organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-(Di­phenyl­phosphan­yl)quinoline

aDepartment of Chemical Sciences, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim 737 102, India, and bDépartement de Chimie, Université de Montréal, CP 6128, Succ., Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: mihaela.cibian@umontreal.ca

(Received 6 October 2010; accepted 7 October 2010; online 20 October 2010)

The title compound, C21H16NP, is a known P—N chelator and various crystal structures of its metal complexes have been reported. However, no crystallographic evidence of the free ligand has been given to date. The phenyl rings are almost orthogonal to one another [dihedral angle = 88.9 (1)°], and they are twisted from the mean plane of the quinoline by 80.5 (1) and 76.3 (1)°.

Related literature

Synthetic details regarding this compound were reported by Issleib & Haftendorn (1970[Issleib, K. & Haftendorn, M. (1970). Z. Anorg. Allg. Chem. 376, 79-86.]); Feltham & Metzger (1971[Feltham, R. D. & Metzger, H. G. (1971). J. Organomet. Chem. 33, 347-55.]); Lai et al. (2001[Lai, C. W., Kwong, F. Y., Wang, Y. & Chan, K. S. (2001). Tetrahedron Lett. 42, 4883-4885.]); Lord et al. (2009[Lord, A.-M., Mahon, M. F., Lloyd, M. D. & Threadgill, M. D. (2009). J. Med. Chem. 52, 868-877.]). For the crystal structures of some of its metal complexes, see: Hudali et al. (1979[Hudali, H. A., Kingston, J. V. & Tayim, H. A. (1979). Inorg. Chem. 18, 1391-1394.]); Sun et al. (2002[Sun, W.-H., Li, Z., Hu, H., Wu, B., Yang, H., Zhu, N., Leng, X. & Wang, H. (2002). New J. Chem. 26, 1474-1478.]); Suzuki (2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]); Suzuki et al. (2009[Suzuki, T., Kotera, M., Takayama, A. & Kojima, M. (2009). Polyhedron, 28, 2287-2293.]); Canovese et al. (2008[Canovese, L., Santo, C. & Visentin, F. (2008). Organometallics, 27, 3577-3581.]); Qin et al. (2009[Qin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y. & Wang, L. (2009). Dalton Trans. pp. 9388-9391.]); Tsukuda et al. (2009[Tsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7-12.]). The propeller-type conformation of the title compound is characteristic for tris-(ar­yl)-substituted phosphines, see: Beck et al. (2008[Beck, R., Zheng, T., Sun, H., Li, X., Floerke, U. & Klein, H.-F. (2008). J. Organomet. Chem. 693, 3471-3478.]). For C—P—C angles in related structures, see: Van Allen & Venkataraman (2003[Van Allen, D. & Venkataraman, D. (2003). J. Org. Chem. 68, 4590-4593.]); Chuit et al. (1993[Chuit, C., Corriu, R. J. P., Monforte, P., Reye, C., Declercq, J.-P. & Dubourg, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1430-1432.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 12-16 and 238-242. Oxford University Press.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16NP

  • Mr = 313.32

  • Monoclinic, P 21 /c

  • a = 10.7804 (2) Å

  • b = 16.6905 (3) Å

  • c = 9.7753 (2) Å

  • β = 112.651 (1)°

  • V = 1623.21 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.47 mm−1

  • T = 150 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.658, Tmax = 0.839

  • 20905 measured reflections

  • 3170 independent reflections

  • 3067 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.07

  • 3170 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: UdMX (Maris, 2004[Maris, T. (2004). UdMX. Université de Montréal, Montréal, QC, Canada.]).

Supporting information


Comment top

Bearing both imine and phosphine moieties, 8-quinolylphosphine derivatives are good chelators for transition metals. (Hudali et al., 1979) Their complexes have important photochemical and photophysical properties and are widely used in chemical industry (catalysis, functional materials, etc). (Canovese et al., 2008; Qin et al., 2009; Tsukuda et al., 2009). For the specific example of the 8-(diphenylphosphino)quinoline, although crystallographic evidence of various of its metal complexes exists (Suzuki, 2004; Suzuki et al., 2009, Canovese et al., 2008), this is the first report of the free ligand structure (Figure 1).

The structure has a propeller-type conformation, characteristic for tris-(aryl) substituted phosphines (Beck et al., 2008). The P—C bond lengths are within normal ranges for similar arylphosphines (1.81–1.87 Å) (CSD search 09/2010, 29 compounds; Allen, 2002). The phosphorus presents a pyramidal configuration, with the average value of C—P—C angles of 101.7°, in comparison to 100.7° calculated for naphtalene-1yl(diphenylphosphane) (Van Allen & Venkataraman, 2003) and 103.4° for triphenylphosphine (Chuit et al.,1993).

It is worth mentioning the almost orthogonal position of the phenyl rings to one another (88.9 (1)°), and their tilt with respect to the mean plane of the quinoline by 80.5 (1)° and 76.3 (1)°, maximizing the intramolecular CH/π interactions. The structure is also stabilized by intermolecular CH/π interactions between the proton H3 of the quinolyl ring and the π system of an adjacent phenyl (H3···Cg 2.8 Å, C3—H3···Cg 170 (1)°). It is also to be noted the short contact of 2.9 Å, at the limit of the van der Waals radius (3.0 Å), between the phosphorus atom and the quinolyl hydrogen H2 of an adjacent molecule. The distance P···H2 of 2.9 Å and the angle C2—H2···P of 161 (1)° could place this contact it the category of weak donor – weak acceptor interactions. (Desiraju & Steiner, 1999)

Related literature top

Synthetic details regarding this compound were reported by Issleib & Haftendorn (1970); Feltham & Metzger (1971); Lai et al. (2001); Lord et al. (2009). For the crystal structures of some of its metal complexes, see: Hudali et al. (1979); Sun et al. (2002); Suzuki (2004); Suzuki et al. (2009); Canovese et al. (2008); Qin et al. (2009); Tsukuda et al. (2009). The propeller-type conformation of the title compound is characteristic for tris-(aryl)-substituted phosphines, see: Beck et al. (2008). For C—P—C angles in related structures, see: Van Allen & Venkataraman (2003); Chuit et al. (1993). For hydrogen bonds, see: Desiraju & Steiner (1999). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound, 8-(diphenylphosphino)quinoline, was synthesized by the reaction of 8-(trifluoromethylsulfonyl)quinoline with tetrakis-triphenylphosphine palladium in presence of zinc cyanide, as a byproduct of 8-cyanoquinoline (Lord et al. 2009). 8-(Trifluoromethylsulfonyl)quinoline (2.0 g, 7.3 mmol), zinc cyanide (0.54 g, 4.6 mmol) and tetrakis-triphenylphosphine palladium (0.84 g, 0.73 mmol) were taken in dry DMF (15 ml) and refluxed under nitrogen for 2 h. The reaction mixture was cooled and poured into water (150 ml). Aqueous H2SO4 (2M) (15 ml) was added and the mixture was stirred for 5 min. This was then extracted with EtOAc (2 x 100 ml), washed with brine and dried over anhydrous MgSO4. Evaporation of the solvent gave a brown gummy solid. This was subjected to column chromatography on SiO2 with 30% EtOAc in n-hexane as eluent. The first band contained the title compound. Solvent evaporation at room temperature gave off-white X-ray quality crystals.

Refinement top

The H atoms were positioned geometrically (C—H 0.95 Å) and included in the refinement in the riding model approximation; their temperature displacement parameters were set to 1.2 times the equivalent isotropic temperature factors of the parent site.

Structure description top

Bearing both imine and phosphine moieties, 8-quinolylphosphine derivatives are good chelators for transition metals. (Hudali et al., 1979) Their complexes have important photochemical and photophysical properties and are widely used in chemical industry (catalysis, functional materials, etc). (Canovese et al., 2008; Qin et al., 2009; Tsukuda et al., 2009). For the specific example of the 8-(diphenylphosphino)quinoline, although crystallographic evidence of various of its metal complexes exists (Suzuki, 2004; Suzuki et al., 2009, Canovese et al., 2008), this is the first report of the free ligand structure (Figure 1).

The structure has a propeller-type conformation, characteristic for tris-(aryl) substituted phosphines (Beck et al., 2008). The P—C bond lengths are within normal ranges for similar arylphosphines (1.81–1.87 Å) (CSD search 09/2010, 29 compounds; Allen, 2002). The phosphorus presents a pyramidal configuration, with the average value of C—P—C angles of 101.7°, in comparison to 100.7° calculated for naphtalene-1yl(diphenylphosphane) (Van Allen & Venkataraman, 2003) and 103.4° for triphenylphosphine (Chuit et al.,1993).

It is worth mentioning the almost orthogonal position of the phenyl rings to one another (88.9 (1)°), and their tilt with respect to the mean plane of the quinoline by 80.5 (1)° and 76.3 (1)°, maximizing the intramolecular CH/π interactions. The structure is also stabilized by intermolecular CH/π interactions between the proton H3 of the quinolyl ring and the π system of an adjacent phenyl (H3···Cg 2.8 Å, C3—H3···Cg 170 (1)°). It is also to be noted the short contact of 2.9 Å, at the limit of the van der Waals radius (3.0 Å), between the phosphorus atom and the quinolyl hydrogen H2 of an adjacent molecule. The distance P···H2 of 2.9 Å and the angle C2—H2···P of 161 (1)° could place this contact it the category of weak donor – weak acceptor interactions. (Desiraju & Steiner, 1999)

Synthetic details regarding this compound were reported by Issleib & Haftendorn (1970); Feltham & Metzger (1971); Lai et al. (2001); Lord et al. (2009). For the crystal structures of some of its metal complexes, see: Hudali et al. (1979); Sun et al. (2002); Suzuki (2004); Suzuki et al. (2009); Canovese et al. (2008); Qin et al. (2009); Tsukuda et al. (2009). The propeller-type conformation of the title compound is characteristic for tris-(aryl)-substituted phosphines, see: Beck et al. (2008). For C—P—C angles in related structures, see: Van Allen & Venkataraman (2003); Chuit et al. (1993). For hydrogen bonds, see: Desiraju & Steiner (1999). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (Maris, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (30% probability displacement ellipsoids).
8-(Diphenylphosphanyl)quinoline top
Crystal data top
C21H16NPF(000) = 656
Mr = 313.32Dx = 1.282 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9934 reflections
a = 10.7804 (2) Åθ = 4.4–72.3°
b = 16.6905 (3) ŵ = 1.47 mm1
c = 9.7753 (2) ÅT = 150 K
β = 112.651 (1)°Block, colourless
V = 1623.21 (5) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3170 independent reflections
Radiation source: Rotating Anode3067 reflections with I > 2σ(I)
Helios optics monochromatorRint = 0.028
Detector resolution: 5.5 pixels mm-1θmax = 72.4°, θmin = 4.4°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.658, Tmax = 0.839l = 1212
20905 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.4334P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3170 reflectionsΔρmax = 0.28 e Å3
209 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0148 (8)
Crystal data top
C21H16NPV = 1623.21 (5) Å3
Mr = 313.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.7804 (2) ŵ = 1.47 mm1
b = 16.6905 (3) ÅT = 150 K
c = 9.7753 (2) Å0.20 × 0.18 × 0.12 mm
β = 112.651 (1)°
Data collection top
Bruker APEXII
diffractometer
3170 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3067 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.839Rint = 0.028
20905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
3170 reflectionsΔρmin = 0.34 e Å3
209 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 4 K Charged-Coupled Device (CCD) Area Detector using the program APEX2 and a Nonius FR591 rotating anode equiped with a Montel 200 optics The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). One complete sphere of data was collected, to better than 0.80Å resolution.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.85952 (3)1.005358 (18)0.64679 (3)0.02256 (14)
N10.93166 (11)0.84034 (6)0.73402 (12)0.0271 (3)
C10.97809 (14)0.76959 (8)0.79118 (16)0.0314 (3)
H11.04260.76780.89010.038*
C20.93792 (15)0.69649 (8)0.71462 (17)0.0352 (3)
H20.97400.64720.76190.042*
C30.84690 (14)0.69733 (8)0.57230 (17)0.0337 (3)
H30.82070.64880.51810.040*
C40.79150 (13)0.77131 (7)0.50553 (15)0.0270 (3)
C50.69380 (14)0.77770 (8)0.35912 (16)0.0319 (3)
H50.66250.73090.30070.038*
C60.64444 (14)0.85111 (8)0.30167 (15)0.0320 (3)
H60.57880.85490.20350.038*
C70.69018 (13)0.92151 (8)0.38711 (14)0.0276 (3)
H70.65440.97200.34550.033*
C80.78570 (12)0.91807 (7)0.52963 (13)0.0229 (3)
C90.83787 (12)0.84184 (7)0.59135 (14)0.0238 (3)
C100.76718 (12)1.08881 (7)0.52806 (13)0.0236 (3)
C110.66326 (13)1.13098 (8)0.54748 (14)0.0282 (3)
H110.63001.11340.61930.034*
C120.60791 (15)1.19864 (8)0.46244 (16)0.0337 (3)
H120.53811.22730.47750.040*
C130.65439 (15)1.22434 (9)0.35592 (16)0.0343 (3)
H130.61721.27080.29880.041*
C140.75532 (14)1.18199 (9)0.33304 (16)0.0345 (3)
H140.78531.19850.25800.041*
C150.81267 (13)1.11546 (8)0.41960 (15)0.0298 (3)
H150.88361.08770.40510.036*
C160.77946 (14)1.00053 (7)0.78177 (15)0.0243 (3)
C170.66076 (13)0.95868 (7)0.75734 (15)0.0275 (3)
H170.61720.93080.66660.033*
C180.60580 (14)0.95742 (8)0.86437 (16)0.0326 (3)
H180.52490.92880.84670.039*
C190.66880 (17)0.99806 (8)0.99754 (17)0.0361 (4)
H190.63110.99711.07080.043*
C200.78696 (15)1.04008 (9)1.02311 (15)0.0367 (3)
H200.83001.06801.11380.044*
C210.84206 (14)1.04117 (8)0.91598 (15)0.0308 (3)
H210.92301.06980.93410.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0238 (2)0.0191 (2)0.0238 (2)0.00020 (10)0.00809 (15)0.00011 (10)
N10.0270 (5)0.0253 (5)0.0283 (6)0.0019 (4)0.0100 (4)0.0023 (4)
C10.0292 (7)0.0299 (7)0.0345 (7)0.0042 (5)0.0115 (6)0.0063 (5)
C20.0342 (7)0.0243 (6)0.0477 (8)0.0069 (5)0.0166 (6)0.0085 (6)
C30.0358 (7)0.0210 (6)0.0470 (8)0.0002 (5)0.0190 (6)0.0024 (6)
C40.0284 (6)0.0223 (6)0.0335 (7)0.0013 (5)0.0155 (5)0.0014 (5)
C50.0360 (7)0.0257 (6)0.0338 (7)0.0057 (5)0.0131 (6)0.0084 (5)
C60.0338 (7)0.0320 (7)0.0254 (6)0.0043 (5)0.0062 (5)0.0024 (5)
C70.0300 (6)0.0237 (6)0.0271 (6)0.0001 (5)0.0089 (5)0.0016 (5)
C80.0248 (6)0.0206 (6)0.0246 (6)0.0006 (4)0.0109 (5)0.0008 (4)
C90.0241 (6)0.0227 (6)0.0270 (6)0.0006 (4)0.0124 (5)0.0003 (5)
C100.0256 (6)0.0189 (6)0.0244 (6)0.0023 (4)0.0075 (5)0.0023 (4)
C110.0333 (7)0.0252 (6)0.0281 (6)0.0022 (5)0.0140 (5)0.0010 (5)
C120.0372 (7)0.0302 (7)0.0343 (7)0.0101 (6)0.0145 (6)0.0033 (6)
C130.0385 (8)0.0273 (7)0.0346 (7)0.0051 (5)0.0112 (6)0.0090 (5)
C140.0365 (7)0.0352 (7)0.0340 (7)0.0004 (6)0.0161 (6)0.0089 (6)
C150.0293 (6)0.0296 (7)0.0328 (7)0.0019 (5)0.0144 (5)0.0026 (5)
C160.0282 (7)0.0208 (6)0.0227 (6)0.0037 (4)0.0084 (5)0.0027 (4)
C170.0289 (6)0.0245 (6)0.0278 (6)0.0005 (5)0.0096 (5)0.0006 (5)
C180.0316 (7)0.0311 (7)0.0380 (7)0.0044 (5)0.0165 (6)0.0056 (6)
C190.0431 (9)0.0401 (8)0.0306 (8)0.0128 (6)0.0203 (7)0.0070 (5)
C200.0435 (8)0.0387 (8)0.0256 (7)0.0072 (6)0.0106 (6)0.0044 (6)
C210.0319 (7)0.0287 (7)0.0285 (7)0.0004 (5)0.0079 (5)0.0030 (5)
Geometric parameters (Å, º) top
P1—C81.8345 (12)C10—C151.4010 (18)
P1—C161.8357 (14)C11—C121.3930 (18)
P1—C101.8408 (12)C11—H110.9500
N1—C11.3196 (17)C12—C131.386 (2)
N1—C91.3718 (16)C12—H120.9500
C1—C21.410 (2)C13—C141.386 (2)
C1—H10.9500C13—H130.9500
C2—C31.359 (2)C14—C151.3887 (19)
C2—H20.9500C14—H140.9500
C3—C41.4167 (19)C15—H150.9500
C3—H30.9500C16—C171.3953 (18)
C4—C51.417 (2)C16—C211.3982 (18)
C4—C91.4200 (17)C17—C181.3869 (19)
C5—C61.367 (2)C17—H170.9500
C5—H50.9500C18—C191.391 (2)
C6—C71.4158 (18)C18—H180.9500
C6—H60.9500C19—C201.390 (2)
C7—C81.3783 (18)C19—H190.9500
C7—H70.9500C20—C211.389 (2)
C8—C91.4275 (16)C20—H200.9500
C10—C111.3964 (18)C21—H210.9500
C8—P1—C16101.70 (6)C12—C11—C10120.61 (12)
C8—P1—C10102.01 (6)C12—C11—H11119.7
C16—P1—C10101.34 (6)C10—C11—H11119.7
C1—N1—C9117.24 (11)C13—C12—C11120.23 (13)
N1—C1—C2124.12 (13)C13—C12—H12119.9
N1—C1—H1117.9C11—C12—H12119.9
C2—C1—H1117.9C14—C13—C12119.79 (13)
C3—C2—C1119.18 (12)C14—C13—H13120.1
C3—C2—H2120.4C12—C13—H13120.1
C1—C2—H2120.4C13—C14—C15120.16 (13)
C2—C3—C4119.39 (13)C13—C14—H14119.9
C2—C3—H3120.3C15—C14—H14119.9
C4—C3—H3120.3C14—C15—C10120.76 (12)
C3—C4—C5123.26 (12)C14—C15—H15119.6
C3—C4—C9117.40 (12)C10—C15—H15119.6
C5—C4—C9119.33 (12)C17—C16—C21118.87 (12)
C6—C5—C4120.18 (12)C17—C16—P1123.58 (10)
C6—C5—H5119.9C21—C16—P1117.55 (10)
C4—C5—H5119.9C18—C17—C16120.56 (13)
C5—C6—C7120.63 (12)C18—C17—H17119.7
C5—C6—H6119.7C16—C17—H17119.7
C7—C6—H6119.7C17—C18—C19120.14 (14)
C8—C7—C6121.10 (12)C17—C18—H18119.9
C8—C7—H7119.4C19—C18—H18119.9
C6—C7—H7119.4C20—C19—C18119.85 (13)
C7—C8—C9118.93 (11)C20—C19—H19120.1
C7—C8—P1124.99 (9)C18—C19—H19120.1
C9—C8—P1116.00 (9)C21—C20—C19119.97 (13)
N1—C9—C4122.64 (11)C21—C20—H20120.0
N1—C9—C8117.52 (11)C19—C20—H20120.0
C4—C9—C8119.83 (11)C20—C21—C16120.61 (13)
C11—C10—C15118.41 (12)C20—C21—H21119.7
C11—C10—P1124.26 (10)C16—C21—H21119.7
C15—C10—P1117.09 (10)
C9—N1—C1—C20.41 (19)C8—P1—C10—C11103.60 (11)
N1—C1—C2—C30.8 (2)C16—P1—C10—C111.13 (12)
C1—C2—C3—C41.8 (2)C8—P1—C10—C1582.02 (11)
C2—C3—C4—C5178.48 (13)C16—P1—C10—C15173.26 (10)
C2—C3—C4—C91.73 (19)C15—C10—C11—C121.01 (19)
C3—C4—C5—C6179.91 (13)P1—C10—C11—C12173.30 (10)
C9—C4—C5—C60.3 (2)C10—C11—C12—C130.8 (2)
C4—C5—C6—C70.1 (2)C11—C12—C13—C140.7 (2)
C5—C6—C7—C80.3 (2)C12—C13—C14—C152.0 (2)
C6—C7—C8—C90.50 (19)C13—C14—C15—C101.8 (2)
C6—C7—C8—P1176.31 (10)C11—C10—C15—C140.30 (19)
C16—P1—C8—C7107.19 (11)P1—C10—C15—C14175.03 (11)
C10—P1—C8—C72.74 (13)C8—P1—C16—C1720.27 (12)
C16—P1—C8—C975.92 (10)C10—P1—C16—C1784.70 (11)
C10—P1—C8—C9179.64 (9)C8—P1—C16—C21159.62 (10)
C1—N1—C9—C40.49 (18)C10—P1—C16—C2195.41 (11)
C1—N1—C9—C8179.06 (11)C21—C16—C17—C180.00 (19)
C3—C4—C9—N10.56 (18)P1—C16—C17—C18179.90 (10)
C5—C4—C9—N1179.64 (11)C16—C17—C18—C190.0 (2)
C3—C4—C9—C8179.90 (11)C17—C18—C19—C200.1 (2)
C5—C4—C9—C80.09 (18)C18—C19—C20—C210.2 (2)
C7—C8—C9—N1179.27 (11)C19—C20—C21—C160.2 (2)
P1—C8—C9—N13.64 (15)C17—C16—C21—C200.13 (19)
C7—C8—C9—C40.30 (18)P1—C16—C21—C20179.97 (10)
P1—C8—C9—C4176.79 (9)

Experimental details

Crystal data
Chemical formulaC21H16NP
Mr313.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)10.7804 (2), 16.6905 (3), 9.7753 (2)
β (°) 112.651 (1)
V3)1623.21 (5)
Z4
Radiation typeCu Kα
µ (mm1)1.47
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.658, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
20905, 3170, 3067
Rint0.028
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.07
No. of reflections3170
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: APEX2 (Bruker 2007), SAINT (Bruker 2007), SHELXTL (Sheldrick, 2008), UdMX (Maris, 2004).

Selected geometric parameters (Å, º) top
P1—C81.8345 (12)P1—C101.8408 (12)
P1—C161.8357 (14)N1—C11.3196 (17)
C8—P1—C16101.70 (6)C16—P1—C10101.34 (6)
C8—P1—C10102.01 (6)C1—N1—C9117.24 (11)
 

Acknowledgements

We are grateful to the Natural Sciences and Engineering Research Council of Canada, le Fonds québécois de la recherche sur la nature et les technologies, and the Université de Montréal for financial assistance. We gratefully acknowledge Dr Michel Simard for the crystallographic training of MC.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBeck, R., Zheng, T., Sun, H., Li, X., Floerke, U. & Klein, H.-F. (2008). J. Organomet. Chem. 693, 3471–3478.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanovese, L., Santo, C. & Visentin, F. (2008). Organometallics, 27, 3577–3581.  Web of Science CrossRef CAS Google Scholar
First citationChuit, C., Corriu, R. J. P., Monforte, P., Reye, C., Declercq, J.-P. & Dubourg, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1430–1432.  CSD CrossRef Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 12–16 and 238–242. Oxford University Press.  Google Scholar
First citationFeltham, R. D. & Metzger, H. G. (1971). J. Organomet. Chem. 33, 347–55.  CrossRef CAS Web of Science Google Scholar
First citationHudali, H. A., Kingston, J. V. & Tayim, H. A. (1979). Inorg. Chem. 18, 1391–1394.  CrossRef CAS Web of Science Google Scholar
First citationIssleib, K. & Haftendorn, M. (1970). Z. Anorg. Allg. Chem. 376, 79–86.  CrossRef CAS Web of Science Google Scholar
First citationLai, C. W., Kwong, F. Y., Wang, Y. & Chan, K. S. (2001). Tetrahedron Lett. 42, 4883–4885.  Web of Science CrossRef CAS Google Scholar
First citationLord, A.-M., Mahon, M. F., Lloyd, M. D. & Threadgill, M. D. (2009). J. Med. Chem. 52, 868–877.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaris, T. (2004). UdMX. Université de Montréal, Montréal, QC, Canada.  Google Scholar
First citationQin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y. & Wang, L. (2009). Dalton Trans. pp. 9388–9391.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W.-H., Li, Z., Hu, H., Wu, B., Yang, H., Zhu, N., Leng, X. & Wang, H. (2002). New J. Chem. 26, 1474–1478.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869–1876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T., Kotera, M., Takayama, A. & Kojima, M. (2009). Polyhedron, 28, 2287–2293.  Web of Science CSD CrossRef CAS Google Scholar
First citationTsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationVan Allen, D. & Venkataraman, D. (2003). J. Org. Chem. 68, 4590–4593.  PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds