organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Anilinium 3-(4-hy­dr­oxy-3-meth­­oxy­phenyl)prop-2-enoate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 24 October 2010; accepted 25 October 2010; online 31 October 2010)

The structure of the title salt, C6H8N+·C10H9O4, is stabilized by N—H⋯O and O—H⋯O hydrogen bonding between 3-(4-hy­droxy-3-meth­oxy­phen­yl)prop-2-enoate anions and anilinium cations, which links the components into a two-dimensional array.

Related literature

For ferulic acid [3-(4-hy­droxy-3-meth­oxy­phen­yl)-2-propenoic acid] and its pharmacological activity, see: Hirabayashi et al. (1995[Hirabayashi, T., Ochiai, H., Sakai, S., Nakajima, K. & Terasawa, K. (1995). Planta Med. 61, 221-226.]); Liyama et al. (1994[Liyama, K., Lam, T. B. T. & Stone, B. A. (1994). Plant Physiol. 104, 315-320.]); Nomura et al. (2003[Nomura, E., Kashiwada, A., Hosoda, A., Nakamura, K., Morishita, H., Tsuno, T. & Taniguchi, H. (2003). Bioorg. Med. Chem. 11, 3807-3813.]); Ogiwara et al. (2002[Ogiwara, T., Satoh, K., Kadoma, Y., Murakami, Y., Unten, S., Atsumi, T., Sakagami, H. & Fujisawa, S. (2002). Anticancer Res. 22, 2711-2717.]); Ou et al. (2003[Ou, L., Kong, L. Y., Zhang, X. M. & Niwa, M. (2003). Biol. Pharm. Bull. 26, 1511-1516.]). For crystal structures on hydrogen-bond motifs in organic ammonium salts, see: Ni et al. (2007[Ni, S.-F., Feng, W.-J., Guo, H. & Jin, Z.-M. (2007). Acta Cryst. E63, o3866.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800-o1803.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N+·C10H9O4

  • Mr = 287.31

  • Orthorhombic, P 21 21 21

  • a = 6.2047 (7) Å

  • b = 8.2668 (9) Å

  • c = 28.790 (3) Å

  • V = 1476.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • 7666 measured reflections

  • 1586 independent reflections

  • 1325 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.04

  • 1586 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.89 1.84 2.721 (2) 170
N1—H1B⋯O1ii 0.89 1.84 2.724 (2) 170
N1—H1C⋯O2 0.89 1.85 2.730 (3) 170
O3—H3A⋯O1iii 0.82 2.09 2.841 (2) 151
O3—H3A⋯O4 0.82 2.25 2.671 (2) 112
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) x-1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid, also known as ferulic acid, is one of the main endogenous phenolic acids in plant kingdom (Liyama et al., 1994). More attention was paid to the structural modification of ferulic acid owing to its extensive bioactivities including anti-platelet aggregation, anti-oxidation, anti-inflammation, anti-tumor, anti-mutagenicity, antibiosis and immunity enchancement (Hirabayashi et al., 1995; Ogiwara et al., 2002). A series of ferulic acid derivatives were designed and synthesized, such as their salts, esters, ethers and amides, and some of them show the better bioactivities than those of ferulic acid (Nomura et al., 2003; Ou et al., 2003). The molecular and crystal structure of the title compound is presented in this article.

In the asymmetric unit of the title compound, illustrated in Fig. 1, there are an anilinium cation and one singly deprotonated 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate anion. The bond distances and angles in the title compound are normal (Ni et al., 2007; Smith et al., 2004). In the crystal the cations and anions are self-assembled by various O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2) to form a superamolecular network. The network can be viewed as the linkages of two-dimensional 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate and anilinium layers.

Related literature top

For ferulic acid [3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid] and its pharmacological activity, see: Hirabayashi et al. (1995); Liyama et al. (1994); Nomura et al. (2003); Ogiwara et al. (2002); Ou et al. (2003). For related literature [Please state how they are related], see: Ni et al. (2007); Smith et al. (2004).

Experimental top

A mixture of ferulic acid (0.388 g, 2 mmol) and aniline (0.19 ml, 2 mmol) was stirred with methanol (20 ml) for 0.5 h at room temperature. After several days colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solution.

Refinement top

All H atoms were placed at calculated positions and were treated as riding, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and N—H = 0.89 Å, respectively, and with Uiso(H) = 1.2 or 1.5Ueq(C,O,N).

Structure description top

3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid, also known as ferulic acid, is one of the main endogenous phenolic acids in plant kingdom (Liyama et al., 1994). More attention was paid to the structural modification of ferulic acid owing to its extensive bioactivities including anti-platelet aggregation, anti-oxidation, anti-inflammation, anti-tumor, anti-mutagenicity, antibiosis and immunity enchancement (Hirabayashi et al., 1995; Ogiwara et al., 2002). A series of ferulic acid derivatives were designed and synthesized, such as their salts, esters, ethers and amides, and some of them show the better bioactivities than those of ferulic acid (Nomura et al., 2003; Ou et al., 2003). The molecular and crystal structure of the title compound is presented in this article.

In the asymmetric unit of the title compound, illustrated in Fig. 1, there are an anilinium cation and one singly deprotonated 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate anion. The bond distances and angles in the title compound are normal (Ni et al., 2007; Smith et al., 2004). In the crystal the cations and anions are self-assembled by various O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2) to form a superamolecular network. The network can be viewed as the linkages of two-dimensional 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate and anilinium layers.

For ferulic acid [3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid] and its pharmacological activity, see: Hirabayashi et al. (1995); Liyama et al. (1994); Nomura et al. (2003); Ogiwara et al. (2002); Ou et al. (2003). For related literature [Please state how they are related], see: Ni et al. (2007); Smith et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing showing the hydrogen-bonding interactions as broken lines.
Anilinium 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate top
Crystal data top
C6H8N+·C10H9O4F(000) = 608
Mr = 287.31Dx = 1.292 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2062 reflections
a = 6.2047 (7) Åθ = 2.6–23.1°
b = 8.2668 (9) ŵ = 0.09 mm1
c = 28.790 (3) ÅT = 296 K
V = 1476.7 (3) Å3Block, colourless
Z = 40.30 × 0.28 × 0.25 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1325 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.2°, θmin = 2.6°
φ and ω scansh = 77
7666 measured reflectionsk = 96
1586 independent reflectionsl = 3234
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.170P]
where P = (Fo2 + 2Fc2)/3
1586 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C6H8N+·C10H9O4V = 1476.7 (3) Å3
Mr = 287.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2047 (7) ŵ = 0.09 mm1
b = 8.2668 (9) ÅT = 296 K
c = 28.790 (3) Å0.30 × 0.28 × 0.25 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1325 reflections with I > 2σ(I)
7666 measured reflectionsRint = 0.031
1586 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.11 e Å3
1586 reflectionsΔρmin = 0.11 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3231 (5)0.4376 (3)0.92787 (9)0.0626 (7)
H10.20830.50190.91830.075*
C20.3238 (7)0.2733 (4)0.91830 (10)0.0799 (10)
H20.20920.22720.90220.096*
C30.4919 (7)0.1789 (4)0.93232 (10)0.0794 (10)
H30.49190.06870.92580.095*
C40.6609 (7)0.2469 (4)0.95602 (11)0.0792 (9)
H40.77520.18230.96570.095*
C50.6628 (5)0.4108 (3)0.96573 (9)0.0609 (7)
H50.77780.45700.98170.073*
C60.4920 (4)0.5044 (3)0.95139 (7)0.0422 (5)
C70.8501 (4)1.0202 (3)0.79047 (7)0.0434 (6)
C80.6513 (4)1.0959 (3)0.79226 (7)0.0494 (6)
H80.57771.10160.82040.059*
C90.5597 (4)1.1639 (3)0.75247 (8)0.0509 (6)
H90.42881.21850.75430.061*
C100.6649 (4)1.1496 (3)0.71042 (7)0.0447 (6)
C110.8608 (4)1.0664 (3)0.70800 (7)0.0417 (6)
C120.9540 (4)1.0060 (3)0.74787 (8)0.0443 (6)
H121.08760.95530.74630.053*
C130.9606 (4)0.9557 (3)0.83187 (7)0.0451 (6)
H131.10980.94730.82990.054*
C140.8738 (4)0.9089 (3)0.87121 (7)0.0437 (6)
H140.72500.91670.87440.052*
C150.9992 (4)0.8447 (3)0.91045 (7)0.0375 (5)
C161.1413 (5)0.9702 (4)0.65865 (9)0.0711 (9)
H16A1.12520.86150.66980.107*
H16B1.25241.02380.67600.107*
H16C1.17980.96810.62640.107*
N10.4930 (3)0.6767 (2)0.96199 (5)0.0411 (5)
H1A0.47500.69080.99240.062*
H1B0.38630.72520.94670.062*
H1C0.61840.71950.95330.062*
O11.2000 (3)0.8328 (2)0.90760 (5)0.0467 (4)
O20.8938 (3)0.8013 (2)0.94615 (5)0.0536 (5)
O30.5753 (3)1.2193 (3)0.67198 (5)0.0578 (5)
H3A0.66471.22220.65100.087*
O40.9441 (3)1.0547 (2)0.66423 (5)0.0535 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0678 (18)0.0590 (18)0.0609 (16)0.0043 (16)0.0183 (15)0.0011 (14)
C20.105 (3)0.0604 (19)0.0737 (19)0.014 (2)0.012 (2)0.0107 (17)
C30.116 (3)0.0483 (17)0.074 (2)0.002 (2)0.025 (2)0.0048 (16)
C40.084 (2)0.063 (2)0.091 (2)0.0227 (19)0.013 (2)0.0134 (17)
C50.0573 (18)0.0609 (18)0.0644 (16)0.0078 (16)0.0051 (14)0.0067 (15)
C60.0482 (14)0.0475 (14)0.0309 (11)0.0000 (12)0.0042 (11)0.0030 (10)
C70.0476 (14)0.0472 (14)0.0353 (11)0.0003 (12)0.0062 (11)0.0048 (10)
C80.0545 (16)0.0578 (15)0.0358 (12)0.0016 (14)0.0036 (12)0.0035 (12)
C90.0449 (14)0.0592 (16)0.0486 (13)0.0042 (13)0.0044 (12)0.0063 (12)
C100.0461 (14)0.0510 (14)0.0370 (12)0.0037 (13)0.0093 (11)0.0065 (11)
C110.0457 (14)0.0442 (13)0.0352 (11)0.0001 (12)0.0049 (10)0.0044 (11)
C120.0443 (14)0.0475 (14)0.0411 (12)0.0034 (12)0.0045 (10)0.0058 (11)
C130.0459 (14)0.0503 (14)0.0391 (11)0.0010 (12)0.0033 (11)0.0009 (11)
C140.0428 (14)0.0536 (14)0.0348 (11)0.0025 (12)0.0047 (10)0.0010 (11)
C150.0464 (14)0.0374 (12)0.0286 (11)0.0038 (12)0.0052 (10)0.0022 (9)
C160.0608 (19)0.101 (2)0.0509 (15)0.0196 (19)0.0077 (14)0.0040 (16)
N10.0404 (10)0.0512 (12)0.0317 (9)0.0005 (10)0.0024 (8)0.0043 (8)
O10.0436 (10)0.0584 (11)0.0381 (8)0.0026 (9)0.0049 (7)0.0040 (8)
O20.0523 (10)0.0775 (12)0.0310 (8)0.0123 (10)0.0013 (7)0.0068 (8)
O30.0490 (10)0.0807 (12)0.0439 (9)0.0115 (10)0.0081 (8)0.0188 (10)
O40.0577 (11)0.0665 (11)0.0364 (8)0.0128 (10)0.0014 (8)0.0083 (8)
Geometric parameters (Å, º) top
C1—C61.365 (4)C10—O31.366 (3)
C1—C21.386 (4)C10—C111.399 (3)
C1—H10.9300C11—O41.365 (3)
C2—C31.363 (5)C11—C121.379 (3)
C2—H20.9300C12—H120.9300
C3—C41.372 (5)C13—C141.313 (3)
C3—H30.9300C13—H130.9300
C4—C51.384 (4)C14—C151.470 (3)
C4—H40.9300C14—H140.9300
C5—C61.375 (4)C15—O11.253 (3)
C5—H50.9300C15—O21.270 (3)
C6—N11.457 (3)C16—O41.418 (3)
C7—C81.384 (4)C16—H16A0.9600
C7—C121.390 (3)C16—H16B0.9600
C7—C131.475 (3)C16—H16C0.9600
C8—C91.397 (3)N1—H1A0.8900
C8—H80.9300N1—H1B0.8900
C9—C101.381 (3)N1—H1C0.8900
C9—H90.9300O3—H3A0.8200
C6—C1—C2119.5 (3)O4—C11—C12125.8 (2)
C6—C1—H1120.3O4—C11—C10114.18 (19)
C2—C1—H1120.3C12—C11—C10120.1 (2)
C3—C2—C1120.3 (3)C11—C12—C7120.6 (2)
C3—C2—H2119.8C11—C12—H12119.7
C1—C2—H2119.8C7—C12—H12119.7
C2—C3—C4119.8 (3)C14—C13—C7127.8 (2)
C2—C3—H3120.1C14—C13—H13116.1
C4—C3—H3120.1C7—C13—H13116.1
C3—C4—C5120.6 (3)C13—C14—C15123.5 (2)
C3—C4—H4119.7C13—C14—H14118.2
C5—C4—H4119.7C15—C14—H14118.2
C6—C5—C4118.9 (3)O1—C15—O2122.9 (2)
C6—C5—H5120.6O1—C15—C14120.3 (2)
C4—C5—H5120.6O2—C15—C14116.8 (2)
C1—C6—C5120.9 (2)O4—C16—H16A109.5
C1—C6—N1120.2 (2)O4—C16—H16B109.5
C5—C6—N1118.9 (2)H16A—C16—H16B109.5
C8—C7—C12119.0 (2)O4—C16—H16C109.5
C8—C7—C13123.2 (2)H16A—C16—H16C109.5
C12—C7—C13117.8 (2)H16B—C16—H16C109.5
C7—C8—C9120.9 (2)C6—N1—H1A109.5
C7—C8—H8119.5C6—N1—H1B109.5
C9—C8—H8119.5H1A—N1—H1B109.5
C10—C9—C8119.5 (2)C6—N1—H1C109.5
C10—C9—H9120.3H1A—N1—H1C109.5
C8—C9—H9120.3H1B—N1—H1C109.5
O3—C10—C9118.8 (2)C10—O3—H3A109.5
O3—C10—C11121.4 (2)C11—O4—C16117.76 (18)
C9—C10—C11119.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.842.721 (2)170
N1—H1B···O1ii0.891.842.724 (2)170
N1—H1C···O20.891.852.730 (3)170
O3—H3A···O1iii0.822.092.841 (2)151
O3—H3A···O40.822.252.671 (2)112
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x1, y, z; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H8N+·C10H9O4
Mr287.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.2047 (7), 8.2668 (9), 28.790 (3)
V3)1476.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7666, 1586, 1325
Rint0.031
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.04
No. of reflections1586
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.11

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.891.842.721 (2)169.8
N1—H1B···O1ii0.891.842.724 (2)170.3
N1—H1C···O20.891.852.730 (3)169.8
O3—H3A···O1iii0.822.092.841 (2)151.3
O3—H3A···O40.822.252.671 (2)112.2
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x1, y, z; (iii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationHirabayashi, T., Ochiai, H., Sakai, S., Nakajima, K. & Terasawa, K. (1995). Planta Med. 61, 221–226.  CrossRef CAS PubMed Google Scholar
First citationLiyama, K., Lam, T. B. T. & Stone, B. A. (1994). Plant Physiol. 104, 315–320.  PubMed Google Scholar
First citationNi, S.-F., Feng, W.-J., Guo, H. & Jin, Z.-M. (2007). Acta Cryst. E63, o3866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNomura, E., Kashiwada, A., Hosoda, A., Nakamura, K., Morishita, H., Tsuno, T. & Taniguchi, H. (2003). Bioorg. Med. Chem. 11, 3807–3813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOgiwara, T., Satoh, K., Kadoma, Y., Murakami, Y., Unten, S., Atsumi, T., Sakagami, H. & Fujisawa, S. (2002). Anticancer Res. 22, 2711–2717.  Web of Science PubMed CAS Google Scholar
First citationOu, L., Kong, L. Y., Zhang, X. M. & Niwa, M. (2003). Biol. Pharm. Bull. 26, 1511–1516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o1800–o1803.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds