organic compounds
10-Methyl-9-[2-(propan-2-yl)phenoxycarbonyl]acridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the crystal of the title compound, C24H22NO2+·CF3SO3−, adjacent cations and anions are connected through C—H⋯O, C—H⋯F and S–O⋯π interactions, while neighboring cations via π–π interactions [centroid–centroid distance = 3.962 (2) Å]. The acridine and benzene ring systems are oriented at a dihedral angle of 14.6 (1)°. The carboxyl group is twisted at an angle of 87.6 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel or inclined at an angle of 13.4 (1)° in the crystal structure.
Related literature
For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Natrajan et al. (2010); Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2006, 2007); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Lyssenko & Antipin (2004); Novoa et al. (2006). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S160053681003953X/ng5040sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681003953X/ng5040Isup2.hkl
9-(Chlorocarbonyl)acridine, obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride, was first esterified with 2-i-propylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996) to obtain 2-i-propylphenylacridine-9-carboxylate (purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v)). The latter compound was then quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane (Trzybiński et al., 2010). The crude 9-(i-propylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 464–466 K).
H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and alkyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the alkyl H atoms.
9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009; Natrajan et al., 2010). The cations of these salts are oxidized with H2O2 in alkaline media, a reaction that produces light. The latter process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of
– crucial for analytical applications – is affected by the structure of the phenyl fragment (Zomer & Jacquemijns, 2001; Natrajan et al., 2010). In the search for efficient chemiluminogens we synthesized 9-(phenoxycarbonyl)-10-methylacridinium derivatives alkyl substituted in the ortho position of the phenyl fragment. Here we present the structure of 9-(2-i-propylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2006; Sikorski et al., 2007; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0127 (3) Å and 0.0030 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 14.6 (1)°. The carboxyl group is twisted at an angle of 87.6 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 87.6 (1)° in the lattice. In the series of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates substituted in the ortho position of the phenyl fragment with Me (Sikorski et al., 2006), Et (Trzybiński et al., 2010), i-Pr (this work) and t-Bu (Sikorski et al., 2007), the dihedral angle between acridine and the benzene ring, and that between the carboxyl group and the acridine skeleton, increase in the order 2-Et < 2-i-Pr < 2-Me < 2-t-Bu, and 2-t-Bu < 2-Et < 2-i-Pr < 2-Me, respectively. This implies that increasing size of the alkyl substituent in the ortho position does not systematically influence the mutual arrangement of the above mentioned fragments of the molecules.
In the π (Table 2, Fig. 2) interactions. Neighboring cations contact each other via π–π (Table 3, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) and C–H··· F (Bianchi et al., 2004; Lyssenko & Antipin, 2004) interactions are of the hydrogen bond type. The S–O···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions should be of an attractive nature. The is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.
each anion is connected to the adjacent cations through C–H···O (Table 1, Fig. 2), C–H···F (Table 1, Fig. 2) and S–O···For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Natrajan et al. (2010); Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2006, 2007); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Lyssenko & Antipin (2004); Novoa et al. (2006). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C24H22NO2+·CF3SO3− | F(000) = 1048 |
Mr = 505.51 | Dx = 1.435 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5919 reflections |
a = 14.4346 (7) Å | θ = 3.0–29.2° |
b = 12.9677 (5) Å | µ = 0.20 mm−1 |
c = 13.0862 (5) Å | T = 295 K |
β = 107.160 (5)° | Prism, yellow |
V = 2340.47 (17) Å3 | 0.32 × 0.20 × 0.05 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 4169 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 2436 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.0° |
ω scans | h = −17→15 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −15→15 |
Tmin = 0.955, Tmax = 1.000 | l = −15→14 |
17556 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0687P)2] where P = (Fo2 + 2Fc2)/3 |
4169 reflections | (Δ/σ)max = 0.002 |
319 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C24H22NO2+·CF3SO3− | V = 2340.47 (17) Å3 |
Mr = 505.51 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.4346 (7) Å | µ = 0.20 mm−1 |
b = 12.9677 (5) Å | T = 295 K |
c = 13.0862 (5) Å | 0.32 × 0.20 × 0.05 mm |
β = 107.160 (5)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 4169 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2436 reflections with I > 2σ(I) |
Tmin = 0.955, Tmax = 1.000 | Rint = 0.043 |
17556 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.34 e Å−3 |
4169 reflections | Δρmin = −0.26 e Å−3 |
319 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.79663 (19) | 0.93471 (19) | 0.23882 (19) | 0.0538 (6) | |
H1 | 0.7585 | 0.9653 | 0.2766 | 0.065* | |
C2 | 0.83868 (19) | 0.9943 (2) | 0.1808 (2) | 0.0597 (7) | |
H2 | 0.8295 | 1.0653 | 0.1783 | 0.072* | |
C3 | 0.89659 (19) | 0.9483 (2) | 0.12396 (19) | 0.0611 (7) | |
H3 | 0.9250 | 0.9899 | 0.0836 | 0.073* | |
C4 | 0.91234 (18) | 0.8453 (2) | 0.12618 (18) | 0.0543 (7) | |
H4 | 0.9516 | 0.8173 | 0.0883 | 0.065* | |
C5 | 0.85827 (19) | 0.50582 (19) | 0.25407 (18) | 0.0529 (6) | |
H5 | 0.8967 | 0.4761 | 0.2162 | 0.064* | |
C6 | 0.8169 (2) | 0.4459 (2) | 0.3131 (2) | 0.0630 (7) | |
H6 | 0.8270 | 0.3750 | 0.3146 | 0.076* | |
C7 | 0.7591 (2) | 0.4880 (2) | 0.3722 (2) | 0.0615 (7) | |
H7 | 0.7319 | 0.4452 | 0.4127 | 0.074* | |
C8 | 0.74323 (19) | 0.58985 (19) | 0.37013 (18) | 0.0511 (6) | |
H8 | 0.7052 | 0.6173 | 0.4098 | 0.061* | |
C9 | 0.76717 (16) | 0.76264 (17) | 0.30277 (17) | 0.0416 (6) | |
N10 | 0.88297 (13) | 0.67612 (15) | 0.18987 (14) | 0.0445 (5) | |
C11 | 0.80948 (17) | 0.82595 (17) | 0.24349 (17) | 0.0429 (6) | |
C12 | 0.86933 (16) | 0.78034 (18) | 0.18595 (17) | 0.0429 (6) | |
C13 | 0.78353 (16) | 0.65678 (17) | 0.30837 (16) | 0.0415 (6) | |
C14 | 0.84322 (17) | 0.61298 (17) | 0.24995 (17) | 0.0433 (6) | |
C15 | 0.70287 (18) | 0.80997 (17) | 0.3623 (2) | 0.0450 (6) | |
O16 | 0.61194 (12) | 0.81571 (14) | 0.29809 (12) | 0.0569 (5) | |
O17 | 0.72938 (13) | 0.83794 (15) | 0.45268 (14) | 0.0667 (5) | |
C18 | 0.54272 (18) | 0.8721 (2) | 0.33483 (17) | 0.0516 (6) | |
C19 | 0.48032 (18) | 0.8207 (2) | 0.37892 (18) | 0.0529 (7) | |
C20 | 0.4108 (2) | 0.8824 (2) | 0.4042 (2) | 0.0648 (8) | |
H20 | 0.3666 | 0.8514 | 0.4338 | 0.078* | |
C21 | 0.4053 (2) | 0.9861 (3) | 0.3872 (2) | 0.0688 (8) | |
H21 | 0.3582 | 1.0245 | 0.4057 | 0.083* | |
C22 | 0.4685 (2) | 1.0341 (2) | 0.3430 (2) | 0.0718 (8) | |
H22 | 0.4648 | 1.1049 | 0.3313 | 0.086* | |
C23 | 0.5384 (2) | 0.9758 (2) | 0.3157 (2) | 0.0652 (8) | |
H23 | 0.5817 | 1.0070 | 0.2849 | 0.078* | |
C24 | 0.4878 (2) | 0.7061 (2) | 0.4025 (2) | 0.0665 (8) | |
H24 | 0.5264 | 0.6755 | 0.3599 | 0.080* | |
C25 | 0.5415 (3) | 0.6867 (3) | 0.5193 (3) | 0.1123 (14) | |
H25A | 0.6038 | 0.7197 | 0.5370 | 0.168* | |
H25B | 0.5500 | 0.6138 | 0.5315 | 0.168* | |
H25C | 0.5047 | 0.7143 | 0.5632 | 0.168* | |
C26 | 0.3890 (3) | 0.6532 (3) | 0.3699 (3) | 0.1142 (14) | |
H26A | 0.3566 | 0.6672 | 0.2959 | 0.171* | |
H26B | 0.3506 | 0.6789 | 0.4130 | 0.171* | |
H26C | 0.3976 | 0.5801 | 0.3803 | 0.171* | |
C27 | 0.9445 (2) | 0.6310 (2) | 0.1287 (2) | 0.0645 (7) | |
H27A | 0.9342 | 0.6677 | 0.0625 | 0.097* | |
H27B | 0.9277 | 0.5597 | 0.1139 | 0.097* | |
H27C | 1.0114 | 0.6362 | 0.1698 | 0.097* | |
S28 | 0.91241 (5) | 0.22174 (5) | 0.57658 (5) | 0.0556 (2) | |
O29 | 0.94541 (16) | 0.30956 (14) | 0.53324 (15) | 0.0809 (6) | |
O30 | 0.87168 (17) | 0.23980 (15) | 0.66093 (15) | 0.0838 (7) | |
O31 | 0.97784 (15) | 0.13502 (16) | 0.59437 (16) | 0.0819 (6) | |
C32 | 0.8122 (2) | 0.1755 (2) | 0.4689 (2) | 0.0603 (7) | |
F33 | 0.73755 (14) | 0.24221 (15) | 0.44537 (15) | 0.0955 (6) | |
F34 | 0.77668 (13) | 0.08743 (12) | 0.49175 (13) | 0.0840 (5) | |
F35 | 0.83430 (13) | 0.16316 (15) | 0.37865 (11) | 0.0895 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0500 (17) | 0.0489 (16) | 0.0643 (15) | 0.0028 (13) | 0.0195 (14) | −0.0015 (12) |
C2 | 0.0544 (18) | 0.0509 (16) | 0.0716 (17) | −0.0002 (13) | 0.0151 (15) | 0.0075 (14) |
C3 | 0.0533 (19) | 0.069 (2) | 0.0583 (16) | −0.0096 (14) | 0.0130 (14) | 0.0150 (14) |
C4 | 0.0429 (16) | 0.0720 (19) | 0.0499 (14) | −0.0010 (13) | 0.0166 (12) | 0.0044 (13) |
C5 | 0.0505 (17) | 0.0518 (16) | 0.0532 (14) | 0.0114 (13) | 0.0101 (13) | −0.0025 (12) |
C6 | 0.073 (2) | 0.0457 (16) | 0.0642 (16) | 0.0109 (14) | 0.0110 (15) | 0.0028 (13) |
C7 | 0.073 (2) | 0.0538 (17) | 0.0577 (15) | 0.0001 (15) | 0.0192 (15) | 0.0078 (13) |
C8 | 0.0516 (17) | 0.0532 (16) | 0.0500 (13) | 0.0041 (12) | 0.0175 (12) | 0.0016 (12) |
C9 | 0.0353 (15) | 0.0456 (14) | 0.0421 (12) | 0.0012 (11) | 0.0088 (11) | −0.0043 (10) |
N10 | 0.0327 (12) | 0.0512 (13) | 0.0496 (11) | 0.0048 (9) | 0.0122 (10) | −0.0056 (9) |
C11 | 0.0354 (14) | 0.0459 (14) | 0.0451 (12) | −0.0009 (11) | 0.0079 (11) | −0.0033 (10) |
C12 | 0.0313 (14) | 0.0520 (16) | 0.0419 (12) | 0.0005 (11) | 0.0057 (11) | −0.0020 (11) |
C13 | 0.0350 (14) | 0.0469 (14) | 0.0400 (12) | 0.0022 (11) | 0.0072 (11) | −0.0027 (10) |
C14 | 0.0352 (15) | 0.0474 (15) | 0.0433 (12) | 0.0038 (11) | 0.0053 (11) | −0.0011 (10) |
C15 | 0.0448 (17) | 0.0431 (14) | 0.0491 (14) | 0.0012 (11) | 0.0168 (13) | −0.0002 (11) |
O16 | 0.0371 (11) | 0.0851 (13) | 0.0496 (9) | 0.0067 (9) | 0.0144 (9) | −0.0141 (8) |
O17 | 0.0565 (12) | 0.0881 (14) | 0.0508 (10) | 0.0133 (10) | 0.0083 (9) | −0.0208 (9) |
C18 | 0.0415 (16) | 0.0713 (18) | 0.0416 (13) | 0.0115 (13) | 0.0117 (12) | −0.0051 (12) |
C19 | 0.0424 (16) | 0.0733 (18) | 0.0438 (13) | 0.0045 (13) | 0.0141 (12) | −0.0088 (12) |
C20 | 0.0462 (19) | 0.088 (2) | 0.0656 (16) | 0.0073 (16) | 0.0254 (14) | −0.0050 (15) |
C21 | 0.053 (2) | 0.092 (2) | 0.0599 (17) | 0.0258 (17) | 0.0146 (15) | −0.0015 (16) |
C22 | 0.073 (2) | 0.075 (2) | 0.0639 (17) | 0.0230 (17) | 0.0137 (16) | 0.0102 (14) |
C23 | 0.062 (2) | 0.081 (2) | 0.0571 (16) | 0.0124 (16) | 0.0234 (15) | 0.0095 (14) |
C24 | 0.062 (2) | 0.0676 (19) | 0.0780 (19) | −0.0062 (15) | 0.0340 (16) | −0.0155 (15) |
C25 | 0.169 (4) | 0.072 (2) | 0.092 (2) | −0.007 (2) | 0.032 (3) | 0.0148 (18) |
C26 | 0.084 (3) | 0.097 (3) | 0.177 (4) | −0.025 (2) | 0.062 (3) | −0.056 (3) |
C27 | 0.0563 (19) | 0.0703 (18) | 0.0781 (17) | 0.0122 (14) | 0.0374 (15) | −0.0050 (14) |
S28 | 0.0708 (5) | 0.0511 (4) | 0.0508 (4) | −0.0092 (4) | 0.0269 (3) | −0.0037 (3) |
O29 | 0.1012 (17) | 0.0671 (12) | 0.0837 (13) | −0.0311 (11) | 0.0416 (13) | 0.0000 (10) |
O30 | 0.128 (2) | 0.0756 (13) | 0.0675 (11) | −0.0128 (12) | 0.0596 (13) | −0.0138 (9) |
O31 | 0.0703 (15) | 0.0821 (14) | 0.0873 (13) | 0.0193 (12) | 0.0142 (11) | 0.0035 (11) |
C32 | 0.061 (2) | 0.0637 (18) | 0.0655 (17) | 0.0012 (15) | 0.0326 (16) | 0.0020 (13) |
F33 | 0.0703 (13) | 0.1043 (14) | 0.1154 (14) | 0.0249 (11) | 0.0328 (11) | 0.0228 (11) |
F34 | 0.0793 (13) | 0.0644 (11) | 0.1129 (13) | −0.0209 (9) | 0.0354 (11) | −0.0061 (9) |
F35 | 0.0815 (13) | 0.1338 (16) | 0.0590 (9) | −0.0108 (11) | 0.0300 (9) | −0.0252 (9) |
C1—C2 | 1.347 (3) | C18—C19 | 1.377 (3) |
C1—C11 | 1.422 (3) | C19—C20 | 1.397 (3) |
C1—H1 | 0.9300 | C19—C24 | 1.515 (4) |
C2—C3 | 1.405 (3) | C20—C21 | 1.362 (4) |
C2—H2 | 0.9300 | C20—H20 | 0.9300 |
C3—C4 | 1.354 (4) | C21—C22 | 1.365 (4) |
C3—H3 | 0.9300 | C21—H21 | 0.9300 |
C4—C12 | 1.412 (3) | C22—C23 | 1.389 (4) |
C4—H4 | 0.9300 | C22—H22 | 0.9300 |
C5—C6 | 1.353 (3) | C23—H23 | 0.9300 |
C5—C14 | 1.405 (3) | C24—C25 | 1.516 (4) |
C5—H5 | 0.9300 | C24—C26 | 1.527 (4) |
C6—C7 | 1.405 (4) | C24—H24 | 0.9800 |
C6—H6 | 0.9300 | C25—H25A | 0.9600 |
C7—C8 | 1.340 (3) | C25—H25B | 0.9600 |
C7—H7 | 0.9300 | C25—H25C | 0.9600 |
C8—C13 | 1.422 (3) | C26—H26A | 0.9600 |
C8—H8 | 0.9300 | C26—H26B | 0.9600 |
C9—C11 | 1.389 (3) | C26—H26C | 0.9600 |
C9—C13 | 1.391 (3) | C27—H27A | 0.9600 |
C9—C15 | 1.507 (3) | C27—H27B | 0.9600 |
N10—C12 | 1.365 (3) | C27—H27C | 0.9600 |
N10—C14 | 1.373 (3) | S28—O30 | 1.4148 (17) |
N10—C27 | 1.481 (3) | S28—O29 | 1.4161 (18) |
C11—C12 | 1.431 (3) | S28—O31 | 1.443 (2) |
C13—C14 | 1.428 (3) | S28—C32 | 1.799 (3) |
C15—O17 | 1.188 (3) | C32—F35 | 1.321 (3) |
C15—O16 | 1.335 (3) | C32—F34 | 1.322 (3) |
O16—C18 | 1.431 (3) | C32—F33 | 1.344 (3) |
C18—C23 | 1.366 (4) | ||
C2—C1—C11 | 121.2 (2) | C18—C19—C24 | 123.0 (2) |
C2—C1—H1 | 119.4 | C20—C19—C24 | 121.8 (2) |
C11—C1—H1 | 119.4 | C21—C20—C19 | 122.6 (3) |
C1—C2—C3 | 119.5 (2) | C21—C20—H20 | 118.7 |
C1—C2—H2 | 120.2 | C19—C20—H20 | 118.7 |
C3—C2—H2 | 120.2 | C20—C21—C22 | 120.3 (3) |
C4—C3—C2 | 122.0 (2) | C20—C21—H21 | 119.9 |
C4—C3—H3 | 119.0 | C22—C21—H21 | 119.9 |
C2—C3—H3 | 119.0 | C21—C22—C23 | 119.2 (3) |
C3—C4—C12 | 120.1 (2) | C21—C22—H22 | 120.4 |
C3—C4—H4 | 119.9 | C23—C22—H22 | 120.4 |
C12—C4—H4 | 119.9 | C18—C23—C22 | 119.0 (3) |
C6—C5—C14 | 120.1 (2) | C18—C23—H23 | 120.5 |
C6—C5—H5 | 120.0 | C22—C23—H23 | 120.5 |
C14—C5—H5 | 120.0 | C19—C24—C25 | 110.7 (2) |
C5—C6—C7 | 121.7 (2) | C19—C24—C26 | 112.3 (3) |
C5—C6—H6 | 119.2 | C25—C24—C26 | 111.4 (3) |
C7—C6—H6 | 119.2 | C19—C24—H24 | 107.4 |
C8—C7—C6 | 119.9 (2) | C25—C24—H24 | 107.4 |
C8—C7—H7 | 120.1 | C26—C24—H24 | 107.4 |
C6—C7—H7 | 120.1 | C24—C25—H25A | 109.5 |
C7—C8—C13 | 121.1 (2) | C24—C25—H25B | 109.5 |
C7—C8—H8 | 119.4 | H25A—C25—H25B | 109.5 |
C13—C8—H8 | 119.4 | C24—C25—H25C | 109.5 |
C11—C9—C13 | 121.1 (2) | H25A—C25—H25C | 109.5 |
C11—C9—C15 | 119.2 (2) | H25B—C25—H25C | 109.5 |
C13—C9—C15 | 119.70 (19) | C24—C26—H26A | 109.5 |
C12—N10—C14 | 122.16 (18) | C24—C26—H26B | 109.5 |
C12—N10—C27 | 118.31 (19) | H26A—C26—H26B | 109.5 |
C14—N10—C27 | 119.5 (2) | C24—C26—H26C | 109.5 |
C9—C11—C1 | 122.5 (2) | H26A—C26—H26C | 109.5 |
C9—C11—C12 | 118.9 (2) | H26B—C26—H26C | 109.5 |
C1—C11—C12 | 118.6 (2) | N10—C27—H27A | 109.5 |
N10—C12—C4 | 122.0 (2) | N10—C27—H27B | 109.5 |
N10—C12—C11 | 119.5 (2) | H27A—C27—H27B | 109.5 |
C4—C12—C11 | 118.5 (2) | N10—C27—H27C | 109.5 |
C9—C13—C8 | 122.7 (2) | H27A—C27—H27C | 109.5 |
C9—C13—C14 | 119.0 (2) | H27B—C27—H27C | 109.5 |
C8—C13—C14 | 118.3 (2) | O30—S28—O29 | 116.47 (12) |
N10—C14—C5 | 121.7 (2) | O30—S28—O31 | 113.97 (13) |
N10—C14—C13 | 119.3 (2) | O29—S28—O31 | 114.20 (13) |
C5—C14—C13 | 118.9 (2) | O30—S28—C32 | 104.08 (13) |
O17—C15—O16 | 125.3 (2) | O29—S28—C32 | 104.00 (12) |
O17—C15—C9 | 124.9 (2) | O31—S28—C32 | 101.75 (13) |
O16—C15—C9 | 109.79 (19) | F35—C32—F34 | 108.1 (2) |
C15—O16—C18 | 118.12 (17) | F35—C32—F33 | 105.2 (2) |
C23—C18—C19 | 123.6 (2) | F34—C32—F33 | 105.7 (2) |
C23—C18—O16 | 116.1 (2) | F35—C32—S28 | 112.96 (19) |
C19—C18—O16 | 120.1 (2) | F34—C32—S28 | 112.72 (19) |
C18—C19—C20 | 115.2 (2) | F33—C32—S28 | 111.7 (2) |
C11—C1—C2—C3 | −0.2 (4) | C8—C13—C14—N10 | −179.9 (2) |
C1—C2—C3—C4 | −0.5 (4) | C9—C13—C14—C5 | −178.8 (2) |
C2—C3—C4—C12 | 0.6 (4) | C8—C13—C14—C5 | 1.2 (3) |
C14—C5—C6—C7 | −0.6 (4) | C11—C9—C15—O17 | −92.5 (3) |
C5—C6—C7—C8 | 0.5 (4) | C13—C9—C15—O17 | 87.2 (3) |
C6—C7—C8—C13 | 0.4 (4) | C11—C9—C15—O16 | 87.4 (2) |
C13—C9—C11—C1 | −178.0 (2) | C13—C9—C15—O16 | −92.8 (2) |
C15—C9—C11—C1 | 1.7 (3) | O17—C15—O16—C18 | 8.9 (3) |
C13—C9—C11—C12 | 1.2 (3) | C9—C15—O16—C18 | −171.01 (19) |
C15—C9—C11—C12 | −179.1 (2) | C15—O16—C18—C23 | 86.1 (3) |
C2—C1—C11—C9 | 179.9 (2) | C15—O16—C18—C19 | −98.8 (3) |
C2—C1—C11—C12 | 0.7 (4) | C23—C18—C19—C20 | −0.3 (4) |
C14—N10—C12—C4 | 178.4 (2) | O16—C18—C19—C20 | −175.1 (2) |
C27—N10—C12—C4 | −0.4 (3) | C23—C18—C19—C24 | −178.2 (2) |
C14—N10—C12—C11 | −1.9 (3) | O16—C18—C19—C24 | 7.0 (4) |
C27—N10—C12—C11 | 179.4 (2) | C18—C19—C20—C21 | −0.4 (4) |
C3—C4—C12—N10 | 179.7 (2) | C24—C19—C20—C21 | 177.5 (3) |
C3—C4—C12—C11 | −0.1 (3) | C19—C20—C21—C22 | 0.6 (4) |
C9—C11—C12—N10 | 0.5 (3) | C20—C21—C22—C23 | 0.0 (4) |
C1—C11—C12—N10 | 179.7 (2) | C19—C18—C23—C22 | 0.8 (4) |
C9—C11—C12—C4 | −179.8 (2) | O16—C18—C23—C22 | 175.8 (2) |
C1—C11—C12—C4 | −0.6 (3) | C21—C22—C23—C18 | −0.6 (4) |
C11—C9—C13—C8 | 178.6 (2) | C18—C19—C24—C25 | 97.9 (3) |
C15—C9—C13—C8 | −1.2 (3) | C20—C19—C24—C25 | −79.8 (3) |
C11—C9—C13—C14 | −1.4 (3) | C18—C19—C24—C26 | −137.0 (3) |
C15—C9—C13—C14 | 178.9 (2) | C20—C19—C24—C26 | 45.3 (3) |
C7—C8—C13—C9 | 178.8 (2) | O30—S28—C32—F35 | 174.13 (19) |
C7—C8—C13—C14 | −1.2 (3) | O29—S28—C32—F35 | 51.7 (2) |
C12—N10—C14—C5 | −179.5 (2) | O31—S28—C32—F35 | −67.2 (2) |
C27—N10—C14—C5 | −0.8 (3) | O30—S28—C32—F34 | −63.0 (2) |
C12—N10—C14—C13 | 1.6 (3) | O29—S28—C32—F34 | 174.54 (18) |
C27—N10—C14—C13 | −179.6 (2) | O31—S28—C32—F34 | 55.6 (2) |
C6—C5—C14—N10 | −179.2 (2) | O30—S28—C32—F33 | 55.7 (2) |
C6—C5—C14—C13 | −0.3 (3) | O29—S28—C32—F33 | −66.7 (2) |
C9—C13—C14—N10 | 0.0 (3) | O31—S28—C32—F33 | 174.42 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O29i | 0.93 | 2.48 | 3.363 (3) | 159 |
C27—H27C···F35i | 0.96 | 2.51 | 3.250 (4) | 134 |
Symmetry code: (i) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C24H22NO2+·CF3SO3− |
Mr | 505.51 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 14.4346 (7), 12.9677 (5), 13.0862 (5) |
β (°) | 107.160 (5) |
V (Å3) | 2340.47 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.32 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.955, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17556, 4169, 2436 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.116, 0.93 |
No. of reflections | 4169 |
No. of parameters | 319 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.26 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O29i | 0.93 | 2.48 | 3.363 (3) | 159 |
C27—H27C···F35i | 0.96 | 2.51 | 3.250 (4) | 134 |
Symmetry code: (i) −x+2, y+1/2, −z+1/2. |
Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. |
X | I | J | I···J | X···J | X–I···J |
S28 | O29 | Cg1ii | 3.703 (2) | 3.879 (2) | 86.3 (1) |
S28 | O31 | Cg1ii | 3.528 (2) | 3.879 (2) | 92.9 (1) |
S28 | O31 | Cg2ii | 3.208 (2) | 4.128 (2) | 120.3 (2) |
Symmetry code: (ii) –x + 2, –y + 1, –z + 1. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
3 | 3iii | 3.962 (2) | 0 | 3.340 (1) | 2.131 (1) |
Symmetry code: (iii) –x + 1, –y + 2, –z + 1. Notes: Cg3 is the centroid of the C18–C23 ring. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
Footnotes
‡to whom correspondence should be addressed
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143 – contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education for the period 2007–2010 – and DS/8820–4-0087–0).
References
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394. Web of Science CrossRef PubMed CAS Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176. Web of Science CrossRef PubMed CAS Google Scholar
Lyssenko, K. A. & Antipin, M. Y. (2004). Russ. Chem. Bull. Int. Ed. 53, 10–17. Web of Science CrossRef CAS Google Scholar
Natrajan, A., Sharpe, D., Costello, J. & Jiang, Q. (2010). Anal. Biochem. 406, 204–213. Web of Science CrossRef CAS PubMed Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008. Web of Science CrossRef PubMed CAS Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462–470. Web of Science CrossRef Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o822–o824. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826–o827. Web of Science CrossRef IUCr Journals Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009; Natrajan et al., 2010). The cations of these salts are oxidized with H2O2 in alkaline media, a reaction that produces light. The latter process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the structure of the phenyl fragment (Zomer & Jacquemijns, 2001; Natrajan et al., 2010). In the search for efficient chemiluminogens we synthesized 9-(phenoxycarbonyl)-10-methylacridinium derivatives alkyl substituted in the ortho position of the phenyl fragment. Here we present the structure of 9-(2-i-propylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2006; Sikorski et al., 2007; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0127 (3) Å and 0.0030 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 14.6 (1)°. The carboxyl group is twisted at an angle of 87.6 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 87.6 (1)° in the lattice. In the series of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates substituted in the ortho position of the phenyl fragment with Me (Sikorski et al., 2006), Et (Trzybiński et al., 2010), i-Pr (this work) and t-Bu (Sikorski et al., 2007), the dihedral angle between acridine and the benzene ring, and that between the carboxyl group and the acridine skeleton, increase in the order 2-Et < 2-i-Pr < 2-Me < 2-t-Bu, and 2-t-Bu < 2-Et < 2-i-Pr < 2-Me, respectively. This implies that increasing size of the alkyl substituent in the ortho position does not systematically influence the mutual arrangement of the above mentioned fragments of the molecules.
In the crystal structure, each anion is connected to the adjacent cations through C–H···O (Table 1, Fig. 2), C–H···F (Table 1, Fig. 2) and S–O···π (Table 2, Fig. 2) interactions. Neighboring cations contact each other via π–π (Table 3, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) and C–H··· F (Bianchi et al., 2004; Lyssenko & Antipin, 2004) interactions are of the hydrogen bond type. The S–O···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.