organic compounds
3,3-Dinitroazetidinium 2-hydroxybenzoate
aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032 Shaanxi, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000 Shaanxi, People's Republic of China, and cSchool of Chemical Engineering, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
*Correspondence e-mail: donghuhai@qq.com
In the title gem-dinitroazetidinium 2-hydroxybenzoate salt, C3H6N3O4+·C7H5O3−, the azetidine ring is virtually planar, with a mean deviation from the plane of 0.0242 Å. The dihedral angle between the two nitro groups is 87.5 (1)°.
Related literature
For related literature on 1,3,3-trinitroazetidine and compounds prepared from its derivative 3,3-dinitroazetidine, see: Archibald et al. (1990); Gao et al. (2009); Hiskey et al. (1992); Ma, Yan, Li, Guan et al. (2009); Ma, Yan, Li, Song & Hu (2009); Ma, Yan, Song et al. (2009); Ma et al. (2010); Yan et al. (2009, 2010).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810043825/ng5053sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810043825/ng5053Isup2.hkl
A solution of DNAZ (0.30 g, 2.04 mmol), salicylic acid (0.28 ml, 2.04 mmol) in trichloromethane (15.0 ml) was stirred for 2 h. The reaction mixture was concentrated in vacuo, then a white solid began to precipitate. The solid product was washed with ethanol and purified by recrystallization from trichloromethane to give the pure colorless compound in 90.5% yield. The title compound (43 mg,0.15 mmol) was dissolved in chloroform (15 ml). Colorless crystals were isolated after several days. Elemental analysis calculated for C10H11N3O7: C 42.11, N 14.73, H 3.89%; found: C 47.44, N 14.80, H 3.89%. IR (KBr, cm-1): 3060.25, 1647.33, 1579.29, 1298.39, 1485.78, 1454.23, 706.64.
H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.97 Å, N—H distances 0.90 Å and O—H distances 0.82 Å.
Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring systems. This makes them good candidates for energetic materials (propellants or explosives). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992;)can prepare a variety of solid energetic materials with high oxygen-balance (Ma, Yan, Li, Guan et al., 2009; Gao et al., 2009; Ma, Yan, Li, Song & Hu, 2009; Ma, Yan, Song et al., 2009; Yan et al., 2009; Yan et al., 2010; Ma et al., 2010). This paper reports synthesis and
of the title DNAZ salt.For related literature on 1,3,3-trinitroazetidine and compounds prepared from its derivative 3,3-dinitroazetidine, see: Archibald et al. (1990); Gao et al. (2009); Hiskey et al. (1992); Ma, Yan, Li, Guan et al. (2009); Ma, Yan, Li, Song & Hu (2009); Ma, Yan, Song et al. (2009); Ma et al. (2010); Yan et al. (2009, 2010).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius. |
C3H6N3O4+·C7H5O3− | F(000) = 592 |
Mr = 285.22 | Dx = 1.509 Mg m−3 |
Monoclinic, P21/n | Melting point: 379.4 K |
Hall symbol: -P2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 11.174 (3) Å | Cell parameters from 1275 reflections |
b = 7.013 (2) Å | θ = 2.5–21.9° |
c = 16.661 (5) Å | µ = 0.13 mm−1 |
β = 105.960 (5)° | T = 296 K |
V = 1255.3 (6) Å3 | Block, colorless |
Z = 4 | 0.36 × 0.26 × 0.19 mm |
Bruker APEX CCD area-detector diffractometer | 2222 independent reflections |
Radiation source: fine-focus sealed tube | 1504 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
phi and ω scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −12→13 |
Tmin = 0.955, Tmax = 0.976 | k = −8→8 |
6012 measured reflections | l = −18→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0797P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.002 |
2222 reflections | Δρmax = 0.34 e Å−3 |
183 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.008 (2) |
C3H6N3O4+·C7H5O3− | V = 1255.3 (6) Å3 |
Mr = 285.22 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.174 (3) Å | µ = 0.13 mm−1 |
b = 7.013 (2) Å | T = 296 K |
c = 16.661 (5) Å | 0.36 × 0.26 × 0.19 mm |
β = 105.960 (5)° |
Bruker APEX CCD area-detector diffractometer | 2222 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1504 reflections with I > 2σ(I) |
Tmin = 0.955, Tmax = 0.976 | Rint = 0.027 |
6012 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.34 e Å−3 |
2222 reflections | Δρmin = −0.17 e Å−3 |
183 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O7 | 0.58576 (13) | 0.7941 (2) | 0.06388 (8) | 0.0563 (4) | |
O6 | 0.46538 (12) | 0.5959 (2) | 0.10843 (9) | 0.0629 (4) | |
O5 | 0.53637 (13) | 0.2679 (2) | 0.15624 (10) | 0.0619 (4) | |
H5 | 0.4878 | 0.3566 | 0.1405 | 0.093* | |
C4 | 0.67334 (16) | 0.4982 (3) | 0.12215 (10) | 0.0380 (5) | |
N1 | 0.36966 (14) | 0.9772 (2) | 0.05657 (9) | 0.0447 (4) | |
H1D | 0.3660 | 1.0893 | 0.0297 | 0.054* | |
H1C | 0.4417 | 0.9169 | 0.0593 | 0.054* | |
C5 | 0.65122 (17) | 0.3202 (3) | 0.15274 (11) | 0.0407 (5) | |
N3 | 0.10748 (16) | 0.9419 (3) | 0.10825 (12) | 0.0580 (5) | |
C10 | 0.56810 (18) | 0.6383 (3) | 0.09534 (11) | 0.0439 (5) | |
C3 | 0.34209 (17) | 0.9937 (3) | 0.13919 (11) | 0.0471 (5) | |
H3B | 0.3181 | 1.1211 | 0.1514 | 0.056* | |
H3A | 0.4075 | 0.9437 | 0.1854 | 0.056* | |
C2 | 0.23289 (16) | 0.8586 (3) | 0.10855 (11) | 0.0412 (5) | |
C6 | 0.7486 (2) | 0.1923 (3) | 0.18100 (11) | 0.0511 (5) | |
H6 | 0.7340 | 0.0722 | 0.2000 | 0.061* | |
C1 | 0.25748 (18) | 0.8552 (3) | 0.02338 (11) | 0.0479 (5) | |
H1A | 0.2765 | 0.7293 | 0.0061 | 0.057* | |
H1B | 0.1928 | 0.9160 | −0.0201 | 0.057* | |
C9 | 0.79343 (18) | 0.5449 (3) | 0.12150 (12) | 0.0501 (5) | |
H9 | 0.8089 | 0.6630 | 0.1010 | 0.060* | |
N2 | 0.24179 (17) | 0.6717 (3) | 0.15310 (13) | 0.0585 (5) | |
O4 | 0.08623 (14) | 1.0972 (3) | 0.07553 (11) | 0.0771 (5) | |
C7 | 0.8681 (2) | 0.2457 (4) | 0.18067 (12) | 0.0595 (6) | |
H7 | 0.9340 | 0.1620 | 0.2011 | 0.071* | |
O3 | 0.03912 (17) | 0.8537 (3) | 0.13847 (15) | 0.0995 (7) | |
C8 | 0.89002 (19) | 0.4198 (4) | 0.15066 (13) | 0.0594 (6) | |
H8 | 0.9703 | 0.4534 | 0.1500 | 0.071* | |
O1 | 0.19839 (17) | 0.5345 (3) | 0.11130 (12) | 0.0861 (6) | |
O2 | 0.29006 (19) | 0.6747 (3) | 0.22818 (11) | 0.0891 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O7 | 0.0650 (10) | 0.0485 (9) | 0.0622 (9) | 0.0038 (7) | 0.0288 (7) | 0.0121 (7) |
O6 | 0.0415 (8) | 0.0663 (11) | 0.0854 (11) | 0.0040 (7) | 0.0248 (7) | 0.0167 (8) |
O5 | 0.0492 (9) | 0.0573 (10) | 0.0826 (11) | −0.0109 (7) | 0.0237 (8) | 0.0107 (8) |
C4 | 0.0390 (10) | 0.0420 (11) | 0.0340 (9) | −0.0047 (8) | 0.0115 (7) | −0.0025 (8) |
N1 | 0.0432 (9) | 0.0451 (10) | 0.0531 (9) | 0.0044 (7) | 0.0256 (7) | 0.0105 (7) |
C5 | 0.0418 (11) | 0.0429 (11) | 0.0363 (9) | −0.0046 (9) | 0.0087 (8) | −0.0011 (8) |
N3 | 0.0432 (10) | 0.0605 (13) | 0.0751 (12) | −0.0041 (9) | 0.0245 (9) | −0.0147 (10) |
C10 | 0.0500 (12) | 0.0425 (12) | 0.0400 (10) | −0.0027 (9) | 0.0140 (9) | 0.0011 (9) |
C3 | 0.0407 (11) | 0.0577 (13) | 0.0467 (10) | −0.0116 (9) | 0.0185 (8) | −0.0046 (9) |
C2 | 0.0330 (9) | 0.0492 (12) | 0.0447 (10) | −0.0038 (8) | 0.0162 (8) | −0.0006 (9) |
C6 | 0.0633 (14) | 0.0489 (12) | 0.0395 (10) | 0.0057 (10) | 0.0116 (9) | 0.0042 (9) |
C1 | 0.0484 (11) | 0.0557 (13) | 0.0401 (10) | 0.0045 (10) | 0.0131 (8) | −0.0021 (9) |
C9 | 0.0450 (11) | 0.0535 (13) | 0.0546 (12) | −0.0094 (10) | 0.0183 (9) | −0.0029 (10) |
N2 | 0.0551 (11) | 0.0572 (13) | 0.0725 (13) | −0.0050 (9) | 0.0333 (10) | 0.0088 (10) |
O4 | 0.0646 (11) | 0.0716 (12) | 0.0967 (13) | 0.0169 (9) | 0.0250 (9) | −0.0032 (10) |
C7 | 0.0537 (14) | 0.0751 (17) | 0.0443 (11) | 0.0211 (12) | 0.0041 (10) | −0.0059 (11) |
O3 | 0.0672 (11) | 0.0869 (14) | 0.173 (2) | −0.0139 (10) | 0.0806 (13) | −0.0085 (13) |
C8 | 0.0367 (11) | 0.0786 (17) | 0.0633 (13) | −0.0060 (11) | 0.0147 (10) | −0.0108 (12) |
O1 | 0.0896 (13) | 0.0543 (11) | 0.1241 (16) | −0.0227 (9) | 0.0458 (11) | −0.0050 (10) |
O2 | 0.1054 (14) | 0.1075 (15) | 0.0614 (11) | 0.0001 (11) | 0.0347 (10) | 0.0311 (10) |
O7—C10 | 1.251 (2) | C3—H3B | 0.9700 |
O6—C10 | 1.261 (2) | C3—H3A | 0.9700 |
O5—C5 | 1.351 (2) | C2—N2 | 1.496 (3) |
O5—H5 | 0.8200 | C2—C1 | 1.518 (3) |
C4—C9 | 1.384 (3) | C6—C7 | 1.388 (3) |
C4—C5 | 1.396 (2) | C6—H6 | 0.9300 |
C4—C10 | 1.503 (3) | C1—H1A | 0.9700 |
N1—C1 | 1.493 (2) | C1—H1B | 0.9700 |
N1—C3 | 1.495 (2) | C9—C8 | 1.372 (3) |
N1—H1D | 0.9000 | C9—H9 | 0.9300 |
N1—H1C | 0.9000 | N2—O1 | 1.208 (2) |
C5—C6 | 1.389 (3) | N2—O2 | 1.219 (2) |
N3—O3 | 1.196 (2) | C7—C8 | 1.367 (3) |
N3—O4 | 1.212 (2) | C7—H7 | 0.9300 |
N3—C2 | 1.517 (2) | C8—H8 | 0.9300 |
C3—C2 | 1.518 (3) | ||
C5—O5—H5 | 109.5 | N2—C2—C1 | 116.46 (16) |
C9—C4—C5 | 118.95 (17) | N3—C2—C1 | 114.04 (15) |
C9—C4—C10 | 121.59 (17) | N2—C2—C3 | 116.25 (16) |
C5—C4—C10 | 119.37 (16) | N3—C2—C3 | 114.66 (16) |
C1—N1—C3 | 91.18 (13) | C1—C2—C3 | 89.36 (14) |
C1—N1—H1D | 113.4 | C7—C6—C5 | 119.3 (2) |
C3—N1—H1D | 113.4 | C7—C6—H6 | 120.3 |
C1—N1—H1C | 113.4 | C5—C6—H6 | 120.3 |
C3—N1—H1C | 113.4 | N1—C1—C2 | 89.66 (13) |
H1D—N1—H1C | 110.7 | N1—C1—H1A | 113.7 |
O5—C5—C6 | 118.36 (17) | C2—C1—H1A | 113.7 |
O5—C5—C4 | 121.62 (16) | N1—C1—H1B | 113.7 |
C6—C5—C4 | 120.02 (17) | C2—C1—H1B | 113.7 |
O3—N3—O4 | 125.8 (2) | H1A—C1—H1B | 110.9 |
O3—N3—C2 | 119.7 (2) | C8—C9—C4 | 121.03 (19) |
O4—N3—C2 | 114.47 (17) | C8—C9—H9 | 119.5 |
O7—C10—O6 | 122.29 (18) | C4—C9—H9 | 119.5 |
O7—C10—C4 | 119.66 (17) | O1—N2—O2 | 126.9 (2) |
O6—C10—C4 | 118.00 (17) | O1—N2—C2 | 116.75 (19) |
N1—C3—C2 | 89.56 (14) | O2—N2—C2 | 116.36 (19) |
N1—C3—H3B | 113.7 | C8—C7—C6 | 120.8 (2) |
C2—C3—H3B | 113.7 | C8—C7—H7 | 119.6 |
N1—C3—H3A | 113.7 | C6—C7—H7 | 119.6 |
C2—C3—H3A | 113.7 | C7—C8—C9 | 119.87 (19) |
H3B—C3—H3A | 111.0 | C7—C8—H8 | 120.1 |
N2—C2—N3 | 105.92 (15) | C9—C8—H8 | 120.1 |
C9—C4—C5—O5 | 178.87 (17) | O5—C5—C6—C7 | −177.77 (16) |
C10—C4—C5—O5 | 2.3 (2) | C4—C5—C6—C7 | 1.8 (3) |
C9—C4—C5—C6 | −0.7 (3) | C3—N1—C1—C2 | −3.71 (15) |
C10—C4—C5—C6 | −177.31 (16) | N2—C2—C1—N1 | −115.59 (16) |
C9—C4—C10—O7 | 7.2 (3) | N3—C2—C1—N1 | 120.51 (16) |
C5—C4—C10—O7 | −176.32 (16) | C3—C2—C1—N1 | 3.65 (14) |
C9—C4—C10—O6 | −170.31 (17) | C5—C4—C9—C8 | −0.3 (3) |
C5—C4—C10—O6 | 6.2 (2) | C10—C4—C9—C8 | 176.18 (17) |
C1—N1—C3—C2 | 3.71 (14) | N3—C2—N2—O1 | 87.1 (2) |
O3—N3—C2—N2 | −1.8 (2) | C1—C2—N2—O1 | −40.8 (2) |
O4—N3—C2—N2 | 178.59 (17) | C3—C2—N2—O1 | −144.22 (18) |
O3—N3—C2—C1 | 127.6 (2) | N3—C2—N2—O2 | −91.5 (2) |
O4—N3—C2—C1 | −52.0 (2) | C1—C2—N2—O2 | 140.53 (18) |
O3—N3—C2—C3 | −131.4 (2) | C3—C2—N2—O2 | 37.1 (2) |
O4—N3—C2—C3 | 49.0 (2) | C5—C6—C7—C8 | −1.9 (3) |
N1—C3—C2—N2 | 115.79 (17) | C6—C7—C8—C9 | 0.9 (3) |
N1—C3—C2—N3 | −119.95 (17) | C4—C9—C8—C7 | 0.2 (3) |
N1—C3—C2—C1 | −3.65 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O6 | 0.90 | 2.38 | 2.922 (2) | 118 |
N1—H1C···O7 | 0.90 | 1.81 | 2.708 (2) | 179 |
N1—H1D···O7i | 0.90 | 1.96 | 2.720 (2) | 141 |
Symmetry code: (i) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C3H6N3O4+·C7H5O3− |
Mr | 285.22 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 11.174 (3), 7.013 (2), 16.661 (5) |
β (°) | 105.960 (5) |
V (Å3) | 1255.3 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.36 × 0.26 × 0.19 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.955, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6012, 2222, 1504 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.128, 0.99 |
No. of reflections | 2222 |
No. of parameters | 183 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.17 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O6 | 0.90 | 2.38 | 2.922 (2) | 118.3 |
N1—H1C···O7 | 0.90 | 1.81 | 2.708 (2) | 179.4 |
N1—H1D···O7i | 0.90 | 1.96 | 2.720 (2) | 140.7 |
Symmetry code: (i) −x+1, −y+2, −z. |
Acknowledgements
We thank the National Natural Science Foundation of China (grant No. 21073141), the Natural Science Foundation of Shaanxi Province (grant No. 2009JQ2002) and NWU Graduate Experimental Research Funds (grant No. 09YSY23) for generously supporting this study.
References
Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582. CAS Google Scholar
Hiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J. Heterocycl. Chem. 29, 1855–1856. CrossRef CAS Google Scholar
Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009). J. Hazard. Mater. 169, 1068–1073. Web of Science CrossRef PubMed CAS Google Scholar
Ma, H. X., Yan, B., Li, J. F., Ren, Y. H., Chen, Y. S., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2010). J. Mol. Struct. 981, 103–110. Web of Science CSD CrossRef CAS Google Scholar
Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009). J. Therm. Anal. Calorim. 95, 437–444. Web of Science CrossRef CAS Google Scholar
Ma, H. X., Yan, B., Song, J. R., Lü, X. Q. & Wang, L. J. (2009). Chem. J. Chin. Univ. 30, 371–381. Google Scholar
Sheldrick, G. M. (2000). SADABS . University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, B., Ma, H.-X., Hu, Y., Guan, Y.-L. & Song, J.-R. (2009). Acta Cryst. E65, o3215. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yan, B., Ma, H.-X., Li, J.-F., Guan, Y.-L. & Song, J.-R. (2010). Acta Cryst. E66, o57. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring systems. This makes them good candidates for energetic materials (propellants or explosives). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992;)can prepare a variety of solid energetic materials with high oxygen-balance (Ma, Yan, Li, Guan et al., 2009; Gao et al., 2009; Ma, Yan, Li, Song & Hu, 2009; Ma, Yan, Song et al., 2009; Yan et al., 2009; Yan et al., 2010; Ma et al., 2010). This paper reports synthesis and crystal structure of the title DNAZ salt.