organic compounds
9-(2,6-Dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 23H20NO2+·CF3SO3−, adjacent cations are linked through a network of C—H⋯π and π–π interactions, and neighboring cations and anions via C—H⋯O interactions. The acridine and benzene ring systems are oriented at a dihedral angle of 31.4 (1)°. The carboxyl group is twisted at an angle of 66.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel in the crystal structure.
of the title compound, CRelated literature
For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Natrajan et al. (2010). For related structures, see: Krzymiński et al. (2009); Niziołek et al. (2009). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Niziołek et al. (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810041449/ng5042sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041449/ng5042Isup2.hkl
2,6-Dimethylphenylacridine-9-carboxylate was synthesized first in the reaction of 9-(chlorocarbonyl)acridine (obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with 2,6-dimethylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The ester thereby obtained, purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v), was quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 552–555 K).
The H26A, H26B and H26C atoms were located on a Fourier-difference map, restrained by DFIX command 0.960 for C–H distance and by DFIX 1.568 for H···H distance, and refined as riding with Uiso(H) = 1.5Ueq(C). All other H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the methyl H atoms.
Chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels based on 9-(phenoxycarbonyl)-10-methylacridinium salts are widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Brown et al., 2009; Natrajan et al., 2010). The efficiency of
– crucial for analytical applications – is affected by the structure of the phenyl fragment. We thus undertook investigations into 9-(phenoxycarbonyl)-10-methylacridinium salts variously substituted at the benzene ring. Here we present the structure of 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009; Niziołek et al., 2009). With respective average deviations from planarity of 0.0629 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 31.4 (1)°. The carboxyl group is twisted at an angle of 66.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) in the lattice.
In the π (Table 1, Fig. 2) and π–π (Table 3, Fig. 2) interactions, the adjacent cations and anions via C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π (Takahashi et al. 2001) interactions should be of an attractive nature, like C–F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.
the inversely oriented cations are linked through a network of C–H···For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Natrajan et al. (2010). For related structures, see: Krzymiński et al. (2009); Niziołek et al. (2009). For intermolecular interactions, see: Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Niziołek et al. (2009).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O and C–H···π interactions are represented by dashed lines, the C–F···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x – 1, y, z – 1; (ii) x, y, z – 1; (iii) x – 1, y, z; (iv) –x + 1, –y, –z + 1; (v) –x + 1, –y + 1, –z + 1.] |
C23H20NO2+·CF3SO3− | Z = 2 |
Mr = 491.48 | F(000) = 508 |
Triclinic, P1 | Dx = 1.471 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5841 (4) Å | Cell parameters from 66666 reflections |
b = 11.2491 (6) Å | θ = 3.0–29.1° |
c = 12.1738 (3) Å | µ = 0.21 mm−1 |
α = 106.080 (3)° | T = 295 K |
β = 101.890 (3)° | Prism, light-yellow |
γ = 110.755 (4)° | 0.58 × 0.18 × 0.05 mm |
V = 1109.66 (8) Å3 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3124 reflections with I > 2σ(I) |
Radiation source: Enhanced (Mo) X-ray Source | Rint = 0.016 |
Graphite monochromator | θmax = 25.1°, θmin = 3.1° |
Detector resolution: 10.4002 pixels mm-1 | h = −11→11 |
ω scans | k = −13→10 |
9670 measured reflections | l = −14→14 |
3922 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0673P)2 + 0.2264P] where P = (Fo2 + 2Fc2)/3 |
3922 reflections | (Δ/σ)max = 0.001 |
321 parameters | Δρmax = 0.33 e Å−3 |
6 restraints | Δρmin = −0.27 e Å−3 |
C23H20NO2+·CF3SO3− | γ = 110.755 (4)° |
Mr = 491.48 | V = 1109.66 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.5841 (4) Å | Mo Kα radiation |
b = 11.2491 (6) Å | µ = 0.21 mm−1 |
c = 12.1738 (3) Å | T = 295 K |
α = 106.080 (3)° | 0.58 × 0.18 × 0.05 mm |
β = 101.890 (3)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3124 reflections with I > 2σ(I) |
9670 measured reflections | Rint = 0.016 |
3922 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 6 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.33 e Å−3 |
3922 reflections | Δρmin = −0.27 e Å−3 |
321 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3818 (3) | 0.3638 (2) | 0.13066 (19) | 0.0649 (6) | |
H1 | 0.4654 | 0.3528 | 0.1091 | 0.078* | |
C2 | 0.2838 (3) | 0.3952 (3) | 0.0588 (2) | 0.0777 (7) | |
H2 | 0.2996 | 0.4048 | −0.0118 | 0.093* | |
C3 | 0.1595 (3) | 0.4130 (3) | 0.0913 (2) | 0.0787 (8) | |
H3 | 0.0932 | 0.4350 | 0.0419 | 0.094* | |
C4 | 0.1322 (3) | 0.3992 (2) | 0.1928 (2) | 0.0687 (6) | |
H4 | 0.0489 | 0.4130 | 0.2125 | 0.082* | |
C5 | 0.2865 (2) | 0.3196 (2) | 0.56175 (19) | 0.0545 (5) | |
H5 | 0.1991 | 0.3261 | 0.5797 | 0.065* | |
C6 | 0.3931 (3) | 0.3026 (2) | 0.6409 (2) | 0.0592 (5) | |
H6 | 0.3771 | 0.2975 | 0.7126 | 0.071* | |
C7 | 0.5267 (2) | 0.2924 (2) | 0.61744 (18) | 0.0557 (5) | |
H7 | 0.5987 | 0.2820 | 0.6737 | 0.067* | |
C8 | 0.5505 (2) | 0.29779 (19) | 0.51298 (17) | 0.0479 (4) | |
H8 | 0.6386 | 0.2898 | 0.4975 | 0.057* | |
C9 | 0.46128 (19) | 0.32004 (18) | 0.31651 (16) | 0.0424 (4) | |
N10 | 0.20515 (16) | 0.34795 (16) | 0.37176 (15) | 0.0499 (4) | |
C11 | 0.3594 (2) | 0.34746 (19) | 0.23794 (16) | 0.0474 (4) | |
C12 | 0.2299 (2) | 0.36386 (19) | 0.26929 (17) | 0.0505 (5) | |
C13 | 0.44292 (19) | 0.31544 (17) | 0.42602 (15) | 0.0411 (4) | |
C14 | 0.30806 (19) | 0.32732 (18) | 0.45257 (17) | 0.0448 (4) | |
C15 | 0.5963 (2) | 0.29831 (19) | 0.28346 (16) | 0.0436 (4) | |
O16 | 0.53926 (14) | 0.18238 (13) | 0.18486 (11) | 0.0503 (3) | |
O17 | 0.73309 (15) | 0.37184 (15) | 0.33881 (13) | 0.0625 (4) | |
C18 | 0.6473 (2) | 0.1321 (2) | 0.15004 (17) | 0.0514 (5) | |
C19 | 0.6730 (3) | 0.0416 (2) | 0.1981 (2) | 0.0641 (6) | |
C20 | 0.7664 (3) | −0.0180 (3) | 0.1546 (3) | 0.0849 (8) | |
H20 | 0.7870 | −0.0800 | 0.1844 | 0.102* | |
C21 | 0.8276 (3) | 0.0133 (3) | 0.0693 (3) | 0.0922 (9) | |
H21 | 0.8888 | −0.0280 | 0.0412 | 0.111* | |
C22 | 0.8000 (3) | 0.1047 (3) | 0.0246 (2) | 0.0813 (8) | |
H22 | 0.8428 | 0.1245 | −0.0338 | 0.098* | |
C23 | 0.7089 (2) | 0.1689 (2) | 0.06460 (19) | 0.0631 (6) | |
C24 | 0.6045 (4) | 0.0075 (3) | 0.2916 (3) | 0.0923 (9) | |
H24A | 0.4922 | −0.0213 | 0.2627 | 0.138* | |
H24B | 0.6527 | 0.0874 | 0.3658 | 0.138* | |
H24C | 0.6248 | −0.0654 | 0.3061 | 0.138* | |
C25 | 0.6814 (3) | 0.2718 (3) | 0.0184 (2) | 0.0835 (8) | |
H25A | 0.5697 | 0.2402 | −0.0195 | 0.125* | |
H25B | 0.7338 | 0.2826 | −0.0399 | 0.125* | |
H25C | 0.7232 | 0.3586 | 0.0850 | 0.125* | |
C26 | 0.0613 (3) | 0.3550 (3) | 0.3959 (3) | 0.0779 (8) | |
H26A | −0.027 (3) | 0.305 (3) | 0.3197 (17) | 0.113 (10)* | |
H26B | 0.034 (3) | 0.307 (3) | 0.448 (2) | 0.106 (11)* | |
H26C | 0.069 (5) | 0.4454 (19) | 0.431 (3) | 0.184 (19)* | |
S27 | 0.95913 (6) | 0.27457 (6) | 0.72251 (5) | 0.05989 (19) | |
O28 | 1.1219 (2) | 0.3034 (3) | 0.77069 (16) | 0.1008 (7) | |
O29 | 0.9225 (2) | 0.3134 (2) | 0.62202 (16) | 0.0875 (5) | |
O30 | 0.8851 (2) | 0.3042 (2) | 0.81008 (15) | 0.0879 (6) | |
C31 | 0.8618 (4) | 0.0892 (3) | 0.6536 (3) | 0.0856 (8) | |
F32 | 0.8764 (3) | 0.0335 (2) | 0.7353 (3) | 0.1501 (9) | |
F33 | 0.9169 (3) | 0.0417 (2) | 0.5713 (2) | 0.1554 (10) | |
F34 | 0.7072 (2) | 0.0441 (2) | 0.5986 (2) | 0.1331 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0770 (14) | 0.0765 (15) | 0.0556 (12) | 0.0464 (13) | 0.0212 (10) | 0.0297 (11) |
C2 | 0.1007 (19) | 0.0832 (18) | 0.0582 (13) | 0.0549 (16) | 0.0142 (13) | 0.0298 (12) |
C3 | 0.0827 (17) | 0.0773 (17) | 0.0680 (15) | 0.0458 (14) | −0.0039 (13) | 0.0235 (13) |
C4 | 0.0540 (12) | 0.0665 (14) | 0.0776 (15) | 0.0362 (11) | 0.0030 (11) | 0.0176 (12) |
C5 | 0.0524 (11) | 0.0474 (11) | 0.0663 (12) | 0.0206 (9) | 0.0297 (10) | 0.0199 (9) |
C6 | 0.0715 (13) | 0.0539 (12) | 0.0596 (11) | 0.0266 (10) | 0.0331 (10) | 0.0252 (10) |
C7 | 0.0611 (12) | 0.0542 (12) | 0.0549 (11) | 0.0254 (10) | 0.0182 (9) | 0.0261 (9) |
C8 | 0.0437 (9) | 0.0490 (11) | 0.0550 (10) | 0.0226 (8) | 0.0171 (8) | 0.0220 (9) |
C9 | 0.0369 (8) | 0.0385 (9) | 0.0483 (9) | 0.0161 (7) | 0.0119 (7) | 0.0140 (8) |
N10 | 0.0350 (7) | 0.0455 (9) | 0.0609 (9) | 0.0192 (7) | 0.0114 (7) | 0.0099 (7) |
C11 | 0.0448 (9) | 0.0433 (10) | 0.0497 (10) | 0.0214 (8) | 0.0091 (8) | 0.0139 (8) |
C12 | 0.0421 (9) | 0.0422 (10) | 0.0541 (11) | 0.0186 (8) | 0.0046 (8) | 0.0084 (8) |
C13 | 0.0355 (8) | 0.0346 (9) | 0.0484 (9) | 0.0134 (7) | 0.0128 (7) | 0.0130 (7) |
C14 | 0.0373 (9) | 0.0344 (9) | 0.0546 (10) | 0.0125 (7) | 0.0149 (8) | 0.0105 (8) |
C15 | 0.0425 (10) | 0.0471 (10) | 0.0475 (9) | 0.0223 (8) | 0.0170 (8) | 0.0222 (8) |
O16 | 0.0422 (6) | 0.0538 (8) | 0.0512 (7) | 0.0208 (6) | 0.0188 (5) | 0.0130 (6) |
O17 | 0.0392 (7) | 0.0589 (9) | 0.0731 (9) | 0.0175 (6) | 0.0162 (6) | 0.0095 (7) |
C18 | 0.0414 (9) | 0.0491 (11) | 0.0562 (11) | 0.0166 (8) | 0.0223 (8) | 0.0097 (9) |
C19 | 0.0627 (12) | 0.0548 (13) | 0.0801 (14) | 0.0277 (11) | 0.0356 (11) | 0.0225 (11) |
C20 | 0.0797 (16) | 0.0653 (16) | 0.122 (2) | 0.0416 (14) | 0.0483 (16) | 0.0305 (15) |
C21 | 0.0762 (16) | 0.0717 (17) | 0.129 (2) | 0.0345 (14) | 0.0622 (17) | 0.0164 (17) |
C22 | 0.0696 (15) | 0.0780 (18) | 0.0849 (16) | 0.0207 (13) | 0.0505 (13) | 0.0128 (14) |
C23 | 0.0526 (11) | 0.0643 (14) | 0.0577 (11) | 0.0143 (10) | 0.0260 (9) | 0.0121 (10) |
C24 | 0.125 (2) | 0.0864 (19) | 0.118 (2) | 0.0658 (18) | 0.0734 (19) | 0.0631 (17) |
C25 | 0.0869 (17) | 0.106 (2) | 0.0748 (15) | 0.0398 (16) | 0.0463 (13) | 0.0480 (15) |
C26 | 0.0458 (12) | 0.101 (2) | 0.0848 (17) | 0.0402 (13) | 0.0235 (12) | 0.0217 (16) |
S27 | 0.0655 (3) | 0.0737 (4) | 0.0501 (3) | 0.0355 (3) | 0.0266 (2) | 0.0255 (3) |
O28 | 0.0647 (10) | 0.1509 (19) | 0.0711 (11) | 0.0372 (11) | 0.0187 (8) | 0.0367 (12) |
O29 | 0.1033 (13) | 0.1112 (14) | 0.0781 (11) | 0.0551 (12) | 0.0399 (10) | 0.0610 (11) |
O30 | 0.1185 (15) | 0.1062 (14) | 0.0730 (10) | 0.0705 (12) | 0.0590 (10) | 0.0348 (10) |
C31 | 0.101 (2) | 0.091 (2) | 0.0888 (18) | 0.0516 (17) | 0.0548 (16) | 0.0386 (16) |
F32 | 0.212 (3) | 0.1266 (17) | 0.191 (2) | 0.1025 (18) | 0.106 (2) | 0.1062 (17) |
F33 | 0.187 (2) | 0.1174 (16) | 0.164 (2) | 0.0741 (16) | 0.1115 (18) | 0.0081 (14) |
F34 | 0.0897 (13) | 0.1208 (16) | 0.1312 (15) | 0.0049 (11) | 0.0360 (11) | 0.0222 (12) |
C1—C2 | 1.357 (3) | O16—C18 | 1.426 (2) |
C1—C11 | 1.417 (3) | C18—C19 | 1.374 (3) |
C1—H1 | 0.9300 | C18—C23 | 1.385 (3) |
C2—C3 | 1.392 (4) | C19—C20 | 1.398 (3) |
C2—H2 | 0.9300 | C19—C24 | 1.498 (3) |
C3—C4 | 1.352 (4) | C20—C21 | 1.361 (4) |
C3—H3 | 0.9300 | C20—H20 | 0.9300 |
C4—C12 | 1.419 (3) | C21—C22 | 1.366 (4) |
C4—H4 | 0.9300 | C21—H21 | 0.9300 |
C5—C6 | 1.357 (3) | C22—C23 | 1.396 (3) |
C5—C14 | 1.408 (3) | C22—H22 | 0.9300 |
C5—H5 | 0.9300 | C23—C25 | 1.497 (4) |
C6—C7 | 1.404 (3) | C24—H24A | 0.9600 |
C6—H6 | 0.9300 | C24—H24B | 0.9600 |
C7—C8 | 1.351 (3) | C24—H24C | 0.9600 |
C7—H7 | 0.9300 | C25—H25A | 0.9600 |
C8—C13 | 1.427 (3) | C25—H25B | 0.9600 |
C8—H8 | 0.9300 | C25—H25C | 0.9600 |
C9—C13 | 1.393 (3) | C26—H26A | 0.971 (16) |
C9—C11 | 1.398 (3) | C26—H26B | 0.966 (16) |
C9—C15 | 1.510 (2) | C26—H26C | 0.956 (17) |
N10—C12 | 1.364 (3) | S27—O30 | 1.4262 (17) |
N10—C14 | 1.372 (2) | S27—O29 | 1.4274 (17) |
N10—C26 | 1.492 (3) | S27—O28 | 1.4290 (19) |
C11—C12 | 1.428 (3) | S27—C31 | 1.803 (3) |
C13—C14 | 1.436 (2) | C31—F33 | 1.301 (3) |
C15—O17 | 1.190 (2) | C31—F32 | 1.323 (4) |
C15—O16 | 1.341 (2) | C31—F34 | 1.331 (3) |
C2—C1—C11 | 121.3 (2) | C19—C18—O16 | 116.51 (17) |
C2—C1—H1 | 119.3 | C23—C18—O16 | 118.52 (19) |
C11—C1—H1 | 119.3 | C18—C19—C20 | 116.4 (2) |
C1—C2—C3 | 119.5 (2) | C18—C19—C24 | 122.2 (2) |
C1—C2—H2 | 120.3 | C20—C19—C24 | 121.5 (2) |
C3—C2—H2 | 120.3 | C21—C20—C19 | 121.0 (3) |
C4—C3—C2 | 122.0 (2) | C21—C20—H20 | 119.5 |
C4—C3—H3 | 119.0 | C19—C20—H20 | 119.5 |
C2—C3—H3 | 119.0 | C20—C21—C22 | 120.7 (2) |
C3—C4—C12 | 120.4 (2) | C20—C21—H21 | 119.6 |
C3—C4—H4 | 119.8 | C22—C21—H21 | 119.6 |
C12—C4—H4 | 119.8 | C21—C22—C23 | 121.3 (2) |
C6—C5—C14 | 120.13 (18) | C21—C22—H22 | 119.3 |
C6—C5—H5 | 119.9 | C23—C22—H22 | 119.3 |
C14—C5—H5 | 119.9 | C18—C23—C22 | 115.8 (2) |
C5—C6—C7 | 121.8 (2) | C18—C23—C25 | 122.5 (2) |
C5—C6—H6 | 119.1 | C22—C23—C25 | 121.7 (2) |
C7—C6—H6 | 119.1 | C19—C24—H24A | 109.5 |
C8—C7—C6 | 119.85 (19) | C19—C24—H24B | 109.5 |
C8—C7—H7 | 120.1 | H24A—C24—H24B | 109.5 |
C6—C7—H7 | 120.1 | C19—C24—H24C | 109.5 |
C7—C8—C13 | 121.10 (18) | H24A—C24—H24C | 109.5 |
C7—C8—H8 | 119.4 | H24B—C24—H24C | 109.5 |
C13—C8—H8 | 119.4 | C23—C25—H25A | 109.5 |
C13—C9—C11 | 121.32 (16) | C23—C25—H25B | 109.5 |
C13—C9—C15 | 119.28 (15) | H25A—C25—H25B | 109.5 |
C11—C9—C15 | 119.39 (17) | C23—C25—H25C | 109.5 |
C12—N10—C14 | 122.34 (15) | H25A—C25—H25C | 109.5 |
C12—N10—C26 | 118.00 (18) | H25B—C25—H25C | 109.5 |
C14—N10—C26 | 119.65 (19) | N10—C26—H26A | 108.1 (18) |
C9—C11—C1 | 122.93 (18) | N10—C26—H26B | 109.5 (19) |
C9—C11—C12 | 118.46 (18) | H26A—C26—H26B | 106.0 (18) |
C1—C11—C12 | 118.58 (18) | N10—C26—H26C | 116 (3) |
N10—C12—C4 | 122.02 (19) | H26A—C26—H26C | 109 (2) |
N10—C12—C11 | 119.78 (17) | H26B—C26—H26C | 108 (2) |
C4—C12—C11 | 118.2 (2) | O30—S27—O29 | 115.49 (12) |
C9—C13—C8 | 123.28 (16) | O30—S27—O28 | 115.69 (11) |
C9—C13—C14 | 118.62 (16) | O29—S27—O28 | 114.61 (12) |
C8—C13—C14 | 118.10 (17) | O30—S27—C31 | 102.71 (12) |
N10—C14—C5 | 121.83 (17) | O29—S27—C31 | 102.86 (13) |
N10—C14—C13 | 119.14 (17) | O28—S27—C31 | 102.72 (15) |
C5—C14—C13 | 119.02 (17) | F33—C31—F32 | 108.6 (3) |
O17—C15—O16 | 125.17 (17) | F33—C31—F34 | 106.8 (3) |
O17—C15—C9 | 124.77 (17) | F32—C31—F34 | 106.9 (3) |
O16—C15—C9 | 110.03 (14) | F33—C31—S27 | 111.8 (2) |
C15—O16—C18 | 118.64 (14) | F32—C31—S27 | 111.7 (2) |
C19—C18—C23 | 124.78 (19) | F34—C31—S27 | 110.7 (2) |
C11—C1—C2—C3 | 0.6 (4) | C8—C13—C14—N10 | 178.32 (15) |
C1—C2—C3—C4 | −0.4 (4) | C9—C13—C14—C5 | 178.53 (16) |
C2—C3—C4—C12 | −0.9 (4) | C8—C13—C14—C5 | −0.7 (2) |
C14—C5—C6—C7 | 0.1 (3) | C13—C9—C15—O17 | −63.4 (3) |
C5—C6—C7—C8 | −0.9 (3) | C11—C9—C15—O17 | 115.1 (2) |
C6—C7—C8—C13 | 0.8 (3) | C13—C9—C15—O16 | 114.90 (17) |
C13—C9—C11—C1 | 174.81 (18) | C11—C9—C15—O16 | −66.6 (2) |
C15—C9—C11—C1 | −3.7 (3) | O17—C15—O16—C18 | 7.9 (3) |
C13—C9—C11—C12 | −3.2 (3) | C9—C15—O16—C18 | −170.39 (16) |
C15—C9—C11—C12 | 178.28 (16) | C15—O16—C18—C19 | 90.5 (2) |
C2—C1—C11—C9 | −177.6 (2) | C15—O16—C18—C23 | −94.2 (2) |
C2—C1—C11—C12 | 0.4 (3) | C23—C18—C19—C20 | −1.1 (3) |
C14—N10—C12—C4 | −173.36 (18) | O16—C18—C19—C20 | 173.85 (19) |
C26—N10—C12—C4 | 6.0 (3) | C23—C18—C19—C24 | 179.2 (2) |
C14—N10—C12—C11 | 5.4 (3) | O16—C18—C19—C24 | −5.9 (3) |
C26—N10—C12—C11 | −175.25 (19) | C18—C19—C20—C21 | 0.0 (4) |
C3—C4—C12—N10 | −179.4 (2) | C24—C19—C20—C21 | 179.8 (3) |
C3—C4—C12—C11 | 1.8 (3) | C19—C20—C21—C22 | 0.4 (4) |
C9—C11—C12—N10 | −2.2 (3) | C20—C21—C22—C23 | 0.1 (4) |
C1—C11—C12—N10 | 179.66 (17) | C19—C18—C23—C22 | 1.5 (3) |
C9—C11—C12—C4 | 176.56 (17) | O16—C18—C23—C22 | −173.29 (17) |
C1—C11—C12—C4 | −1.5 (3) | C19—C18—C23—C25 | −177.9 (2) |
C11—C9—C13—C8 | −175.30 (17) | O16—C18—C23—C25 | 7.3 (3) |
C15—C9—C13—C8 | 3.2 (3) | C21—C22—C23—C18 | −1.0 (4) |
C11—C9—C13—C14 | 5.5 (3) | C21—C22—C23—C25 | 178.4 (2) |
C15—C9—C13—C14 | −175.99 (15) | O30—S27—C31—F33 | −178.7 (2) |
C7—C8—C13—C9 | −179.25 (18) | O29—S27—C31—F33 | 61.1 (3) |
C7—C8—C13—C14 | 0.0 (3) | O28—S27—C31—F33 | −58.3 (3) |
C12—N10—C14—C5 | 175.98 (17) | O30—S27—C31—F32 | −56.7 (2) |
C26—N10—C14—C5 | −3.4 (3) | O29—S27—C31—F32 | −177.0 (2) |
C12—N10—C14—C13 | −3.0 (3) | O28—S27—C31—F32 | 63.7 (2) |
C26—N10—C14—C13 | 177.62 (19) | O30—S27—C31—F34 | 62.4 (2) |
C6—C5—C14—N10 | −178.31 (18) | O29—S27—C31—F34 | −57.9 (2) |
C6—C5—C14—C13 | 0.7 (3) | O28—S27—C31—F34 | −177.18 (19) |
C9—C13—C14—N10 | −2.4 (2) |
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O28i | 0.93 | 2.51 | 3.224 (3) | 134 |
C25—H25B···O30ii | 0.96 | 2.57 | 3.525 (3) | 176 |
C26—H26A···Cg4iii | 0.96 (3) | 2.86 (2) | 3.774 (3) | 158 (3) |
C26—H26B···O29iii | 0.96 (3) | 2.56 (3) | 3.369 (4) | 142 (2) |
Symmetry codes: (i) x−1, y, z−1; (ii) x, y, z−1; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C23H20NO2+·CF3SO3− |
Mr | 491.48 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 9.5841 (4), 11.2491 (6), 12.1738 (3) |
α, β, γ (°) | 106.080 (3), 101.890 (3), 110.755 (4) |
V (Å3) | 1109.66 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.58 × 0.18 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9670, 3922, 3124 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.125, 1.09 |
No. of reflections | 3922 |
No. of parameters | 321 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.27 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O28i | 0.93 | 2.51 | 3.224 (3) | 134 |
C25—H25B···O30ii | 0.96 | 2.57 | 3.525 (3) | 176 |
C26—H26A···Cg4iii | 0.96 (3) | 2.86 (2) | 3.774 (3) | 158 (3) |
C26—H26B···O29iii | 0.96 (3) | 2.56 (3) | 3.369 (4) | 142 (2) |
Symmetry codes: (i) x−1, y, z−1; (ii) x, y, z−1; (iii) x−1, y, z. |
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively. |
X | I | J | I···J | X···J | X–I···J |
C31 | F32 | Cg1iv | 3.655 (3) | 4.490 (4) | 121.5 (2) |
C31 | F32 | Cg3iv | 3.886 (3) | 3.974 (4) | 84.1 (2) |
C31 | F33 | Cg3iv | 3.746 (3) | 3.974 (4) | 90.4 (2) |
C31 | F34 | Cg3iv | 3.481 (2) | 3.974 (4) | 101.9 (2) |
Symmetry code: (iv) –x + 1, –y, –z + 1. |
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 3v | 3.502 (2) | 2.71 (10) | 3.473 (1) | 0.445 (1) |
2 | 3v | 3.977 (2) | 6.38 (11) | 3.286 (1) | 2.240 (1) |
3 | 1v | 3.502 (2) | 2.71 (10) | 3.470 (1) | 0.480 (1) |
3 | 2v | 3.977 (2) | 6.38 (11) | 3.503 (1) | 1.883 (1) |
Symmetry code: (v) –x + 1, –y + 1, –z + 1. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143 – contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education for the period 2007–2010 – and DS/8820-4-0087-0).
References
Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394. Web of Science CrossRef PubMed CAS Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Krzymiński, K., Trzybiński, D., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o789–o790. Web of Science CSD CrossRef IUCr Journals Google Scholar
Natrajan, A., Sharpe, D., Costello, J. & Jiang, Q. (2010). Anal. Biochem. 406, 204–213. Web of Science CrossRef CAS PubMed Google Scholar
Niziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błazejowski, J. (2009). J. Mol. Struct. 920, 231–237. Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels based on 9-(phenoxycarbonyl)-10-methylacridinium salts are widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Brown et al., 2009; Natrajan et al., 2010). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the structure of the phenyl fragment. We thus undertook investigations into 9-(phenoxycarbonyl)-10-methylacridinium salts variously substituted at the benzene ring. Here we present the structure of 9-(2,6-dimethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Krzymiński et al., 2009; Niziołek et al., 2009). With respective average deviations from planarity of 0.0629 (3) Å and 0.0046 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 31.4 (1)°. The carboxyl group is twisted at an angle of 66.3 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) in the lattice.
In the crystal structure, the inversely oriented cations are linked through a network of C–H···π (Table 1, Fig. 2) and π–π (Table 3, Fig. 2) interactions, the adjacent cations and anions via C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) interactions are of the hydrogen bond type. The C–H···π (Takahashi et al. 2001) interactions should be of an attractive nature, like C–F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.