organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-tert-Butyl-5-(2-chloro­benz­yl)-1,3-thia­zol-2-yl]isoindoline-1,3-dione

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 18 October 2010; accepted 20 October 2010; online 23 October 2010)

In the title compound, C22H19ClN2O2S, the dihedral angle between the phenyl­ene ring and the phthalimide ring system is 4.4 (1)°. There is no hydrogen bonding or ππ stacking in the crystal structure.

Related literature

For background to thia­zole derivatives, see: Kazzouli et al. (2002[Kazzouli, S. E., Berteina-Raboin, S., Mouaddibb, A. & Guillaumeta, G. (2002). Tetrahedron Lett. 43, 3193-3196.]); Holla et al. (2003[Holla, B. S., Malini, K. V., Rao, B. S. N., Sarojini, B. K. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313-318.]); Hu et al. (2008[Hu, A. X., Cao, G., Ma, Y. Q., Zhang, J. Y. & Ou, X. M. (2008). Chin. J. Struct. Chem. 27, 1235-1239.]), For background to phthalimide derivatives, see: Lima et al. (2002[Lima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., Moraes, V. L. G. & Barreiro, E. J. (2002). Bioorg. Med. Chem. 12, 3067-3073.]); Miyachi et al. (1997[Miyachi, H., Ogasawara, A., Azuma, A. & Hashimoto, Y. (1997). Bioorg. Med. Chem. 5, 2095-2102.]); Yachide et al. (2007[Yachide, T. N., Aoyama, A., Makishima, M., Miyachi, H. & Hashimoto, Y. (2007). Bioorg. Med. Chem Lett. 17, 3957-3961.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19ClN2O2S

  • Mr = 410.90

  • Triclinic, [P \overline 1]

  • a = 7.8357 (4) Å

  • b = 8.1587 (4) Å

  • c = 16.1487 (8) Å

  • α = 100.404 (1)°

  • β = 95.897 (1)°

  • γ = 96.490 (1)°

  • V = 1000.85 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.46 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 0.917

  • 7798 measured reflections

  • 3857 independent reflections

  • 3268 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.122

  • S = 1.15

  • 3857 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds containing thiazole ring have a wide spectrum of biological activities, many of them are well known as antiviral, antifungal agents (Kazzouli et al., 2002; Holla et al., 2003; Hu et al., 2008). N-substituted phthalimide derivatives are very important in pharmaceutical intermediates and drugs (Miyachi et al., 1997). Herein we report the synthesis and the crystal structure of the phthalimide compounds which contain the thiazole ring.

The molecular structure of the title compound, C22H19ClN2O2S, is shown in Fig 1. There are no hydrogen bonding and ππ stacking in the crystal structure. The van der Waals interactions maintain the structural cohesion.

Related literature top

For background to thiazole derivatives, see: Kazzouli et al. (2002); Holla et al. (2003); Hu et al. (2008), For background to phthalimide derivatives, see: Lima et al. (2002); Miyachi et al. (1997); Yachide et al. (2007).

Experimental top

A solution of 10 mmol 5-(2-chlorobenzyl)-4-tert-butylthiazol-2-amine and 10 mmol ph thalic anhydride in 15 ml acetic acid, then heated and refluxed for 23 h. After finishing the reaction, cooled the solution, and the precipitate formed, filtered, recrystallized with ethanol to give the title compound. The crystals for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The crystal system of the title compound was triclinic and all H atoms were refined using riding mode. The C—H distances of phenyl and tert-butyl were 0.95Å and 0.98 Å, with Uiso(H)=1.5Ueq(Cmethyl).

Structure description top

Compounds containing thiazole ring have a wide spectrum of biological activities, many of them are well known as antiviral, antifungal agents (Kazzouli et al., 2002; Holla et al., 2003; Hu et al., 2008). N-substituted phthalimide derivatives are very important in pharmaceutical intermediates and drugs (Miyachi et al., 1997). Herein we report the synthesis and the crystal structure of the phthalimide compounds which contain the thiazole ring.

The molecular structure of the title compound, C22H19ClN2O2S, is shown in Fig 1. There are no hydrogen bonding and ππ stacking in the crystal structure. The van der Waals interactions maintain the structural cohesion.

For background to thiazole derivatives, see: Kazzouli et al. (2002); Holla et al. (2003); Hu et al. (2008), For background to phthalimide derivatives, see: Lima et al. (2002); Miyachi et al. (1997); Yachide et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and 50% probability displacement ellipsoid (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. A packing diagram for the title compound.
2-[4-tert-Butyl-5-(2-chlorobenzyl)-1,3-thiazol-2-yl]isoindoline-1,3-dione top
Crystal data top
C22H19ClN2O2SZ = 2
Mr = 410.90F(000) = 428
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Melting point: 425 K
a = 7.8357 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1587 (4) ÅCell parameters from 5125 reflections
c = 16.1487 (8) Åθ = 2.6–27.0°
α = 100.404 (1)°µ = 0.32 mm1
β = 95.897 (1)°T = 173 K
γ = 96.490 (1)°Block, colorless
V = 1000.85 (9) Å30.46 × 0.30 × 0.28 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3857 independent reflections
Radiation source: fine-focus sealed tube3268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.868, Tmax = 0.917k = 1010
7798 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.4002P]
where P = (Fo2 + 2Fc2)/3
3857 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C22H19ClN2O2Sγ = 96.490 (1)°
Mr = 410.90V = 1000.85 (9) Å3
Triclinic, P1Z = 2
a = 7.8357 (4) ÅMo Kα radiation
b = 8.1587 (4) ŵ = 0.32 mm1
c = 16.1487 (8) ÅT = 173 K
α = 100.404 (1)°0.46 × 0.30 × 0.28 mm
β = 95.897 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3857 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3268 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.917Rint = 0.018
7798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.15Δρmax = 0.33 e Å3
3857 reflectionsΔρmin = 0.31 e Å3
256 parameters
Special details top

Experimental. The 1HNMR(CDCl3, 400 MHz) of the title compound were: 1.46(s,9H,3×CH3), 4.41 (s, 2H, CH2), 7.18~7.39 (m, 4H, C6H4), 7.79~7.96 (m, 4H, C6H4).And the yield was: 67.6%. m.p.423~427 K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47492 (7)0.21014 (8)0.32706 (3)0.04128 (18)
S10.02664 (6)0.03724 (6)0.16354 (3)0.02634 (15)
C10.2305 (2)0.1497 (2)0.18229 (12)0.0236 (4)
C20.1795 (3)0.1461 (2)0.31377 (12)0.0266 (4)
C30.0266 (2)0.0574 (2)0.27220 (12)0.0239 (4)
C40.2332 (3)0.1918 (3)0.40993 (13)0.0366 (5)
C50.4226 (4)0.2725 (4)0.42868 (16)0.0624 (9)
H5A0.49530.19670.39930.094*
H5B0.45920.29320.49000.094*
H5C0.43470.37930.40880.094*
C60.2175 (3)0.0330 (3)0.44847 (14)0.0389 (5)
H6A0.09780.02320.43600.058*
H6B0.24950.06400.51010.058*
H6C0.29500.04340.42400.058*
C70.1182 (4)0.3151 (3)0.45113 (15)0.0555 (7)
H7A0.13070.41770.42750.083*
H7B0.15340.34330.51260.083*
H7C0.00290.26300.43960.083*
C80.1313 (2)0.0235 (2)0.30286 (12)0.0261 (4)
H8A0.23590.00570.27200.031*
H8B0.12980.02410.36390.031*
C90.1445 (2)0.2135 (2)0.29113 (12)0.0255 (4)
C100.2985 (3)0.3103 (3)0.29935 (12)0.0298 (4)
C110.3166 (3)0.4842 (3)0.28567 (15)0.0422 (6)
H110.42350.54670.29090.051*
C120.1785 (4)0.5656 (3)0.26456 (18)0.0510 (7)
H120.19010.68490.25470.061*
C130.0231 (3)0.4749 (3)0.25766 (18)0.0492 (6)
H130.07300.53130.24410.059*
C140.0074 (3)0.3009 (3)0.27052 (15)0.0349 (5)
H140.10010.23960.26510.042*
C150.4999 (2)0.1549 (2)0.11270 (12)0.0248 (4)
C160.5493 (2)0.2158 (2)0.03643 (12)0.0245 (4)
C170.7093 (3)0.2341 (3)0.00803 (14)0.0306 (4)
H170.80790.20150.03690.037*
C180.7203 (3)0.3020 (3)0.06437 (13)0.0319 (5)
H180.82920.31900.08470.038*
C190.5758 (3)0.3453 (3)0.10749 (13)0.0307 (4)
H190.58730.38960.15740.037*
C200.4131 (2)0.3257 (3)0.07953 (12)0.0270 (4)
H200.31350.35460.10940.032*
C210.4048 (2)0.2618 (2)0.00597 (11)0.0228 (4)
C220.2572 (2)0.2381 (2)0.04291 (12)0.0249 (4)
N10.2936 (2)0.2002 (2)0.26111 (10)0.0276 (4)
N20.3239 (2)0.1807 (2)0.11564 (10)0.0244 (3)
O10.58277 (18)0.09357 (19)0.16259 (9)0.0334 (3)
O20.10930 (18)0.2615 (2)0.02800 (9)0.0374 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0275 (3)0.0591 (4)0.0341 (3)0.0019 (2)0.0104 (2)0.0021 (2)
S10.0230 (3)0.0335 (3)0.0218 (3)0.00074 (19)0.00394 (18)0.00557 (19)
C10.0242 (9)0.0245 (9)0.0229 (9)0.0027 (7)0.0047 (7)0.0062 (7)
C20.0319 (10)0.0250 (10)0.0225 (10)0.0002 (8)0.0058 (8)0.0043 (7)
C30.0285 (10)0.0230 (9)0.0224 (9)0.0048 (7)0.0070 (8)0.0071 (7)
C40.0447 (13)0.0408 (12)0.0211 (10)0.0054 (10)0.0049 (9)0.0044 (9)
C50.0642 (18)0.083 (2)0.0264 (12)0.0353 (15)0.0045 (12)0.0075 (12)
C60.0412 (13)0.0510 (14)0.0266 (11)0.0052 (10)0.0068 (9)0.0125 (10)
C70.092 (2)0.0431 (14)0.0298 (12)0.0145 (14)0.0097 (13)0.0021 (10)
C80.0262 (10)0.0280 (10)0.0266 (10)0.0047 (8)0.0073 (8)0.0086 (8)
C90.0261 (10)0.0284 (10)0.0225 (9)0.0018 (8)0.0003 (7)0.0093 (8)
C100.0302 (10)0.0370 (11)0.0217 (9)0.0027 (8)0.0026 (8)0.0090 (8)
C110.0456 (13)0.0381 (13)0.0398 (13)0.0132 (10)0.0033 (10)0.0154 (10)
C120.0573 (16)0.0255 (11)0.0673 (17)0.0004 (11)0.0070 (13)0.0134 (11)
C130.0443 (14)0.0326 (12)0.0706 (18)0.0120 (10)0.0009 (12)0.0105 (12)
C140.0297 (11)0.0294 (11)0.0465 (13)0.0037 (8)0.0038 (9)0.0105 (9)
C150.0214 (9)0.0261 (10)0.0266 (10)0.0022 (7)0.0031 (7)0.0050 (8)
C160.0234 (9)0.0258 (10)0.0242 (9)0.0023 (7)0.0047 (7)0.0044 (8)
C170.0198 (9)0.0369 (11)0.0366 (11)0.0055 (8)0.0064 (8)0.0086 (9)
C180.0247 (10)0.0372 (11)0.0350 (11)0.0021 (8)0.0135 (9)0.0060 (9)
C190.0345 (11)0.0343 (11)0.0227 (10)0.0003 (8)0.0078 (8)0.0045 (8)
C200.0244 (10)0.0340 (11)0.0227 (9)0.0033 (8)0.0019 (8)0.0062 (8)
C210.0197 (9)0.0260 (10)0.0213 (9)0.0006 (7)0.0036 (7)0.0023 (7)
C220.0232 (10)0.0290 (10)0.0227 (9)0.0022 (7)0.0016 (7)0.0068 (8)
N10.0315 (9)0.0268 (8)0.0237 (8)0.0020 (7)0.0060 (7)0.0052 (7)
N20.0205 (8)0.0309 (9)0.0236 (8)0.0034 (6)0.0039 (6)0.0093 (6)
O10.0284 (7)0.0411 (8)0.0343 (8)0.0081 (6)0.0003 (6)0.0166 (7)
O20.0208 (7)0.0607 (10)0.0362 (8)0.0081 (7)0.0049 (6)0.0216 (7)
Geometric parameters (Å, º) top
Cl1—C101.741 (2)C9—C101.397 (3)
S1—C11.7188 (19)C10—C111.385 (3)
S1—C31.7327 (19)C11—C121.373 (4)
C1—N11.292 (2)C11—H110.9500
C1—N21.406 (2)C12—C131.377 (4)
C2—C31.369 (3)C12—H120.9500
C2—N11.385 (2)C13—C141.386 (3)
C2—C41.532 (3)C13—H130.9500
C3—C81.507 (3)C14—H140.9500
C4—C51.531 (3)C15—O11.197 (2)
C4—C61.534 (3)C15—N21.422 (2)
C4—C71.534 (3)C15—C161.480 (3)
C5—H5A0.9800C16—C171.380 (3)
C5—H5B0.9800C16—C211.386 (3)
C5—H5C0.9800C17—C181.388 (3)
C6—H6A0.9800C17—H170.9500
C6—H6B0.9800C18—C191.382 (3)
C6—H6C0.9800C18—H180.9500
C7—H7A0.9800C19—C201.398 (3)
C7—H7B0.9800C19—H190.9500
C7—H7C0.9800C20—C211.385 (3)
C8—C91.518 (3)C20—H200.9500
C8—H8A0.9900C21—C221.480 (3)
C8—H8B0.9900C22—O21.203 (2)
C9—C141.391 (3)C22—N21.414 (2)
C1—S1—C388.77 (9)C11—C10—C9122.3 (2)
N1—C1—N2122.33 (17)C11—C10—Cl1118.45 (17)
N1—C1—S1115.89 (14)C9—C10—Cl1119.27 (16)
N2—C1—S1121.76 (14)C12—C11—C10119.4 (2)
C3—C2—N1114.54 (17)C12—C11—H11120.3
C3—C2—C4127.00 (18)C10—C11—H11120.3
N1—C2—C4118.45 (17)C11—C12—C13120.3 (2)
C2—C3—C8132.65 (17)C11—C12—H12119.9
C2—C3—S1109.93 (14)C13—C12—H12119.9
C8—C3—S1117.41 (14)C12—C13—C14119.8 (2)
C5—C4—C2109.70 (17)C12—C13—H13120.1
C5—C4—C6107.7 (2)C14—C13—H13120.1
C2—C4—C6110.24 (18)C13—C14—C9121.9 (2)
C5—C4—C7109.5 (2)C13—C14—H14119.1
C2—C4—C7110.09 (19)C9—C14—H14119.1
C6—C4—C7109.56 (19)O1—C15—N2124.78 (18)
C4—C5—H5A109.5O1—C15—C16129.95 (18)
C4—C5—H5B109.5N2—C15—C16105.26 (15)
H5A—C5—H5B109.5C17—C16—C21121.50 (18)
C4—C5—H5C109.5C17—C16—C15129.50 (18)
H5A—C5—H5C109.5C21—C16—C15108.97 (16)
H5B—C5—H5C109.5C16—C17—C18117.32 (18)
C4—C6—H6A109.5C16—C17—H17121.3
C4—C6—H6B109.5C18—C17—H17121.3
H6A—C6—H6B109.5C19—C18—C17121.24 (18)
C4—C6—H6C109.5C19—C18—H18119.4
H6A—C6—H6C109.5C17—C18—H18119.4
H6B—C6—H6C109.5C18—C19—C20121.71 (19)
C4—C7—H7A109.5C18—C19—H19119.1
C4—C7—H7B109.5C20—C19—H19119.1
H7A—C7—H7B109.5C21—C20—C19116.44 (18)
C4—C7—H7C109.5C21—C20—H20121.8
H7A—C7—H7C109.5C19—C20—H20121.8
H7B—C7—H7C109.5C20—C21—C16121.75 (17)
C3—C8—C9113.97 (16)C20—C21—C22129.59 (17)
C3—C8—H8A108.8C16—C21—C22108.59 (16)
C9—C8—H8A108.8O2—C22—N2124.31 (18)
C3—C8—H8B108.8O2—C22—C21129.93 (18)
C9—C8—H8B108.8N2—C22—C21105.75 (15)
H8A—C8—H8B107.7C1—N1—C2110.85 (16)
C14—C9—C10116.45 (19)C1—N2—C22125.37 (16)
C14—C9—C8122.59 (17)C1—N2—C15123.47 (15)
C10—C9—C8120.96 (18)C22—N2—C15111.15 (15)
C3—S1—C1—N10.76 (16)N2—C15—C16—C214.5 (2)
C3—S1—C1—N2177.63 (16)C21—C16—C17—C180.6 (3)
N1—C2—C3—C8179.96 (18)C15—C16—C17—C18177.14 (19)
C4—C2—C3—C80.9 (4)C16—C17—C18—C191.7 (3)
N1—C2—C3—S11.1 (2)C17—C18—C19—C201.1 (3)
C4—C2—C3—S1179.79 (17)C18—C19—C20—C210.5 (3)
C1—S1—C3—C20.25 (15)C19—C20—C21—C161.6 (3)
C1—S1—C3—C8179.33 (15)C19—C20—C21—C22175.01 (18)
C3—C2—C4—C5173.1 (2)C17—C16—C21—C201.1 (3)
N1—C2—C4—C57.9 (3)C15—C16—C21—C20179.23 (17)
C3—C2—C4—C654.6 (3)C17—C16—C21—C22176.19 (18)
N1—C2—C4—C6126.4 (2)C15—C16—C21—C222.0 (2)
C3—C2—C4—C766.4 (3)C20—C21—C22—O23.8 (4)
N1—C2—C4—C7112.6 (2)C16—C21—C22—O2179.2 (2)
C2—C3—C8—C9104.1 (2)C20—C21—C22—N2175.65 (19)
S1—C3—C8—C974.74 (19)C16—C21—C22—N21.3 (2)
C3—C8—C9—C1412.5 (3)N2—C1—N1—C2176.86 (17)
C3—C8—C9—C10166.43 (18)S1—C1—N1—C21.5 (2)
C14—C9—C10—C111.7 (3)C3—C2—N1—C11.7 (2)
C8—C9—C10—C11177.34 (19)C4—C2—N1—C1179.14 (18)
C14—C9—C10—Cl1178.77 (15)N1—C1—N2—C22134.9 (2)
C8—C9—C10—Cl12.2 (3)S1—C1—N2—C2246.8 (2)
C9—C10—C11—C121.0 (3)N1—C1—N2—C1546.1 (3)
Cl1—C10—C11—C12179.38 (19)S1—C1—N2—C15132.20 (17)
C10—C11—C12—C130.5 (4)O2—C22—N2—C12.9 (3)
C11—C12—C13—C141.2 (4)C21—C22—N2—C1176.62 (16)
C12—C13—C14—C90.6 (4)O2—C22—N2—C15176.22 (19)
C10—C9—C14—C130.8 (3)C21—C22—N2—C154.3 (2)
C8—C9—C14—C13178.1 (2)O1—C15—N2—C15.6 (3)
O1—C15—C16—C177.7 (4)C16—C15—N2—C1175.46 (16)
N2—C15—C16—C17173.5 (2)O1—C15—N2—C22173.47 (19)
O1—C15—C16—C21174.3 (2)C16—C15—N2—C225.4 (2)

Experimental details

Crystal data
Chemical formulaC22H19ClN2O2S
Mr410.90
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.8357 (4), 8.1587 (4), 16.1487 (8)
α, β, γ (°)100.404 (1), 95.897 (1), 96.490 (1)
V3)1000.85 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.46 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.868, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
7798, 3857, 3268
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.122, 1.15
No. of reflections3857
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHolla, B. S., Malini, K. V., Rao, B. S. N., Sarojini, B. K. & Kumari, N. S. (2003). Eur. J. Med. Chem. 38, 313–318.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, A. X., Cao, G., Ma, Y. Q., Zhang, J. Y. & Ou, X. M. (2008). Chin. J. Struct. Chem. 27, 1235–1239.  CAS Google Scholar
First citationKazzouli, S. E., Berteina-Raboin, S., Mouaddibb, A. & Guillaumeta, G. (2002). Tetrahedron Lett. 43, 3193–3196.  Google Scholar
First citationLima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., Moraes, V. L. G. & Barreiro, E. J. (2002). Bioorg. Med. Chem. 12, 3067–3073.  Web of Science CrossRef Google Scholar
First citationMiyachi, H., Ogasawara, A., Azuma, A. & Hashimoto, Y. (1997). Bioorg. Med. Chem. 5, 2095–2102.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYachide, T. N., Aoyama, A., Makishima, M., Miyachi, H. & Hashimoto, Y. (2007). Bioorg. Med. Chem Lett. 17, 3957–3961.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds