organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(1H-Benzimidazol-2-yl)prop­yl]-1H-benzimidazol-3-ium 3,5-dicarb­­oxy­benzoate–benzene-1,3,5-tricarb­­oxy­lic acid–water (1/1/1)

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: fengguodong00805@163.com

(Received 11 September 2010; accepted 30 September 2010; online 9 October 2010)

The title compound, C17H17N4+·C9H5O6·C9H6O6·H2O, contains a protonated 2,2′-(1,3-propanedi­yl)bis­(1H-benzimidazole) cation, a deprotonated benzene-1,3,5-tricarb­oxy­lic acid anion, a neutral benzene-1,3,5-tricarb­oxy­lic acid mol­ecule and a water mol­ecule, which are linked together through N—H⋯O, O—H⋯O and weak C—H⋯O hydrogen bonds into almost double sheets parallel to (4[\overline{4}][\overline{1}]). These hydrogen-bonded sheets are packed in the crystal with the formation of centrosymmetric voids of 25.5 Å3, which are filled by the water mol­ecules.

Related literature

For the coordination chemistry of bis-benzimidazoles, see: Sun et al. (2010[Sun, T., Li, K., Lai, Y., Chen, R. & Wu, H. (2010). Acta Cryst. E66, m1058.]). For the clinical applications of the benzimidazole ring system, see Harrell et al. (2004[Harrell, C. C., Kohli, P., Siwy, Z. & Martin, C. R. (2004). J. Am. Chem. Soc. 126, 15646-15647.]). For novel proton-transfer compounds, see Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For applications of benzimidazole and bis-benzimidazole compounds, see: Chang et al. (2008[Chang, C. M., Kulkarni, M. V., Chen, C. H., Wang, C. & Sun, C. M. (2008). J. Comb. Chem. 10, 466-474.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N4+·C9H5O6·C9H6O6·H2O

  • Mr = 714.63

  • Triclinic, [P \overline 1]

  • a = 8.7711 (3) Å

  • b = 10.8389 (6) Å

  • c = 17.2999 (9) Å

  • α = 81.520 (5)°

  • β = 84.131 (4)°

  • γ = 86.998 (4)°

  • V = 1617.02 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.4 × 0.32 × 0.2 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.977

  • 9922 measured reflections

  • 5657 independent reflections

  • 3630 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.081

  • S = 1.07

  • 5657 reflections

  • 469 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O10i 0.82 1.82 2.6404 (16) 178
O9—H9⋯O2i 0.82 1.85 2.6682 (16) 177
N1—H1A⋯O11 0.86 1.84 2.6560 (17) 159
N4—H4A⋯O3 0.86 2.05 2.8435 (17) 153
C1—H221⋯O10 0.93 2.51 3.414 (2) 163
C9—H9A⋯O5ii 0.97 2.44 3.346 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y+1, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Bis-benzimidazoles are known to be strong chelating agents coordinating through both of the C=N group nitrogen atoms (Sun et al., 2010). Recently, The benzimidazole ring system is present in clinically approved anthelmintics, antiulcers, antivirals, and antihistamines (Harrell, et al., 2004).

A number of cases were reported in which a proton transferred from a carboxylic acid to an amine to form some novel proton transfer compounds (Aghabozorg et al., 2008). In this work, we report a new proton transfer compound obtained from benzene-1,3,5-tricarboxylic acid as a proton donor and bis-benzimidazoles as an acceptor.

The crystal structure of the title proton transfer compound shows that a single proton from one of the carboxyl groups of the benzene-1,3,5-tricarboxylic acids was transferred to the N-ring atom of benzimidazoles. On the other hand, an interesting feature exhibited by the crystal structure is that just one benzene-1,3,5-tricarboxylic acids as a proton donor and another benzene-1,3,5-tricarboxylic acids is in an un-ionized state. The two benzene-1,3,5-tricarboxylic acids are parallel. In the crystal structure, intermolecular N—H···O,O—H···O and weak C—H···O hydrogen bonds (Table 1) link cations and anions into double-planar parallel to the (4,-4,-1) plane. These hydrogen-bonded sheets are further packed into crystal with the formation of centrosymmetric voids of 25.5 Å3, which are filled by the disordered water molecules.

Related literature top

For literature on the coordination chemistry of bis-benzimidazoles, see: Sun et al. (2010). For literature on the clinical applications of the benzimidazole ring system, see Harrell et al. (2004). For literature on novel proton transfer compounds, see Aghabozorg et al. (2008). For related literature [on ?], see: Chang et al. (2008).

Experimental top

The compound was prepared by a hydrothermal method. A mixture of 2,2'-(1,3-propanediyl)bis(1H-benzimidazole)(0.5 mmol), benzene-1,3,5-tricarboxylic acid (0.6 mmol),and water (10 ml) was stirred for 20 min and then transferred to a 23 ml Teflon reactor. The reactor was kept at 433 K for 72 h under autogenous pressure. Single crystals were obtained after cooling to room temperature.

Refinement top

All H atoms were placed in calculated positions and refined in a riding-model approximation with; C—H = 0.95–0.99 Å, N—H = 0.88 Å, O—H = 0.83–0.85Å and Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(O).

Structure description top

Bis-benzimidazoles are known to be strong chelating agents coordinating through both of the C=N group nitrogen atoms (Sun et al., 2010). Recently, The benzimidazole ring system is present in clinically approved anthelmintics, antiulcers, antivirals, and antihistamines (Harrell, et al., 2004).

A number of cases were reported in which a proton transferred from a carboxylic acid to an amine to form some novel proton transfer compounds (Aghabozorg et al., 2008). In this work, we report a new proton transfer compound obtained from benzene-1,3,5-tricarboxylic acid as a proton donor and bis-benzimidazoles as an acceptor.

The crystal structure of the title proton transfer compound shows that a single proton from one of the carboxyl groups of the benzene-1,3,5-tricarboxylic acids was transferred to the N-ring atom of benzimidazoles. On the other hand, an interesting feature exhibited by the crystal structure is that just one benzene-1,3,5-tricarboxylic acids as a proton donor and another benzene-1,3,5-tricarboxylic acids is in an un-ionized state. The two benzene-1,3,5-tricarboxylic acids are parallel. In the crystal structure, intermolecular N—H···O,O—H···O and weak C—H···O hydrogen bonds (Table 1) link cations and anions into double-planar parallel to the (4,-4,-1) plane. These hydrogen-bonded sheets are further packed into crystal with the formation of centrosymmetric voids of 25.5 Å3, which are filled by the disordered water molecules.

For literature on the coordination chemistry of bis-benzimidazoles, see: Sun et al. (2010). For literature on the clinical applications of the benzimidazole ring system, see Harrell et al. (2004). For literature on novel proton transfer compounds, see Aghabozorg et al. (2008). For related literature [on ?], see: Chang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound in 50% probability ellipsoids. The O—H···O hydrogen bonds link the two benzene-1,3,5-tricarboxylic acids- units and N—H···O and weak C—H···O hydrogen bonds link bis-benzimidazoles cations to these chains.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound.
2-[1-(1H-Benzimidazol-2-yl)propyl]-1H-benzimidazol-3-ium 3,5-dicarboxybenzoate–benzene-1,3,5-tricarboxylic acid–water (1/1/1) top
Crystal data top
C17H17N4+·C9H5O6·C9H6O6·H2OZ = 2
Mr = 714.63F(000) = 744
Triclinic, P1Dx = 1.468 Mg m3
a = 8.7711 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8389 (6) ÅCell parameters from 165 reflections
c = 17.2999 (9) Åθ = 2.8–23.6°
α = 81.520 (5)°µ = 0.11 mm1
β = 84.131 (4)°T = 293 K
γ = 86.998 (4)°Block, colorless
V = 1617.02 (13) Å30.4 × 0.32 × 0.2 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5657 independent reflections
Radiation source: fine-focus sealed tube3630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.957, Tmax = 0.977k = 1212
9922 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
5657 reflections(Δ/σ)max < 0.001
469 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H17N4+·C9H5O6·C9H6O6·H2Oγ = 86.998 (4)°
Mr = 714.63V = 1617.02 (13) Å3
Triclinic, P1Z = 2
a = 8.7711 (3) ÅMo Kα radiation
b = 10.8389 (6) ŵ = 0.11 mm1
c = 17.2999 (9) ÅT = 293 K
α = 81.520 (5)°0.4 × 0.32 × 0.2 mm
β = 84.131 (4)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5657 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3630 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.977Rint = 0.023
9922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
5657 reflectionsΔρmin = 0.22 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9366 (2)0.70532 (19)0.12984 (12)0.0472 (5)
H2210.87250.63950.13020.057*
C20.9969 (2)0.7728 (2)0.06116 (13)0.0597 (6)
H2220.97330.75220.01360.072*
C31.0926 (2)0.8712 (2)0.06101 (13)0.0651 (7)
H2231.13010.91500.01310.078*
C41.1335 (2)0.9060 (2)0.12862 (13)0.0542 (6)
H2241.19790.97160.12810.065*
C51.07310 (18)0.83745 (17)0.19804 (11)0.0372 (5)
C60.97641 (18)0.74056 (16)0.19828 (11)0.0341 (4)
C70.99913 (18)0.76278 (17)0.32189 (11)0.0355 (4)
C80.9711 (2)0.74754 (18)0.40866 (11)0.0433 (5)
H8A1.06870.74590.43070.052*
H8B0.92480.66790.42710.052*
C90.8672 (2)0.85092 (18)0.43867 (11)0.0428 (5)
H9A0.90560.93070.41350.051*
H9B0.87440.84650.49460.051*
C100.6983 (2)0.8473 (2)0.42501 (10)0.0458 (5)
H10A0.65980.76720.44960.055*
H10B0.64120.91140.45080.055*
C110.66781 (17)0.86607 (16)0.34136 (10)0.0325 (4)
C120.57954 (18)0.83069 (16)0.23153 (10)0.0332 (4)
C130.5143 (2)0.7843 (2)0.17270 (12)0.0523 (6)
H130.45560.71370.18320.063*
C140.5407 (2)0.8473 (2)0.09827 (13)0.0579 (6)
H140.49970.81840.05710.069*
C150.6273 (2)0.9538 (2)0.08258 (11)0.0501 (5)
H150.64040.99550.03150.060*
C160.69382 (19)0.99856 (17)0.14092 (10)0.0376 (5)
H160.75301.06890.13020.045*
C170.66929 (17)0.93482 (15)0.21629 (10)0.0278 (4)
C180.46437 (16)0.20168 (15)0.29690 (9)0.0248 (4)
C190.49709 (17)0.24146 (15)0.21723 (9)0.0283 (4)
H190.45730.20030.18070.034*
C200.58961 (18)0.34311 (16)0.19206 (9)0.0295 (4)
C210.64414 (18)0.40664 (16)0.24701 (9)0.0303 (4)
H210.70390.47560.23000.036*
C220.61089 (17)0.36895 (15)0.32672 (9)0.0260 (4)
C230.52217 (17)0.26558 (15)0.35086 (9)0.0273 (4)
H230.50090.23840.40420.033*
C240.37076 (18)0.08932 (16)0.32472 (10)0.0288 (4)
C250.6362 (2)0.38696 (18)0.10842 (10)0.0380 (5)
C260.67101 (18)0.43956 (16)0.38498 (10)0.0298 (4)
C270.18279 (17)0.44108 (16)0.18951 (9)0.0294 (4)
C280.08562 (18)0.34199 (16)0.21251 (10)0.0315 (4)
H280.04610.30320.17480.038*
C290.04780 (17)0.30111 (15)0.29153 (9)0.0278 (4)
C300.10540 (17)0.36020 (15)0.34742 (9)0.0282 (4)
H300.07900.33330.40040.034*
C310.20262 (17)0.45961 (15)0.32504 (9)0.0248 (4)
C320.23957 (17)0.49858 (15)0.24616 (10)0.0294 (4)
H320.30410.56500.23070.035*
C330.2313 (2)0.48724 (17)0.10617 (10)0.0380 (5)
C340.05308 (18)0.19177 (16)0.31858 (10)0.0325 (4)
C350.27119 (17)0.52423 (16)0.38307 (10)0.0287 (4)
N10.93470 (15)0.69651 (13)0.27654 (8)0.0348 (4)
H1A0.87580.63530.29310.042*
N21.08535 (15)0.84712 (14)0.27610 (9)0.0402 (4)
H2A1.14020.89960.29250.048*
N30.72286 (14)0.95552 (13)0.28622 (8)0.0305 (3)
N40.57988 (15)0.79119 (14)0.31099 (9)0.0375 (4)
H4A0.53160.72880.33690.045*
O10.16654 (16)0.43594 (14)0.05506 (7)0.0646 (5)
H10.19920.46620.01060.097*
O20.32635 (14)0.56827 (13)0.08772 (7)0.0491 (4)
O30.34628 (14)0.61690 (12)0.36169 (7)0.0446 (3)
O40.24293 (14)0.47490 (11)0.45530 (7)0.0460 (4)
H40.28370.51490.48370.069*
O50.08461 (16)0.15746 (13)0.38823 (7)0.0574 (4)
O60.09809 (13)0.14016 (12)0.26303 (7)0.0464 (4)
H60.15210.08160.28190.070*
O70.37661 (14)0.05198 (12)0.40002 (7)0.0461 (4)
H70.32450.00960.41360.069*
O80.30023 (13)0.03803 (12)0.28260 (7)0.0425 (3)
O90.57854 (15)0.32907 (13)0.05788 (7)0.0555 (4)
H90.61040.35910.01320.083*
O100.72506 (17)0.47175 (14)0.08869 (7)0.0657 (5)
O110.74251 (14)0.53540 (12)0.36033 (7)0.0474 (4)
O120.64331 (14)0.39760 (11)0.45685 (7)0.0428 (3)
O1W0.27197 (15)0.84782 (13)0.47477 (8)0.0601 (4)
H20.20940.85580.51520.090*
H30.31260.77500.48380.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0492 (11)0.0476 (13)0.0471 (13)0.0132 (10)0.0003 (10)0.0137 (11)
C20.0618 (13)0.0745 (17)0.0432 (13)0.0145 (12)0.0032 (11)0.0119 (12)
C30.0638 (14)0.0800 (19)0.0451 (14)0.0162 (13)0.0106 (12)0.0061 (13)
C40.0456 (12)0.0538 (15)0.0588 (15)0.0215 (10)0.0096 (11)0.0035 (12)
C50.0306 (9)0.0390 (12)0.0417 (12)0.0072 (8)0.0007 (8)0.0050 (9)
C60.0307 (9)0.0310 (11)0.0399 (11)0.0049 (8)0.0011 (8)0.0046 (9)
C70.0315 (9)0.0315 (11)0.0436 (12)0.0020 (8)0.0067 (9)0.0036 (9)
C80.0480 (11)0.0414 (12)0.0416 (12)0.0058 (9)0.0133 (9)0.0020 (10)
C90.0619 (12)0.0398 (12)0.0281 (10)0.0050 (9)0.0125 (9)0.0035 (9)
C100.0516 (12)0.0543 (14)0.0297 (11)0.0072 (10)0.0017 (9)0.0022 (10)
C110.0299 (9)0.0319 (11)0.0340 (10)0.0047 (8)0.0019 (8)0.0018 (9)
C120.0310 (9)0.0316 (11)0.0363 (11)0.0096 (8)0.0026 (8)0.0001 (9)
C130.0524 (12)0.0532 (14)0.0553 (14)0.0302 (10)0.0108 (11)0.0065 (12)
C140.0576 (13)0.0755 (17)0.0466 (14)0.0257 (12)0.0172 (11)0.0122 (12)
C150.0509 (11)0.0655 (15)0.0343 (11)0.0164 (11)0.0110 (10)0.0019 (11)
C160.0383 (10)0.0351 (11)0.0385 (11)0.0128 (8)0.0038 (9)0.0022 (9)
C170.0280 (9)0.0264 (10)0.0296 (10)0.0052 (7)0.0048 (8)0.0030 (8)
C180.0283 (9)0.0249 (10)0.0211 (9)0.0041 (7)0.0012 (7)0.0029 (7)
C190.0336 (9)0.0290 (10)0.0243 (10)0.0061 (7)0.0041 (7)0.0080 (8)
C200.0372 (9)0.0306 (10)0.0208 (9)0.0097 (8)0.0005 (8)0.0026 (8)
C210.0360 (9)0.0295 (10)0.0251 (10)0.0127 (8)0.0005 (8)0.0007 (8)
C220.0310 (9)0.0263 (10)0.0213 (9)0.0068 (7)0.0019 (7)0.0033 (8)
C230.0334 (9)0.0280 (10)0.0203 (9)0.0058 (7)0.0021 (7)0.0017 (8)
C240.0326 (9)0.0288 (10)0.0251 (10)0.0064 (8)0.0020 (8)0.0058 (8)
C250.0524 (11)0.0419 (12)0.0214 (10)0.0198 (9)0.0023 (9)0.0046 (9)
C260.0371 (9)0.0282 (11)0.0249 (10)0.0097 (8)0.0030 (8)0.0036 (8)
C270.0352 (9)0.0312 (11)0.0215 (9)0.0090 (8)0.0015 (8)0.0009 (8)
C280.0362 (9)0.0338 (11)0.0262 (10)0.0100 (8)0.0049 (8)0.0061 (8)
C290.0314 (9)0.0278 (10)0.0240 (9)0.0078 (7)0.0036 (7)0.0005 (8)
C300.0335 (9)0.0283 (10)0.0219 (9)0.0067 (7)0.0011 (7)0.0003 (8)
C310.0289 (8)0.0228 (10)0.0229 (9)0.0049 (7)0.0030 (7)0.0026 (7)
C320.0348 (9)0.0261 (10)0.0267 (10)0.0121 (8)0.0005 (8)0.0008 (8)
C330.0493 (11)0.0399 (12)0.0260 (10)0.0186 (9)0.0004 (9)0.0050 (9)
C340.0348 (10)0.0315 (11)0.0327 (12)0.0121 (8)0.0051 (8)0.0041 (9)
C350.0325 (9)0.0283 (10)0.0252 (10)0.0069 (8)0.0006 (8)0.0029 (8)
N10.0359 (8)0.0276 (9)0.0409 (10)0.0117 (7)0.0010 (7)0.0031 (7)
N20.0348 (8)0.0367 (10)0.0515 (11)0.0159 (7)0.0061 (7)0.0071 (8)
N30.0339 (8)0.0300 (9)0.0275 (8)0.0087 (6)0.0005 (6)0.0022 (7)
N40.0376 (8)0.0312 (9)0.0417 (10)0.0166 (7)0.0004 (7)0.0035 (7)
O10.0948 (11)0.0814 (11)0.0217 (7)0.0564 (9)0.0007 (7)0.0055 (7)
O20.0662 (8)0.0569 (9)0.0247 (7)0.0361 (7)0.0015 (6)0.0000 (6)
O30.0600 (8)0.0431 (8)0.0326 (7)0.0306 (7)0.0048 (6)0.0016 (6)
O40.0741 (9)0.0448 (9)0.0225 (7)0.0326 (7)0.0075 (6)0.0034 (6)
O50.0845 (10)0.0606 (10)0.0279 (8)0.0454 (8)0.0000 (7)0.0023 (7)
O60.0582 (8)0.0465 (9)0.0372 (8)0.0322 (7)0.0033 (6)0.0048 (7)
O70.0704 (9)0.0426 (8)0.0260 (7)0.0324 (7)0.0022 (6)0.0016 (6)
O80.0525 (7)0.0419 (8)0.0363 (7)0.0251 (6)0.0087 (6)0.0050 (6)
O90.0903 (10)0.0597 (10)0.0190 (7)0.0410 (8)0.0007 (7)0.0041 (7)
O100.0969 (11)0.0798 (11)0.0235 (7)0.0626 (9)0.0040 (7)0.0039 (7)
O110.0700 (9)0.0423 (8)0.0329 (7)0.0348 (7)0.0027 (6)0.0049 (6)
O120.0710 (8)0.0401 (8)0.0200 (7)0.0265 (7)0.0052 (6)0.0040 (6)
O1W0.0641 (8)0.0412 (9)0.0669 (10)0.0139 (7)0.0056 (7)0.0145 (7)
Geometric parameters (Å, º) top
C1—C21.372 (3)C19—H190.9300
C1—C61.379 (2)C20—C211.388 (2)
C1—H2210.9300C20—C251.478 (2)
C2—C31.391 (3)C21—C221.385 (2)
C2—H2220.9300C21—H210.9300
C3—C41.367 (3)C22—C231.386 (2)
C3—H2230.9300C22—C261.503 (2)
C4—C51.386 (3)C23—H230.9300
C4—H2240.9300C24—O81.2127 (19)
C5—N21.385 (2)C24—O71.311 (2)
C5—C61.383 (2)C25—O101.2232 (19)
C6—N11.386 (2)C25—O91.304 (2)
C7—N11.323 (2)C26—O111.2399 (19)
C7—N21.331 (2)C26—O121.2628 (19)
C7—C81.482 (3)C27—C321.382 (2)
C8—C91.524 (2)C27—C281.392 (2)
C8—H8A0.9700C27—C331.481 (2)
C8—H8B0.9700C28—C291.385 (2)
C9—C101.528 (2)C28—H280.9300
C9—H9A0.9700C29—C301.384 (2)
C9—H9B0.9700C29—C341.506 (2)
C10—C111.481 (2)C30—C311.394 (2)
C10—H10A0.9700C30—H300.9300
C10—H10B0.9700C31—C321.378 (2)
C11—N31.329 (2)C31—C351.495 (2)
C11—N41.343 (2)C32—H320.9300
C12—N41.378 (2)C33—O21.2277 (19)
C12—C131.384 (2)C33—O11.302 (2)
C12—C171.388 (2)C34—O51.215 (2)
C13—C141.369 (3)C34—O61.2853 (19)
C13—H130.9300C35—O31.2204 (18)
C14—C151.393 (3)C35—O41.2893 (19)
C14—H140.9300N1—H1A0.8600
C15—C161.374 (2)N2—H2A0.8600
C15—H150.9300N4—H4A0.8600
C16—C171.384 (2)O1—H10.8200
C16—H160.9300O4—H40.8200
C17—N31.394 (2)O6—H60.8200
C18—C191.387 (2)O7—H70.8200
C18—C231.390 (2)O9—H90.8200
C18—C241.497 (2)O1W—H20.8561
C19—C201.394 (2)O1W—H30.8490
C2—C1—C6116.25 (18)C20—C19—H19120.0
C2—C1—H221121.9C21—C20—C19119.67 (15)
C6—C1—H221121.9C21—C20—C25117.19 (14)
C1—C2—C3121.6 (2)C19—C20—C25123.13 (14)
C1—C2—H222119.2C22—C21—C20121.04 (14)
C3—C2—H222119.2C22—C21—H21119.5
C4—C3—C2122.5 (2)C20—C21—H21119.5
C4—C3—H223118.8C23—C22—C21118.60 (15)
C2—C3—H223118.8C23—C22—C26121.43 (15)
C3—C4—C5115.98 (18)C21—C22—C26119.98 (14)
C3—C4—H224122.0C22—C23—C18121.36 (15)
C5—C4—H224122.0C22—C23—H23119.3
C4—C5—N2132.23 (17)C18—C23—H23119.3
C4—C5—C6121.61 (18)O8—C24—O7124.20 (15)
N2—C5—C6106.13 (15)O8—C24—C18124.19 (16)
C1—C6—N1131.79 (16)O7—C24—C18111.60 (14)
C1—C6—C5122.11 (17)O10—C25—O9122.68 (15)
N1—C6—C5106.09 (15)O10—C25—C20121.29 (15)
N1—C7—N2108.36 (16)O9—C25—C20116.02 (14)
N1—C7—C8124.59 (16)O11—C26—O12123.93 (15)
N2—C7—C8126.98 (17)O11—C26—C22118.80 (15)
C7—C8—C9113.30 (16)O12—C26—C22117.27 (14)
C7—C8—H8A108.9C32—C27—C28119.36 (15)
C9—C8—H8A108.9C32—C27—C33117.75 (14)
C7—C8—H8B108.9C28—C27—C33122.88 (15)
C9—C8—H8B108.9C29—C28—C27120.05 (15)
H8A—C8—H8B107.7C29—C28—H28120.0
C8—C9—C10115.43 (15)C27—C28—H28120.0
C8—C9—H9A108.4C30—C29—C28119.73 (14)
C10—C9—H9A108.4C30—C29—C34118.75 (15)
C8—C9—H9B108.4C28—C29—C34121.51 (15)
C10—C9—H9B108.4C29—C30—C31120.69 (15)
H9A—C9—H9B107.5C29—C30—H30119.7
C11—C10—C9114.59 (14)C31—C30—H30119.7
C11—C10—H10A108.6C32—C31—C30118.75 (14)
C9—C10—H10A108.6C32—C31—C35118.50 (13)
C11—C10—H10B108.6C30—C31—C35122.74 (14)
C9—C10—H10B108.6C27—C32—C31121.41 (14)
H10A—C10—H10B107.6C27—C32—H32119.3
N3—C11—N4110.65 (15)C31—C32—H32119.3
N3—C11—C10126.11 (16)O2—C33—O1123.21 (16)
N4—C11—C10123.23 (15)O2—C33—C27121.45 (15)
N4—C12—C13132.57 (16)O1—C33—C27115.34 (14)
N4—C12—C17105.30 (15)O5—C34—O6124.88 (15)
C13—C12—C17122.10 (17)O5—C34—C29120.36 (15)
C14—C13—C12116.70 (17)O6—C34—C29114.75 (15)
C14—C13—H13121.6O3—C35—O4124.28 (15)
C12—C13—H13121.6O3—C35—C31120.99 (15)
C13—C14—C15121.71 (19)O4—C35—C31114.73 (14)
C13—C14—H14119.1C7—N1—C6109.82 (14)
C15—C14—H14119.1C7—N1—H1A125.1
C16—C15—C14121.43 (19)C6—N1—H1A125.1
C16—C15—H15119.3C7—N2—C5109.58 (15)
C14—C15—H15119.3C7—N2—H2A125.2
C15—C16—C17117.37 (16)C5—N2—H2A125.2
C15—C16—H16121.3C11—N3—C17106.47 (13)
C17—C16—H16121.3C11—N4—C12108.91 (13)
C16—C17—C12120.65 (15)C11—N4—H4A125.5
C16—C17—N3130.69 (14)C12—N4—H4A125.5
C12—C17—N3108.65 (14)C33—O1—H1109.5
C19—C18—C23119.38 (14)C35—O4—H4109.5
C19—C18—C24120.47 (14)C34—O6—H6109.5
C23—C18—C24120.14 (15)C24—O7—H7109.5
C18—C19—C20119.91 (15)C25—O9—H9109.5
C18—C19—H19120.0H2—O1W—H3105.4
C6—C1—C2—C30.1 (3)C21—C20—C25—O9177.31 (16)
C1—C2—C3—C40.7 (4)C19—C20—C25—O93.7 (3)
C2—C3—C4—C50.3 (3)C23—C22—C26—O11176.01 (16)
C3—C4—C5—N2178.11 (19)C21—C22—C26—O114.1 (2)
C3—C4—C5—C60.5 (3)C23—C22—C26—O123.1 (2)
C2—C1—C6—N1178.2 (2)C21—C22—C26—O12176.72 (17)
C2—C1—C6—C50.7 (3)C32—C27—C28—C290.6 (3)
C4—C5—C6—C11.1 (3)C33—C27—C28—C29178.26 (17)
N2—C5—C6—C1179.23 (16)C27—C28—C29—C300.8 (3)
C4—C5—C6—N1178.06 (17)C27—C28—C29—C34178.12 (15)
N2—C5—C6—N10.1 (2)C28—C29—C30—C310.7 (2)
N1—C7—C8—C9104.6 (2)C34—C29—C30—C31178.24 (15)
N2—C7—C8—C972.0 (2)C29—C30—C31—C320.4 (2)
C7—C8—C9—C1072.0 (2)C29—C30—C31—C35178.30 (15)
C8—C9—C10—C1164.1 (2)C28—C27—C32—C310.3 (3)
C9—C10—C11—N348.0 (3)C33—C27—C32—C31178.63 (16)
C9—C10—C11—N4131.08 (18)C30—C31—C32—C270.2 (3)
N4—C12—C13—C14178.6 (2)C35—C31—C32—C27178.58 (15)
C17—C12—C13—C141.0 (3)C32—C27—C33—O24.6 (3)
C12—C13—C14—C150.7 (3)C28—C27—C33—O2174.27 (18)
C13—C14—C15—C161.8 (3)C32—C27—C33—O1175.43 (17)
C14—C15—C16—C171.0 (3)C28—C27—C33—O15.7 (3)
C15—C16—C17—C120.6 (3)C30—C29—C34—O51.0 (3)
C15—C16—C17—N3178.61 (17)C28—C29—C34—O5179.92 (18)
N4—C12—C17—C16179.87 (16)C30—C29—C34—O6178.12 (15)
C13—C12—C17—C161.7 (3)C28—C29—C34—O60.8 (2)
N4—C12—C17—N30.49 (18)C32—C31—C35—O36.9 (2)
C13—C12—C17—N3177.72 (16)C30—C31—C35—O3174.34 (16)
C23—C18—C19—C201.2 (2)C32—C31—C35—O4173.69 (16)
C24—C18—C19—C20177.37 (15)C30—C31—C35—O45.0 (2)
C18—C19—C20—C212.2 (3)N2—C7—N1—C61.6 (2)
C18—C19—C20—C25176.72 (17)C8—C7—N1—C6175.51 (17)
C19—C20—C21—C221.4 (3)C1—C6—N1—C7178.09 (19)
C25—C20—C21—C22177.55 (17)C5—C6—N1—C70.9 (2)
C20—C21—C22—C230.3 (3)N1—C7—N2—C51.7 (2)
C20—C21—C22—C26179.84 (15)C8—C7—N2—C5175.36 (17)
C21—C22—C23—C181.3 (2)C4—C5—N2—C7176.8 (2)
C26—C22—C23—C18178.84 (15)C6—C5—N2—C71.1 (2)
C19—C18—C23—C220.5 (2)N4—C11—N3—C171.25 (19)
C24—C18—C23—C22179.15 (15)C10—C11—N3—C17177.92 (16)
C19—C18—C24—O811.2 (3)C16—C17—N3—C11178.86 (18)
C23—C18—C24—O8170.21 (16)C12—C17—N3—C110.44 (18)
C19—C18—C24—O7167.73 (15)N3—C11—N4—C121.6 (2)
C23—C18—C24—O710.9 (2)C10—C11—N4—C12177.60 (16)
C21—C20—C25—O103.5 (3)C13—C12—N4—C11176.7 (2)
C19—C20—C25—O10175.51 (18)C17—C12—N4—C111.24 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O10i0.821.822.6404 (16)178
O9—H9···O2i0.821.852.6682 (16)177
N1—H1A···O110.861.842.6560 (17)159
N4—H4A···O30.862.052.8435 (17)153
C1—H221···O100.932.513.414 (2)163
C9—H9A···O5ii0.972.443.346 (2)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H17N4+·C9H5O6·C9H6O6·H2O
Mr714.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7711 (3), 10.8389 (6), 17.2999 (9)
α, β, γ (°)81.520 (5), 84.131 (4), 86.998 (4)
V3)1617.02 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.4 × 0.32 × 0.2
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
9922, 5657, 3630
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.081, 1.07
No. of reflections5657
No. of parameters469
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O10i0.821.822.6404 (16)178.0
O9—H9···O2i0.821.852.6682 (16)177.2
N1—H1A···O110.861.842.6560 (17)158.6
N4—H4A···O30.862.052.8435 (17)152.8
C1—H221···O100.932.513.414 (2)163.0
C9—H9A···O5ii0.972.443.346 (2)156.0
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported financially by the Foundation for Young Teachers of Baoji University of Arts and Science (grant No. ZK09135).

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, C. M., Kulkarni, M. V., Chen, C. H., Wang, C. & Sun, C. M. (2008). J. Comb. Chem. 10, 466–474.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarrell, C. C., Kohli, P., Siwy, Z. & Martin, C. R. (2004). J. Am. Chem. Soc. 126, 15646–15647.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T., Li, K., Lai, Y., Chen, R. & Wu, H. (2010). Acta Cryst. E66, m1058.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds