organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3,5-di­chloro­benzene­sulfonamide

aCollege of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
*Correspondence e-mail: xyqin6688@163.com

(Received 11 September 2010; accepted 10 October 2010; online 20 October 2010)

In the title compound, C6H6Cl2N2O2S, the O atoms of the sulfonamide group lie on one side of the benzene ring and the amino group lies on the opposite side. An inter­molecular N—H⋯Cl inter­action occurs. In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds, forming a three-dimensional structure with supporting ππ stacking inter­actions [centroid–centroid distance = 3.7903 (12) Å]. A short Cl⋯Cl contact [3.3177 (10) Å] also occurs.

Related literature

For the preparation, see: Qiu & Lv (2005[Qiu, M.-Y. & Lv, D.-J. (2005). Appl. Chem. Ind. 34, 115-116.]). For Cl⋯Cl contacts, see: Sakurai et al. (1963[Sakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354-363.]); Stone et al. (1994[Stone, A. J., Lucas, J., Rowland, R. S. & Thornley, A. E. (1994). J. Am. Chem. Soc. 116, 4910-4918.]); Qin et al. (2008[Qin, X.-Y., Li, G.-Z., Zhang, S.-H. & Liu, Z. (2008). J. Synth. Cryst. 37, 1448-1452.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6Cl2N2O2S

  • Mr = 241.09

  • Monoclinic, P 21 /c

  • a = 8.9544 (17) Å

  • b = 13.387 (3) Å

  • c = 7.5673 (15) Å

  • β = 95.809 (2)°

  • V = 902.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 93 K

  • 0.30 × 0.27 × 0.13 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.771, Tmax = 0.888

  • 5918 measured reflections

  • 2008 independent reflections

  • 1759 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.00

  • 2008 reflections

  • 134 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.80 (2) 2.60 (2) 2.9793 (18) 111 (2)
N1—H1B⋯O2ii 0.83 (3) 2.40 (3) 3.199 (2) 160 (2)
N2—H2A⋯O1i 0.81 (2) 2.14 (2) 2.935 (2) 167 (2)
N2—H2B⋯O2iii 0.86 (3) 2.08 (3) 2.934 (2) 172 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

4-Amino-3,5-dichloro-benzenesulfonamide is a primary substance used to synthesize Diclofenac sodium. Although the synthetic methods of the title compound has been reported (Qiu & Lv, 2005), no crystal structure data have been published so far. Our experimental aim was to obtain a Co(II) complex by preparing the potassium salt of 4-amino-3,5-dichloro-benzenesulfonamide modified by salicylaldehyde, and then reacting with CoCl2.6H2O To our surprise, we obtained yellow crystals which were identified as the title compound. Here, we report the synthesis and crystal structure of the title compound.

In the title compound, C6H6Cl2N2O2S, the amino and chlorine substituent groups are essentially co-planar (maximum r.m.s. deviation of fitted atoms is -0.0747 Å) with the benzene ring to which they are bonded. The O atoms of the sulfonamide group lie on one side of the benzene ring and the amino group lies on the opposite side (Scheme I, Fig. 1)

In the crystal, molecules are linked by intermolecular hydrogen bonds N—H···O (Fig.2., Table 2) and ππ stacking interactions [3.790 Å, the distance of the centroids between the two benzene rings, symmetry code as x, -y + 1/2, z + 1/2 and x, -y + 1/2, z - 1/2], and a short Cl···Cl contact [3.318 Å, symmetry code as -x, -y - 1, -z] occurs (Fig. 2). The Cl···Cl contact is stronger than that of the [Zn(II)(C8H7O4NCl2S)(Phen)(H2O)]3 (Qin et al., 2008).

Related literature top

For the preparation, see: Qiu & Lv (2005).For Cl···Cl contacts, see: Sakurai et al. (1963); Stone et al. (1994); Qin et al. (2008).

Experimental top

Powdered 4-amino-3,5-dichloro-benzenesulfonamide (2.671 g, 10.08 mmol), KOH(0.504 g, 9.0 mmol) and salicylaldehyde (0.53 ml, 5.01 mmol) were mixed in methanol (40 ml). The mixture was stirred at 323 K for 2 h. Then, 1.30 ml solution was taken out from the mixed solution was added into a solution of CoCl2.6H2O(0.060 g, 0.25 mmol) in methanol (25 ml). This mixture has been stirred at 323 K for 8 h. Subsequently, the reagents were filtrated. The resulting solution was left at room temperature, orange-yellow crystals were obtained after some days.

Refinement top

All H atoms were geometrically positioned and refined using a mixed model, with distance restraints of C—H = 0.9500 and N—H = 0.80 (2)–0.86 (3) Å, and withUiso(H) = 1.2Ueq(C).

Structure description top

4-Amino-3,5-dichloro-benzenesulfonamide is a primary substance used to synthesize Diclofenac sodium. Although the synthetic methods of the title compound has been reported (Qiu & Lv, 2005), no crystal structure data have been published so far. Our experimental aim was to obtain a Co(II) complex by preparing the potassium salt of 4-amino-3,5-dichloro-benzenesulfonamide modified by salicylaldehyde, and then reacting with CoCl2.6H2O To our surprise, we obtained yellow crystals which were identified as the title compound. Here, we report the synthesis and crystal structure of the title compound.

In the title compound, C6H6Cl2N2O2S, the amino and chlorine substituent groups are essentially co-planar (maximum r.m.s. deviation of fitted atoms is -0.0747 Å) with the benzene ring to which they are bonded. The O atoms of the sulfonamide group lie on one side of the benzene ring and the amino group lies on the opposite side (Scheme I, Fig. 1)

In the crystal, molecules are linked by intermolecular hydrogen bonds N—H···O (Fig.2., Table 2) and ππ stacking interactions [3.790 Å, the distance of the centroids between the two benzene rings, symmetry code as x, -y + 1/2, z + 1/2 and x, -y + 1/2, z - 1/2], and a short Cl···Cl contact [3.318 Å, symmetry code as -x, -y - 1, -z] occurs (Fig. 2). The Cl···Cl contact is stronger than that of the [Zn(II)(C8H7O4NCl2S)(Phen)(H2O)]3 (Qin et al., 2008).

For the preparation, see: Qiu & Lv (2005).For Cl···Cl contacts, see: Sakurai et al. (1963); Stone et al. (1994); Qin et al. (2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis, showing layers of molecules conneted by N—H···O hydrogen bonds, Cl···Cl contact and ππ stacking interactions.
4-Amino-3,5-dichlorobenzenesulfonamide top
Crystal data top
C6H6Cl2N2O2SF(000) = 488
Mr = 241.09Dx = 1.774 Mg m3
Monoclinic, P21/cMelting point = 207.2–207.5 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9544 (17) ÅCell parameters from 2008 reflections
b = 13.387 (3) Åθ = 3.0–27.5°
c = 7.5673 (15) ŵ = 0.92 mm1
β = 95.809 (2)°T = 93 K
V = 902.4 (3) Å3Block, orange-yellow
Z = 40.30 × 0.27 × 0.13 mm
Data collection top
Rigaku SPIDER
diffractometer
2008 independent reflections
Radiation source: rotating anode1759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.771, Tmax = 0.888k = 1710
5918 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.260P]
where P = (Fo2 + 2Fc2)/3
2008 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H6Cl2N2O2SV = 902.4 (3) Å3
Mr = 241.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9544 (17) ŵ = 0.92 mm1
b = 13.387 (3) ÅT = 93 K
c = 7.5673 (15) Å0.30 × 0.27 × 0.13 mm
β = 95.809 (2)°
Data collection top
Rigaku SPIDER
diffractometer
2008 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1759 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.888Rint = 0.020
5918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.45 e Å3
2008 reflectionsΔρmin = 0.36 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24595 (5)0.01031 (3)0.45203 (6)0.01881 (13)
Cl20.00000 (5)0.37179 (3)0.29728 (7)0.02268 (13)
S10.57265 (5)0.34844 (3)0.58837 (6)0.01325 (12)
O10.53529 (14)0.43437 (9)0.68889 (17)0.0171 (3)
O20.67408 (13)0.27471 (9)0.67149 (18)0.0190 (3)
N10.00496 (18)0.15006 (13)0.3074 (2)0.0198 (4)
N20.64946 (18)0.39096 (12)0.4206 (2)0.0166 (3)
C10.40449 (19)0.28746 (13)0.5127 (2)0.0135 (3)
C20.39422 (19)0.18356 (12)0.5117 (2)0.0137 (3)
H20.47780.14370.55510.016*
C30.26064 (19)0.13958 (13)0.4466 (2)0.0145 (4)
C40.13407 (19)0.19420 (13)0.3762 (2)0.0143 (4)
C50.15166 (19)0.29916 (13)0.3806 (2)0.0155 (4)
C60.28195 (19)0.34575 (13)0.4475 (2)0.0151 (4)
H60.28850.41660.44930.018*
H1A0.001 (3)0.0906 (19)0.305 (3)0.032 (7)*
H2A0.604 (3)0.4378 (17)0.375 (3)0.022 (6)*
H1B0.071 (3)0.1841 (18)0.277 (3)0.033 (7)*
H2B0.665 (3)0.3444 (19)0.346 (4)0.039 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0172 (2)0.0123 (2)0.0260 (2)0.00223 (16)0.00262 (17)0.00010 (16)
Cl20.0118 (2)0.0194 (2)0.0355 (3)0.00248 (17)0.00420 (18)0.00595 (19)
S10.0103 (2)0.0123 (2)0.0165 (2)0.00140 (15)0.00131 (16)0.00062 (15)
O10.0175 (7)0.0159 (6)0.0177 (6)0.0018 (5)0.0006 (5)0.0024 (5)
O20.0132 (7)0.0156 (6)0.0267 (7)0.0008 (5)0.0049 (5)0.0048 (5)
N10.0123 (9)0.0168 (8)0.0287 (9)0.0024 (7)0.0059 (7)0.0018 (7)
N20.0154 (8)0.0138 (7)0.0207 (8)0.0003 (6)0.0027 (6)0.0002 (6)
C10.0112 (9)0.0153 (8)0.0137 (8)0.0015 (6)0.0005 (7)0.0005 (7)
C20.0120 (9)0.0142 (8)0.0146 (8)0.0005 (7)0.0003 (7)0.0006 (7)
C30.0152 (9)0.0123 (8)0.0160 (8)0.0006 (7)0.0017 (7)0.0008 (6)
C40.0113 (9)0.0174 (8)0.0140 (8)0.0019 (7)0.0003 (7)0.0004 (7)
C50.0123 (9)0.0168 (8)0.0172 (9)0.0036 (7)0.0007 (7)0.0036 (7)
C60.0138 (9)0.0120 (8)0.0195 (9)0.0004 (6)0.0020 (7)0.0008 (7)
Geometric parameters (Å, º) top
Cl1—C31.7363 (18)N2—H2B0.86 (3)
Cl2—C51.7360 (17)C1—C21.394 (2)
S1—O11.4370 (13)C1—C61.395 (2)
S1—O21.4419 (13)C2—C31.379 (2)
S1—N21.6078 (16)C2—H20.9500
S1—C11.7571 (18)C3—C41.407 (2)
N1—C41.355 (2)C4—C51.414 (2)
N1—H1A0.80 (2)C5—C61.374 (2)
N1—H1B0.83 (3)C6—H60.9500
N2—H2A0.81 (2)
O1—S1—O2119.15 (8)C3—C2—C1118.85 (16)
O1—S1—N2106.00 (8)C3—C2—H2120.6
O2—S1—N2106.61 (8)C1—C2—H2120.6
O1—S1—C1107.86 (8)C2—C3—C4123.34 (16)
O2—S1—C1107.78 (8)C2—C3—Cl1118.83 (13)
N2—S1—C1109.15 (8)C4—C3—Cl1117.83 (13)
C4—N1—H1A119.6 (18)N1—C4—C3122.82 (17)
C4—N1—H1B120.7 (17)N1—C4—C5122.09 (16)
H1A—N1—H1B119 (2)C3—C4—C5115.08 (15)
S1—N2—H2A112.2 (16)C6—C5—C4123.25 (16)
S1—N2—H2B111.9 (17)C6—C5—Cl2118.92 (14)
H2A—N2—H2B113 (2)C4—C5—Cl2117.83 (13)
C2—C1—C6120.47 (16)C5—C6—C1118.99 (16)
C2—C1—S1121.28 (13)C5—C6—H6120.5
C6—C1—S1118.21 (13)C1—C6—H6120.5
O1—S1—C1—C2140.05 (14)Cl1—C3—C4—N12.6 (2)
O2—S1—C1—C210.20 (17)C2—C3—C4—C51.5 (3)
N2—S1—C1—C2105.21 (15)Cl1—C3—C4—C5178.10 (13)
O1—S1—C1—C642.09 (16)N1—C4—C5—C6179.13 (17)
O2—S1—C1—C6171.94 (13)C3—C4—C5—C60.2 (3)
N2—S1—C1—C672.65 (16)N1—C4—C5—Cl21.0 (2)
C6—C1—C2—C30.5 (3)C3—C4—C5—Cl2179.65 (13)
S1—C1—C2—C3178.35 (13)C4—C5—C6—C10.8 (3)
C1—C2—C3—C41.7 (3)Cl2—C5—C6—C1179.29 (13)
C1—C2—C3—Cl1177.91 (13)C2—C1—C6—C50.7 (3)
C2—C3—C4—N1177.82 (17)S1—C1—C6—C5177.19 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.80 (2)2.60 (2)2.9793 (18)111 (2)
N2—H2A···O1i0.81 (2)2.14 (2)2.935 (2)167 (2)
N1—H1B···O2ii0.83 (3)2.40 (3)3.199 (2)160 (2)
N2—H2B···O2iii0.86 (3)2.08 (3)2.934 (2)172 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H6Cl2N2O2S
Mr241.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)8.9544 (17), 13.387 (3), 7.5673 (15)
β (°) 95.809 (2)
V3)902.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.30 × 0.27 × 0.13
Data collection
DiffractometerRigaku SPIDER
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.771, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
5918, 2008, 1759
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.00
No. of reflections2008
No. of parameters134
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.36

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.80 (2)2.60 (2)2.9793 (18)111 (2)
N2—H2A···O1i0.81 (2)2.14 (2)2.935 (2)167 (2)
N1—H1B···O2ii0.83 (3)2.40 (3)3.199 (2)160 (2)
N2—H2B···O2iii0.86 (3)2.08 (3)2.934 (2)172 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

We thank the College of Pharmacy, Guilin Medical University, People's Republic of China for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationQin, X.-Y., Li, G.-Z., Zhang, S.-H. & Liu, Z. (2008). J. Synth. Cryst. 37, 1448–1452.  CAS Google Scholar
First citationQiu, M.-Y. & Lv, D.-J. (2005). Appl. Chem. Ind. 34, 115–116.  CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354–363.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStone, A. J., Lucas, J., Rowland, R. S. & Thornley, A. E. (1994). J. Am. Chem. Soc. 116, 4910–4918.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds