C12124.7 (2)
N1—C9—C8121.90 (17)N2—C16—H16117.6
N1—C9—C10118.18 (18)C12—C16—H16117.6
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.862.012.684 (2)134
C14—H14···Cg2i0.932.803.632 (2)149
C16—H16···O1ii0.932.573.190 (3)124
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O
Mr252.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.256 (2), 10.5851 (13), 12.7122 (14)
β (°) 99.111 (17)
V3)1362.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.14 × 0.11
Data collection
DiffractometerEnraf-Nonius CAD4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.965, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
2821, 2668, 1833
Rint0.029
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.04
No. of reflections2668
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: CAD-4 Software (Enraf–Nonius,1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.862.012.684 (2)134
C14—H14···Cg2i0.932.803.632 (2)149
C16—H16···O1ii0.932.573.190 (3)124
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of China (No. 20572091) and the Nature Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

References

First citationElassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJones, D., Roberts, A., Cavell, K., Keim, W., Englert, U., Skelton, B. W. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. pp. 255–262.  Web of Science CSD CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407–m410.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds