organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(2,6-Di­methyl­phen­­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 4 October 2010; accepted 14 October 2010; online 23 October 2010)

In the crystal structure of the title compound, C23H20NO2+·CF3SO3, adjacent cations are linked through a network of C—H⋯π and ππ inter­actions, and neighboring cations and anions via C—H⋯O inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 31.4 (1)°. The carboxyl group is twisted at an angle of 66.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel in the crystal structure.

Related literature

For general background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­meth­ane­sulfonates, see: Brown et al. (2009[Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386-394.]); Natrajan et al. (2010[Natrajan, A., Sharpe, D., Costello, J. & Jiang, Q. (2010). Anal. Biochem. 406, 204-213.]). For related structures, see: Krzymiński et al. (2009[Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o789-o790.]); Niziołek et al. (2009[Niziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błazejowski, J. (2009). J. Mol. Struct. 920, 231-237.]). For inter­molecular inter­actions, see: Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Niziołek et al. (2009[Niziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błazejowski, J. (2009). J. Mol. Struct. 920, 231-237.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20NO2+·CF3SO3

  • Mr = 491.48

  • Triclinic, [P \overline 1]

  • a = 9.5841 (4) Å

  • b = 11.2491 (6) Å

  • c = 12.1738 (3) Å

  • α = 106.080 (3)°

  • β = 101.890 (3)°

  • γ = 110.755 (4)°

  • V = 1109.66 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.58 × 0.18 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • 9670 measured reflections

  • 3922 independent reflections

  • 3124 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.09

  • 3922 reflections

  • 321 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O28i 0.93 2.51 3.224 (3) 134
C25—H25B⋯O30ii 0.96 2.57 3.525 (3) 176
C26—H26ACg4iii 0.96 (3) 2.86 (2) 3.774 (3) 158 (3)
C26—H26B⋯O29iii 0.96 (3) 2.56 (3) 3.369 (4) 142 (2)
Symmetry codes: (i) x-1, y, z-1; (ii) x, y, z-1; (iii) x-1, y, z.

Table 2
ππ inter­actions (Å,°)

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 3v 3.502 (2) 2.71 (10) 3.473 (1) 0.445 (1)
2 3v 3.977 (2) 6.38 (11) 3.286 (1) 2.240 (1)
3 1v 3.502 (2) 2.71 (10) 3.470 (1) 0.480 (1)
3 2v 3.977 (2) 6.38 (11) 3.503 (1) 1.883 (1)
Symmetry code: (v) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels based on 9-(phenoxycarbonyl)-10-methylacridinium salts are widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Brown et al., 2009; Natrajan et al., 2010). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the structure of the phenyl fragment. We thus undertook investigations into 9-(phenoxycarbonyl)-10-methylacridinium salts variously substituted at the benzene ring. Here we present the structure of 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009; Niziołek et al., 2009). With respective average deviations from planarity of 0.0629 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 31.4 (1)°. The carboxyl group is twisted at an angle of 66.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) in the lattice.

In the crystal structure, the inversely oriented cations are linked through a network of C–H···π (Table 1, Fig. 2) and ππ (Table 3, Fig. 2) interactions, the adjacent cations and anions via C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π (Takahashi et al. 2001) interactions should be of an attractive nature, like C–F···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Natrajan et al. (2010). For related structures, see: Krzymiński et al. (2009); Niziołek et al. (2009). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Niziołek et al. (2009).

Experimental top

2,6-Dimethylphenylacridine-9-carboxylate was synthesized first in the reaction of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,6-dimethylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The ester thereby obtained, purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v), was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 552–555 K).

Refinement top

The H26A, H26B and H26C atoms were located on a Fourier-difference map, restrained by DFIX command 0.960 for C–H distance and by DFIX 1.568 for H···H distance, and refined as riding with Uiso(H) = 1.5Ueq(C). All other H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.

Structure description top

Chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels based on 9-(phenoxycarbonyl)-10-methylacridinium salts are widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Brown et al., 2009; Natrajan et al., 2010). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the structure of the phenyl fragment. We thus undertook investigations into 9-(phenoxycarbonyl)-10-methylacridinium salts variously substituted at the benzene ring. Here we present the structure of 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009; Niziołek et al., 2009). With respective average deviations from planarity of 0.0629 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 31.4 (1)°. The carboxyl group is twisted at an angle of 66.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) in the lattice.

In the crystal structure, the inversely oriented cations are linked through a network of C–H···π (Table 1, Fig. 2) and ππ (Table 3, Fig. 2) interactions, the adjacent cations and anions via C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π (Takahashi et al. 2001) interactions should be of an attractive nature, like C–F···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Natrajan et al. (2010). For related structures, see: Krzymiński et al. (2009); Niziołek et al. (2009). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Niziołek et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O and C–H···π interactions are represented by dashed lines, the C–F···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x – 1, y, z – 1; (ii) x, y, z – 1; (iii) x – 1, y, z; (iv) –x + 1, –y, –z + 1; (v) –x + 1, –y + 1, –z + 1.]
9-(2,6-Dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C23H20NO2+·CF3SO3Z = 2
Mr = 491.48F(000) = 508
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5841 (4) ÅCell parameters from 66666 reflections
b = 11.2491 (6) Åθ = 3.0–29.1°
c = 12.1738 (3) ŵ = 0.21 mm1
α = 106.080 (3)°T = 295 K
β = 101.890 (3)°Prism, light-yellow
γ = 110.755 (4)°0.58 × 0.18 × 0.05 mm
V = 1109.66 (8) Å3
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3124 reflections with I > 2σ(I)
Radiation source: Enhanced (Mo) X-ray SourceRint = 0.016
Graphite monochromatorθmax = 25.1°, θmin = 3.1°
Detector resolution: 10.4002 pixels mm-1h = 1111
ω scansk = 1310
9670 measured reflectionsl = 1414
3922 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.2264P]
where P = (Fo2 + 2Fc2)/3
3922 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.33 e Å3
6 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H20NO2+·CF3SO3γ = 110.755 (4)°
Mr = 491.48V = 1109.66 (8) Å3
Triclinic, P1Z = 2
a = 9.5841 (4) ÅMo Kα radiation
b = 11.2491 (6) ŵ = 0.21 mm1
c = 12.1738 (3) ÅT = 295 K
α = 106.080 (3)°0.58 × 0.18 × 0.05 mm
β = 101.890 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3124 reflections with I > 2σ(I)
9670 measured reflectionsRint = 0.016
3922 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.33 e Å3
3922 reflectionsΔρmin = 0.27 e Å3
321 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3818 (3)0.3638 (2)0.13066 (19)0.0649 (6)
H10.46540.35280.10910.078*
C20.2838 (3)0.3952 (3)0.0588 (2)0.0777 (7)
H20.29960.40480.01180.093*
C30.1595 (3)0.4130 (3)0.0913 (2)0.0787 (8)
H30.09320.43500.04190.094*
C40.1322 (3)0.3992 (2)0.1928 (2)0.0687 (6)
H40.04890.41300.21250.082*
C50.2865 (2)0.3196 (2)0.56175 (19)0.0545 (5)
H50.19910.32610.57970.065*
C60.3931 (3)0.3026 (2)0.6409 (2)0.0592 (5)
H60.37710.29750.71260.071*
C70.5267 (2)0.2924 (2)0.61744 (18)0.0557 (5)
H70.59870.28200.67370.067*
C80.5505 (2)0.29779 (19)0.51298 (17)0.0479 (4)
H80.63860.28980.49750.057*
C90.46128 (19)0.32004 (18)0.31651 (16)0.0424 (4)
N100.20515 (16)0.34795 (16)0.37176 (15)0.0499 (4)
C110.3594 (2)0.34746 (19)0.23794 (16)0.0474 (4)
C120.2299 (2)0.36386 (19)0.26929 (17)0.0505 (5)
C130.44292 (19)0.31544 (17)0.42602 (15)0.0411 (4)
C140.30806 (19)0.32732 (18)0.45257 (17)0.0448 (4)
C150.5963 (2)0.29831 (19)0.28346 (16)0.0436 (4)
O160.53926 (14)0.18238 (13)0.18486 (11)0.0503 (3)
O170.73309 (15)0.37184 (15)0.33881 (13)0.0625 (4)
C180.6473 (2)0.1321 (2)0.15004 (17)0.0514 (5)
C190.6730 (3)0.0416 (2)0.1981 (2)0.0641 (6)
C200.7664 (3)0.0180 (3)0.1546 (3)0.0849 (8)
H200.78700.08000.18440.102*
C210.8276 (3)0.0133 (3)0.0693 (3)0.0922 (9)
H210.88880.02800.04120.111*
C220.8000 (3)0.1047 (3)0.0246 (2)0.0813 (8)
H220.84280.12450.03380.098*
C230.7089 (2)0.1689 (2)0.06460 (19)0.0631 (6)
C240.6045 (4)0.0075 (3)0.2916 (3)0.0923 (9)
H24A0.49220.02130.26270.138*
H24B0.65270.08740.36580.138*
H24C0.62480.06540.30610.138*
C250.6814 (3)0.2718 (3)0.0184 (2)0.0835 (8)
H25A0.56970.24020.01950.125*
H25B0.73380.28260.03990.125*
H25C0.72320.35860.08500.125*
C260.0613 (3)0.3550 (3)0.3959 (3)0.0779 (8)
H26A0.027 (3)0.305 (3)0.3197 (17)0.113 (10)*
H26B0.034 (3)0.307 (3)0.448 (2)0.106 (11)*
H26C0.069 (5)0.4454 (19)0.431 (3)0.184 (19)*
S270.95913 (6)0.27457 (6)0.72251 (5)0.05989 (19)
O281.1219 (2)0.3034 (3)0.77069 (16)0.1008 (7)
O290.9225 (2)0.3134 (2)0.62202 (16)0.0875 (5)
O300.8851 (2)0.3042 (2)0.81008 (15)0.0879 (6)
C310.8618 (4)0.0892 (3)0.6536 (3)0.0856 (8)
F320.8764 (3)0.0335 (2)0.7353 (3)0.1501 (9)
F330.9169 (3)0.0417 (2)0.5713 (2)0.1554 (10)
F340.7072 (2)0.0441 (2)0.5986 (2)0.1331 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0770 (14)0.0765 (15)0.0556 (12)0.0464 (13)0.0212 (10)0.0297 (11)
C20.1007 (19)0.0832 (18)0.0582 (13)0.0549 (16)0.0142 (13)0.0298 (12)
C30.0827 (17)0.0773 (17)0.0680 (15)0.0458 (14)0.0039 (13)0.0235 (13)
C40.0540 (12)0.0665 (14)0.0776 (15)0.0362 (11)0.0030 (11)0.0176 (12)
C50.0524 (11)0.0474 (11)0.0663 (12)0.0206 (9)0.0297 (10)0.0199 (9)
C60.0715 (13)0.0539 (12)0.0596 (11)0.0266 (10)0.0331 (10)0.0252 (10)
C70.0611 (12)0.0542 (12)0.0549 (11)0.0254 (10)0.0182 (9)0.0261 (9)
C80.0437 (9)0.0490 (11)0.0550 (10)0.0226 (8)0.0171 (8)0.0220 (9)
C90.0369 (8)0.0385 (9)0.0483 (9)0.0161 (7)0.0119 (7)0.0140 (8)
N100.0350 (7)0.0455 (9)0.0609 (9)0.0192 (7)0.0114 (7)0.0099 (7)
C110.0448 (9)0.0433 (10)0.0497 (10)0.0214 (8)0.0091 (8)0.0139 (8)
C120.0421 (9)0.0422 (10)0.0541 (11)0.0186 (8)0.0046 (8)0.0084 (8)
C130.0355 (8)0.0346 (9)0.0484 (9)0.0134 (7)0.0128 (7)0.0130 (7)
C140.0373 (9)0.0344 (9)0.0546 (10)0.0125 (7)0.0149 (8)0.0105 (8)
C150.0425 (10)0.0471 (10)0.0475 (9)0.0223 (8)0.0170 (8)0.0222 (8)
O160.0422 (6)0.0538 (8)0.0512 (7)0.0208 (6)0.0188 (5)0.0130 (6)
O170.0392 (7)0.0589 (9)0.0731 (9)0.0175 (6)0.0162 (6)0.0095 (7)
C180.0414 (9)0.0491 (11)0.0562 (11)0.0166 (8)0.0223 (8)0.0097 (9)
C190.0627 (12)0.0548 (13)0.0801 (14)0.0277 (11)0.0356 (11)0.0225 (11)
C200.0797 (16)0.0653 (16)0.122 (2)0.0416 (14)0.0483 (16)0.0305 (15)
C210.0762 (16)0.0717 (17)0.129 (2)0.0345 (14)0.0622 (17)0.0164 (17)
C220.0696 (15)0.0780 (18)0.0849 (16)0.0207 (13)0.0505 (13)0.0128 (14)
C230.0526 (11)0.0643 (14)0.0577 (11)0.0143 (10)0.0260 (9)0.0121 (10)
C240.125 (2)0.0864 (19)0.118 (2)0.0658 (18)0.0734 (19)0.0631 (17)
C250.0869 (17)0.106 (2)0.0748 (15)0.0398 (16)0.0463 (13)0.0480 (15)
C260.0458 (12)0.101 (2)0.0848 (17)0.0402 (13)0.0235 (12)0.0217 (16)
S270.0655 (3)0.0737 (4)0.0501 (3)0.0355 (3)0.0266 (2)0.0255 (3)
O280.0647 (10)0.1509 (19)0.0711 (11)0.0372 (11)0.0187 (8)0.0367 (12)
O290.1033 (13)0.1112 (14)0.0781 (11)0.0551 (12)0.0399 (10)0.0610 (11)
O300.1185 (15)0.1062 (14)0.0730 (10)0.0705 (12)0.0590 (10)0.0348 (10)
C310.101 (2)0.091 (2)0.0888 (18)0.0516 (17)0.0548 (16)0.0386 (16)
F320.212 (3)0.1266 (17)0.191 (2)0.1025 (18)0.106 (2)0.1062 (17)
F330.187 (2)0.1174 (16)0.164 (2)0.0741 (16)0.1115 (18)0.0081 (14)
F340.0897 (13)0.1208 (16)0.1312 (15)0.0049 (11)0.0360 (11)0.0222 (12)
Geometric parameters (Å, º) top
C1—C21.357 (3)O16—C181.426 (2)
C1—C111.417 (3)C18—C191.374 (3)
C1—H10.9300C18—C231.385 (3)
C2—C31.392 (4)C19—C201.398 (3)
C2—H20.9300C19—C241.498 (3)
C3—C41.352 (4)C20—C211.361 (4)
C3—H30.9300C20—H200.9300
C4—C121.419 (3)C21—C221.366 (4)
C4—H40.9300C21—H210.9300
C5—C61.357 (3)C22—C231.396 (3)
C5—C141.408 (3)C22—H220.9300
C5—H50.9300C23—C251.497 (4)
C6—C71.404 (3)C24—H24A0.9600
C6—H60.9300C24—H24B0.9600
C7—C81.351 (3)C24—H24C0.9600
C7—H70.9300C25—H25A0.9600
C8—C131.427 (3)C25—H25B0.9600
C8—H80.9300C25—H25C0.9600
C9—C131.393 (3)C26—H26A0.971 (16)
C9—C111.398 (3)C26—H26B0.966 (16)
C9—C151.510 (2)C26—H26C0.956 (17)
N10—C121.364 (3)S27—O301.4262 (17)
N10—C141.372 (2)S27—O291.4274 (17)
N10—C261.492 (3)S27—O281.4290 (19)
C11—C121.428 (3)S27—C311.803 (3)
C13—C141.436 (2)C31—F331.301 (3)
C15—O171.190 (2)C31—F321.323 (4)
C15—O161.341 (2)C31—F341.331 (3)
C2—C1—C11121.3 (2)C19—C18—O16116.51 (17)
C2—C1—H1119.3C23—C18—O16118.52 (19)
C11—C1—H1119.3C18—C19—C20116.4 (2)
C1—C2—C3119.5 (2)C18—C19—C24122.2 (2)
C1—C2—H2120.3C20—C19—C24121.5 (2)
C3—C2—H2120.3C21—C20—C19121.0 (3)
C4—C3—C2122.0 (2)C21—C20—H20119.5
C4—C3—H3119.0C19—C20—H20119.5
C2—C3—H3119.0C20—C21—C22120.7 (2)
C3—C4—C12120.4 (2)C20—C21—H21119.6
C3—C4—H4119.8C22—C21—H21119.6
C12—C4—H4119.8C21—C22—C23121.3 (2)
C6—C5—C14120.13 (18)C21—C22—H22119.3
C6—C5—H5119.9C23—C22—H22119.3
C14—C5—H5119.9C18—C23—C22115.8 (2)
C5—C6—C7121.8 (2)C18—C23—C25122.5 (2)
C5—C6—H6119.1C22—C23—C25121.7 (2)
C7—C6—H6119.1C19—C24—H24A109.5
C8—C7—C6119.85 (19)C19—C24—H24B109.5
C8—C7—H7120.1H24A—C24—H24B109.5
C6—C7—H7120.1C19—C24—H24C109.5
C7—C8—C13121.10 (18)H24A—C24—H24C109.5
C7—C8—H8119.4H24B—C24—H24C109.5
C13—C8—H8119.4C23—C25—H25A109.5
C13—C9—C11121.32 (16)C23—C25—H25B109.5
C13—C9—C15119.28 (15)H25A—C25—H25B109.5
C11—C9—C15119.39 (17)C23—C25—H25C109.5
C12—N10—C14122.34 (15)H25A—C25—H25C109.5
C12—N10—C26118.00 (18)H25B—C25—H25C109.5
C14—N10—C26119.65 (19)N10—C26—H26A108.1 (18)
C9—C11—C1122.93 (18)N10—C26—H26B109.5 (19)
C9—C11—C12118.46 (18)H26A—C26—H26B106.0 (18)
C1—C11—C12118.58 (18)N10—C26—H26C116 (3)
N10—C12—C4122.02 (19)H26A—C26—H26C109 (2)
N10—C12—C11119.78 (17)H26B—C26—H26C108 (2)
C4—C12—C11118.2 (2)O30—S27—O29115.49 (12)
C9—C13—C8123.28 (16)O30—S27—O28115.69 (11)
C9—C13—C14118.62 (16)O29—S27—O28114.61 (12)
C8—C13—C14118.10 (17)O30—S27—C31102.71 (12)
N10—C14—C5121.83 (17)O29—S27—C31102.86 (13)
N10—C14—C13119.14 (17)O28—S27—C31102.72 (15)
C5—C14—C13119.02 (17)F33—C31—F32108.6 (3)
O17—C15—O16125.17 (17)F33—C31—F34106.8 (3)
O17—C15—C9124.77 (17)F32—C31—F34106.9 (3)
O16—C15—C9110.03 (14)F33—C31—S27111.8 (2)
C15—O16—C18118.64 (14)F32—C31—S27111.7 (2)
C19—C18—C23124.78 (19)F34—C31—S27110.7 (2)
C11—C1—C2—C30.6 (4)C8—C13—C14—N10178.32 (15)
C1—C2—C3—C40.4 (4)C9—C13—C14—C5178.53 (16)
C2—C3—C4—C120.9 (4)C8—C13—C14—C50.7 (2)
C14—C5—C6—C70.1 (3)C13—C9—C15—O1763.4 (3)
C5—C6—C7—C80.9 (3)C11—C9—C15—O17115.1 (2)
C6—C7—C8—C130.8 (3)C13—C9—C15—O16114.90 (17)
C13—C9—C11—C1174.81 (18)C11—C9—C15—O1666.6 (2)
C15—C9—C11—C13.7 (3)O17—C15—O16—C187.9 (3)
C13—C9—C11—C123.2 (3)C9—C15—O16—C18170.39 (16)
C15—C9—C11—C12178.28 (16)C15—O16—C18—C1990.5 (2)
C2—C1—C11—C9177.6 (2)C15—O16—C18—C2394.2 (2)
C2—C1—C11—C120.4 (3)C23—C18—C19—C201.1 (3)
C14—N10—C12—C4173.36 (18)O16—C18—C19—C20173.85 (19)
C26—N10—C12—C46.0 (3)C23—C18—C19—C24179.2 (2)
C14—N10—C12—C115.4 (3)O16—C18—C19—C245.9 (3)
C26—N10—C12—C11175.25 (19)C18—C19—C20—C210.0 (4)
C3—C4—C12—N10179.4 (2)C24—C19—C20—C21179.8 (3)
C3—C4—C12—C111.8 (3)C19—C20—C21—C220.4 (4)
C9—C11—C12—N102.2 (3)C20—C21—C22—C230.1 (4)
C1—C11—C12—N10179.66 (17)C19—C18—C23—C221.5 (3)
C9—C11—C12—C4176.56 (17)O16—C18—C23—C22173.29 (17)
C1—C11—C12—C41.5 (3)C19—C18—C23—C25177.9 (2)
C11—C9—C13—C8175.30 (17)O16—C18—C23—C257.3 (3)
C15—C9—C13—C83.2 (3)C21—C22—C23—C181.0 (4)
C11—C9—C13—C145.5 (3)C21—C22—C23—C25178.4 (2)
C15—C9—C13—C14175.99 (15)O30—S27—C31—F33178.7 (2)
C7—C8—C13—C9179.25 (18)O29—S27—C31—F3361.1 (3)
C7—C8—C13—C140.0 (3)O28—S27—C31—F3358.3 (3)
C12—N10—C14—C5175.98 (17)O30—S27—C31—F3256.7 (2)
C26—N10—C14—C53.4 (3)O29—S27—C31—F32177.0 (2)
C12—N10—C14—C133.0 (3)O28—S27—C31—F3263.7 (2)
C26—N10—C14—C13177.62 (19)O30—S27—C31—F3462.4 (2)
C6—C5—C14—N10178.31 (18)O29—S27—C31—F3457.9 (2)
C6—C5—C14—C130.7 (3)O28—S27—C31—F34177.18 (19)
C9—C13—C14—N102.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.513.224 (3)134
C25—H25B···O30ii0.962.573.525 (3)176
C26—H26A···Cg4iii0.96 (3)2.86 (2)3.774 (3)158 (3)
C26—H26B···O29iii0.96 (3)2.56 (3)3.369 (4)142 (2)
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H20NO2+·CF3SO3
Mr491.48
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.5841 (4), 11.2491 (6), 12.1738 (3)
α, β, γ (°)106.080 (3), 101.890 (3), 110.755 (4)
V3)1109.66 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.58 × 0.18 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9670, 3922, 3124
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.09
No. of reflections3922
No. of parameters321
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.513.224 (3)134
C25—H25B···O30ii0.962.573.525 (3)176
C26—H26A···Cg4iii0.96 (3)2.86 (2)3.774 (3)158 (3)
C26—H26B···O29iii0.96 (3)2.56 (3)3.369 (4)142 (2)
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x1, y, z.
C–F···π interactions (Å,°). top
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.
XIJI···JX···JXI···J
C31F32Cg1iv3.655 (3)4.490 (4)121.5 (2)
C31F32Cg3iv3.886 (3)3.974 (4)84.1 (2)
C31F33Cg3iv3.746 (3)3.974 (4)90.4 (2)
C31F34Cg3iv3.481 (2)3.974 (4)101.9 (2)
Symmetry code: (iv) –x + 1, –y, –z + 1.
ππ interactions (Å,°). top
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
13v3.502 (2)2.71 (10)3.473 (1)0.445 (1)
23v3.977 (2)6.38 (11)3.286 (1)2.240 (1)
31v3.502 (2)2.71 (10)3.470 (1)0.480 (1)
32v3.977 (2)6.38 (11)3.503 (1)1.883 (1)
Symmetry code: (v) –x + 1, –y + 1, –z + 1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143 – contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education for the period 2007–2010 – and DS/8820-4-0087-0).

References

First citationBrown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKrzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o789–o790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNatrajan, A., Sharpe, D., Costello, J. & Jiang, Q. (2010). Anal. Biochem. 406, 204–213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNiziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błazejowski, J. (2009). J. Mol. Struct. 920, 231–237.  Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds