organic compounds
(Z)-1-Phenyl-3-(3-pyridylmethylamino)but-2-en-1-one
aSchool of Chemistry, Yangzhou University, 180 SiWangTing Road, Yangzhou 225002, People's Republic of China, and bDepartment of Chemical Engineering, Nantong Vocational College, Nantong 226007, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn
The reaction of 3-C5H4NCH2NH2 and C6H5COCH2COCH3 affords the title compound, C16H16N2O. The O=C—C=C—N portion is essentially planar [maximum deviation = 0.046 (2) Å] and is aligned at dihedral angles of 22.6 (1) and 78.9 (1)° to the phenyl and pyridyl rings, respectively. The N—H and O=C groups are linked by an intramolecular hydrogen bond. In the crystal, C—H⋯O hydrogen bonds and C—H⋯π interactions occur.
Related literature
For background to enaminones in coordination chemistry and organic synthesis, see: Jones et al. (1998); Elassar & El-Khair (2003). For related structures, see: Shi et al. (2004, 2005, 2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810041127/ng5038sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041127/ng5038Isup2.hkl
A solution of ferrocenoylacetone (5 mmol) and 3–aminomethylpyridine (5 mmol) in anhydrous ethanol (25 ml) was refluxed for 15 h. After removal of the solvent, the resulting solid was purified by ═C), 1478 (m, C═C) cm-1. 1H NMR (600 MHz, CDCl3, δ, p.p.m.): 11.77 (s, 1H, NH), 8.57–8.60, 7.88–7.89, 7.69–7.71, 7.41–7.47, 7.33–7.35 (t, 2H, d, 1H, s, 1H, q, 4H, t, 1H, C5H4N, C6H5), 5.81 (s, 1H, CH), 4.58–4.59 (d,2H, CH2), 2.11 (s, 3H, CH3). UV (in DMF,λmax (ε×104)): 259 (0.41), 343 (0.98) nm.
on alumina with dichloromethane-ethyl acetate (v/v, 1:1) as eluant to give the colourless solid. Recrystallization from dichloromethane/petroleum ether solution affords single crystals of the title compound. M.p. 353.45–354.35 K. IR (KBr): 3079 (m, NH), 1594 (versus, OAll H atoms were placed at geometrically idealized positions and subsequently treated as riding atoms, with C—H = 0.93 (aromatic and olefinic), 0.97 (CH2), 0.96 (CH3) and N—H = 0.86Å and Uiso(H) values of 1.2Ueq(C) or 1.5Ueq(Cmethyl).
Recently enaminones and related compounds have been used as ligands in coordination chemistry (Jones et al., 1998) and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of
with the ambident of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003).It has been shown that primay β–diketones, ArCOCH2COR, to give enaminones, ArCOCH═ C(NHAr')R, in good yields (Shi et al., 2004). As part of an ongoing investigation of the chemistry of enaminones and related compounds (Shi et al., 2005; Shi et al., 2006), the title compound has been synthesized via the reaction of 3–C5H4NCH2NH2 and C6H5COCH2COCH3 (Fig. 1).
Ar'NH2, react smoothly withAs noted in the compounds previously reported, the O═ C—C═C—N moiety is planar and the bond lengths indicate electron delocalization (Shi et al., 2004)(Table 1). The O═C—C═C—N plane is twisted with respect to the benzene and pyridine rings by 22.60 (10) and 78.79 (10)°. Furthermore, the N—H and O═C form a strong intramolecular hydrogen bond (Table 2).
For background to enaminones in coordination chemistry and organic synthesis, see: Jones et al. (1998); Elassar & El-Khair (2003). For related structures, see: Shi et al. (2004, 2005, 2006).
Data collection: CAD-4 Software (Enraf–Nonius,1989); cell
CAD-4 Software (Enraf–Nonius,1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
C16H16N2O | F(000) = 536 |
Mr = 252.31 | Dx = 1.230 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 10.256 (2) Å | θ = 9–15° |
b = 10.5851 (13) Å | µ = 0.08 mm−1 |
c = 12.7122 (14) Å | T = 295 K |
β = 99.111 (17)° | Block, colorless |
V = 1362.6 (4) Å3 | 0.21 × 0.14 × 0.11 mm |
Z = 4 |
Enraf-Nonius CAD4 diffractometer | 1833 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 26.0°, θmin = 2.0° |
ω/2θ scans | h = 0→12 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→13 |
Tmin = 0.965, Tmax = 0.987 | l = −15→15 |
2821 measured reflections | 3 standard reflections every 200 reflections |
2668 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.140 | w = 1/[σ2(Fo2) + (0.068P)2 + 0.2036P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2668 reflections | Δρmax = 0.19 e Å−3 |
174 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.109 (7) |
C16H16N2O | V = 1362.6 (4) Å3 |
Mr = 252.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.256 (2) Å | µ = 0.08 mm−1 |
b = 10.5851 (13) Å | T = 295 K |
c = 12.7122 (14) Å | 0.21 × 0.14 × 0.11 mm |
β = 99.111 (17)° |
Enraf-Nonius CAD4 diffractometer | 1833 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.029 |
Tmin = 0.965, Tmax = 0.987 | 3 standard reflections every 200 reflections |
2821 measured reflections | intensity decay: none |
2668 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.19 e Å−3 |
2668 reflections | Δρmin = −0.15 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.73670 (14) | 0.56511 (13) | 0.69319 (11) | 0.0534 (4) | |
N1 | 0.59836 (16) | 0.37872 (14) | 0.58418 (13) | 0.0458 (4) | |
H1N | 0.6149 | 0.4207 | 0.6427 | 0.055* | |
N2 | 0.5078 (2) | −0.05640 (17) | 0.67650 (16) | 0.0637 (5) | |
C3 | 1.0847 (2) | 0.8702 (2) | 0.6330 (2) | 0.0707 (7) | |
H3 | 1.1485 | 0.9334 | 0.6384 | 0.085* | |
C2 | 1.0519 (2) | 0.8161 (2) | 0.7229 (2) | 0.0695 (7) | |
H2 | 1.0933 | 0.8426 | 0.7897 | 0.083* | |
C1 | 0.9572 (2) | 0.7219 (2) | 0.71505 (18) | 0.0578 (6) | |
H1 | 0.9345 | 0.6868 | 0.7767 | 0.069* | |
C6 | 0.89565 (18) | 0.67926 (17) | 0.61661 (15) | 0.0438 (5) | |
C5 | 0.9296 (2) | 0.7356 (2) | 0.52626 (18) | 0.0589 (6) | |
H5 | 0.8889 | 0.7090 | 0.4593 | 0.071* | |
C4 | 1.0232 (3) | 0.8308 (2) | 0.5344 (2) | 0.0722 (7) | |
H4 | 1.0445 | 0.8682 | 0.4732 | 0.087* | |
C7 | 0.79188 (18) | 0.57881 (16) | 0.61283 (15) | 0.0418 (5) | |
C8 | 0.7605 (2) | 0.50372 (17) | 0.52032 (15) | 0.0460 (5) | |
H8 | 0.8073 | 0.5183 | 0.4646 | 0.055* | |
C9 | 0.6656 (2) | 0.41061 (16) | 0.50683 (15) | 0.0438 (5) | |
C10 | 0.6336 (2) | 0.3439 (2) | 0.40183 (17) | 0.0612 (6) | |
H10A | 0.6344 | 0.2543 | 0.4134 | 0.092* | |
H10B | 0.6982 | 0.3654 | 0.3578 | 0.092* | |
H10C | 0.5476 | 0.3693 | 0.3670 | 0.092* | |
C11 | 0.49955 (19) | 0.27955 (18) | 0.57884 (17) | 0.0493 (5) | |
H11A | 0.4534 | 0.2741 | 0.5062 | 0.059* | |
H11B | 0.4354 | 0.3033 | 0.6238 | 0.059* | |
C12 | 0.55373 (18) | 0.14986 (16) | 0.61276 (14) | 0.0400 (5) | |
C13 | 0.6826 (2) | 0.11570 (19) | 0.61395 (18) | 0.0547 (6) | |
H13 | 0.7427 | 0.1733 | 0.5941 | 0.066* | |
C14 | 0.7228 (2) | −0.0054 (2) | 0.64491 (18) | 0.0612 (6) | |
H14 | 0.8097 | −0.0308 | 0.6454 | 0.073* | |
C15 | 0.6321 (3) | −0.0869 (2) | 0.67473 (18) | 0.0606 (6) | |
H15 | 0.6595 | −0.1683 | 0.6949 | 0.073* | |
C16 | 0.4712 (2) | 0.06032 (19) | 0.64491 (16) | 0.0509 (5) | |
H16 | 0.3834 | 0.0827 | 0.6446 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0686 (9) | 0.0467 (8) | 0.0480 (8) | −0.0072 (7) | 0.0187 (7) | −0.0037 (6) |
N1 | 0.0604 (10) | 0.0310 (8) | 0.0459 (9) | −0.0031 (7) | 0.0075 (8) | −0.0012 (7) |
N2 | 0.0774 (14) | 0.0387 (10) | 0.0768 (13) | −0.0103 (9) | 0.0176 (10) | 0.0049 (9) |
C3 | 0.0578 (14) | 0.0544 (14) | 0.101 (2) | −0.0145 (11) | 0.0143 (14) | −0.0093 (14) |
C2 | 0.0729 (15) | 0.0539 (14) | 0.0740 (16) | −0.0084 (12) | −0.0124 (13) | −0.0042 (12) |
C1 | 0.0692 (14) | 0.0463 (12) | 0.0538 (13) | −0.0040 (11) | −0.0025 (10) | 0.0033 (10) |
C6 | 0.0460 (10) | 0.0349 (10) | 0.0509 (11) | 0.0046 (8) | 0.0088 (9) | −0.0007 (8) |
C5 | 0.0703 (14) | 0.0540 (13) | 0.0559 (13) | −0.0150 (11) | 0.0210 (11) | −0.0062 (10) |
C4 | 0.0820 (17) | 0.0626 (15) | 0.0790 (18) | −0.0224 (13) | 0.0337 (14) | −0.0054 (13) |
C7 | 0.0484 (11) | 0.0315 (9) | 0.0455 (11) | 0.0049 (8) | 0.0071 (9) | 0.0045 (8) |
C8 | 0.0620 (12) | 0.0343 (10) | 0.0430 (11) | −0.0017 (9) | 0.0122 (9) | 0.0022 (8) |
C9 | 0.0602 (12) | 0.0295 (9) | 0.0403 (10) | 0.0054 (9) | 0.0040 (9) | 0.0033 (8) |
C10 | 0.0906 (17) | 0.0444 (12) | 0.0473 (12) | −0.0074 (11) | 0.0069 (11) | −0.0037 (10) |
C11 | 0.0511 (11) | 0.0376 (11) | 0.0591 (12) | 0.0007 (9) | 0.0086 (9) | 0.0001 (9) |
C12 | 0.0502 (11) | 0.0335 (10) | 0.0369 (10) | −0.0014 (8) | 0.0085 (8) | −0.0030 (8) |
C13 | 0.0559 (12) | 0.0439 (11) | 0.0668 (14) | 0.0015 (10) | 0.0176 (10) | 0.0118 (10) |
C14 | 0.0670 (14) | 0.0470 (12) | 0.0729 (15) | 0.0150 (11) | 0.0214 (12) | 0.0100 (11) |
C15 | 0.0880 (17) | 0.0346 (11) | 0.0609 (14) | 0.0062 (11) | 0.0174 (12) | 0.0038 (10) |
C16 | 0.0562 (12) | 0.0416 (11) | 0.0560 (12) | −0.0049 (10) | 0.0121 (10) | 0.0006 (9) |
O1—C7 | 1.252 (2) | C7—C8 | 1.414 (3) |
N1—C9 | 1.331 (2) | C8—C9 | 1.377 (3) |
N1—C11 | 1.453 (2) | C8—H8 | 0.9300 |
N1—H1N | 0.8600 | C9—C10 | 1.500 (3) |
N2—C15 | 1.319 (3) | C10—H10A | 0.9600 |
N2—C16 | 1.335 (3) | C10—H10B | 0.9600 |
C3—C2 | 1.368 (3) | C10—H10C | 0.9600 |
C3—C4 | 1.375 (3) | C11—C12 | 1.518 (3) |
C3—H3 | 0.9300 | C11—H11A | 0.9700 |
C2—C1 | 1.384 (3) | C11—H11B | 0.9700 |
C2—H2 | 0.9300 | C12—C13 | 1.368 (3) |
C1—C6 | 1.385 (3) | C12—C16 | 1.375 (3) |
C1—H1 | 0.9300 | C13—C14 | 1.385 (3) |
C6—C5 | 1.386 (3) | C13—H13 | 0.9300 |
C6—C7 | 1.500 (3) | C14—C15 | 1.365 (3) |
C5—C4 | 1.385 (3) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C15—H15 | 0.9300 |
C4—H4 | 0.9300 | C16—H16 | 0.9300 |
C9—N1—H1N | 117.0 | C8—C9—C10 | 119.91 (18) |
C11—N1—H1N | 117.0 | C9—N1—C11 | 126.01 (17) |
C15—N2—C16 | 116.63 (18) | C9—C10—H10A | 109.5 |
C2—C3—C4 | 119.8 (2) | C9—C10—H10B | 109.5 |
C2—C3—H3 | 120.1 | H10A—C10—H10B | 109.5 |
C4—C3—H3 | 120.1 | C9—C10—H10C | 109.5 |
C3—C2—C1 | 120.3 (2) | H10A—C10—H10C | 109.5 |
C3—C2—H2 | 119.9 | H10B—C10—H10C | 109.5 |
C1—C2—H2 | 119.9 | N1—C11—C12 | 114.76 (16) |
C2—C1—C6 | 120.9 (2) | N1—C11—H11A | 108.6 |
C2—C1—H1 | 119.5 | C12—C11—H11A | 108.6 |
C6—C1—H1 | 119.5 | N1—C11—H11B | 108.6 |
C1—C6—C5 | 118.07 (19) | C12—C11—H11B | 108.6 |
C1—C6—C7 | 118.65 (18) | H11A—C11—H11B | 107.6 |
C5—C6—C7 | 123.23 (18) | C13—C12—C16 | 116.98 (18) |
C4—C5—C6 | 120.8 (2) | C13—C12—C11 | 123.50 (17) |
C4—C5—H5 | 119.6 | C16—C12—C11 | 119.53 (17) |
C6—C5—H5 | 119.6 | C12—C13—C14 | 119.4 (2) |
C3—C4—C5 | 120.1 (2) | C12—C13—H13 | 120.3 |
C3—C4—H4 | 119.9 | C14—C13—H13 | 120.3 |
C5—C4—H4 | 119.9 | C15—C14—C13 | 118.6 (2) |
O1—C7—C6 | 117.78 (17) | C15—C14—H14 | 120.7 |
O1—C7—C8 | 122.73 (18) | C13—C14—H14 | 120.7 |
C6—C7—C8 | 119.49 (17) | N2—C15—C14 | 123.6 (2) |
C7—C8—C9 | 124.71 (18) | N2—C15—H15 | 118.2 |
C9—C8—H8 | 117.6 | C14—C15—H15 | 118.2 |
C7—C8—H8 | 117.6 | N2—C16—C12 | 124.7 (2) |
N1—C9—C8 | 121.90 (17) | N2—C16—H16 | 117.6 |
N1—C9—C10 | 118.18 (18) | C12—C16—H16 | 117.6 |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.86 | 2.01 | 2.684 (2) | 134 |
C14—H14···Cg2i | 0.93 | 2.80 | 3.632 (2) | 149 |
C16—H16···O1ii | 0.93 | 2.57 | 3.190 (3) | 124 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C16H16N2O |
Mr | 252.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 10.256 (2), 10.5851 (13), 12.7122 (14) |
β (°) | 99.111 (17) |
V (Å3) | 1362.6 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.21 × 0.14 × 0.11 |
Data collection | |
Diffractometer | Enraf-Nonius CAD4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.965, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2821, 2668, 1833 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.140, 1.04 |
No. of reflections | 2668 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.15 |
Computer programs: CAD-4 Software (Enraf–Nonius,1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.86 | 2.01 | 2.684 (2) | 134 |
C14—H14···Cg2i | 0.93 | 2.80 | 3.632 (2) | 149 |
C16—H16···O1ii | 0.93 | 2.57 | 3.190 (3) | 124 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+3/2. |
Acknowledgements
The authors thank the Natural Science Foundation of China (No. 20572091) and the Nature Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.
References
Elassar, A. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Jones, D., Roberts, A., Cavell, K., Keim, W., Englert, U., Skelton, B. W. & White, A. H. (1998). J. Chem. Soc. Dalton Trans. pp. 255–262. Web of Science CSD CrossRef Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363–371. Web of Science CSD CrossRef CAS Google Scholar
Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15–21. Web of Science CSD CrossRef CAS Google Scholar
Shi, Y.-C., Zhang, S.-H., Cheng, H.-J. & Sun, W.-P. (2006). Acta Cryst. C62, m407–m410. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently enaminones and related compounds have been used as ligands in coordination chemistry (Jones et al., 1998) and have been extensively used as versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident electrophilicity of enones for the preparation of a variety of heterocyclic systems including some natural products and analogues (Elassar & El-Khair, 2003).
It has been shown that primay amines, Ar'NH2, react smoothly with β–diketones, ArCOCH2COR, to give enaminones, ArCOCH═ C(NHAr')R, in good yields (Shi et al., 2004). As part of an ongoing investigation of the chemistry of enaminones and related compounds (Shi et al., 2005; Shi et al., 2006), the title compound has been synthesized via the reaction of 3–C5H4NCH2NH2 and C6H5COCH2COCH3 (Fig. 1).
As noted in the compounds previously reported, the O═ C—C═C—N moiety is planar and the bond lengths indicate electron delocalization (Shi et al., 2004)(Table 1). The O═C—C═C—N plane is twisted with respect to the benzene and pyridine rings by 22.60 (10) and 78.79 (10)°. Furthermore, the N—H and O═C form a strong intramolecular hydrogen bond (Table 2).