organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Phenyl­sulfan­yl)benzene-1,2-dicarbo­nitrile

aMarine College, Shandong University at Weihai, Weihai 264209, People's Republic of China, and bSchool of Chemistry & Chemical Technology, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: mengfj@sdu.edu.cn, zhangxiaomei@sdu.edu.cn

(Received 17 September 2010; accepted 22 October 2010; online 30 October 2010)

In the title compound, C14H8N2S, the dicyano-substituted aromatic ring and the phenyl ring attached to the central S atom adopt an angular V-shaped configuration. The dihedral angle between the rings is 103.6°.

Related literature

The title compound is a precusor in the synthesis of phthalocyanine derivatives. For applications of phthalocyanines, see: Ao et al. (1995[Ao. Q. (1995). Comput. Struct. 55, 119-126.]); Rey et al. (1998[Rey, B., Keller, U. & Torres, T. (1998). J. Am. Chem. Soc. 120, 12808-12817.]); Zhang et al. (2009[Zhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837.]); Beltrán et al. (2004[Beltrán, H. I., Esquive, R., Sosa-Sánchez, A., Sosa-Sánchez, J. L., Höpfl, H., Barba, V., Farfán, N., Galicia García, M., Olivares-Xometl, O. & Zamudio-Rivera, L. S. (2004). Inorg. Chem. 43, 3555-35557.]); LukCentyanets (1999[LukCentyanets, E. A. (1999). J. Porphyrins Phthalocyanines, 3, 424-432.]); Shirk & Pong (2000[Shirk, J. S. & Pong, R. G. S. (2000). J. Phys. Chem. 104, 1438-1449.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8N2S

  • Mr = 236.28

  • Monoclinic, P 21 /c

  • a = 7.8515 (7) Å

  • b = 9.7739 (9) Å

  • c = 15.6248 (14) Å

  • β = 91.544 (2)°

  • V = 1198.61 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 273 K

  • 0.31 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.950

  • 5758 measured reflections

  • 2102 independent reflections

  • 1818 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.04

  • 2102 reflections

  • 154 parameters

  • 17 restraints

  • H-atom parameters not refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dicyano compounds have been widely used to synthesize many useful materials such as phthalocyanines. Phthalocyanines are an interesting class of compounds, with increasingly diverse industrial and biomedical applications, for instance as dyes and pigments, materials for optical storage (Ao et al. 1995), liquid crystals, oxidation catalysts, solar cell functional materials, gas sensors, nonlinear optical limiting devices (Shirk et al. 2000), photodynamic therapy agents (LukCentyanets et al. 1999), antimycotic material, and corrosion inhibitors (Zhang et al. 2009). The title compound 4-phenylsulfanylphthalonitrile was prepared according to the method reported in the literature.

The dicyano substituted phenyl ring and the aromatic ring attached to the sulfur atom is planar and the angle involving C4—S1—C9 (103.590) clearly indicate the angular orientation of the phenyl rings with respect to the sulfur atom with in this compound.

Related literature top

The title compound is a precusor in the synthesis of phthalocyanine derivatives. For applications of phthalocyanines, see: Ao et al. (1995); Rey et al. (1998); Zhang et al. (2009); Beltrán et al. (2004); LukCentyanets (1999); Shirk & Pong (2000).

Experimental top

For general structure and background information on phthalocyanines, see: Zhang et al. (2009); For the synthesis, see: Rey et al. (1998).

Refinement top

Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic H atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Structure description top

Dicyano compounds have been widely used to synthesize many useful materials such as phthalocyanines. Phthalocyanines are an interesting class of compounds, with increasingly diverse industrial and biomedical applications, for instance as dyes and pigments, materials for optical storage (Ao et al. 1995), liquid crystals, oxidation catalysts, solar cell functional materials, gas sensors, nonlinear optical limiting devices (Shirk et al. 2000), photodynamic therapy agents (LukCentyanets et al. 1999), antimycotic material, and corrosion inhibitors (Zhang et al. 2009). The title compound 4-phenylsulfanylphthalonitrile was prepared according to the method reported in the literature.

The dicyano substituted phenyl ring and the aromatic ring attached to the sulfur atom is planar and the angle involving C4—S1—C9 (103.590) clearly indicate the angular orientation of the phenyl rings with respect to the sulfur atom with in this compound.

The title compound is a precusor in the synthesis of phthalocyanine derivatives. For applications of phthalocyanines, see: Ao et al. (1995); Rey et al. (1998); Zhang et al. (2009); Beltrán et al. (2004); LukCentyanets (1999); Shirk & Pong (2000).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-(Phenylsulfanyl)benzene-1,2-dicarbonitrile top
Crystal data top
C14H8N2SF(000) = 488
Mr = 236.28Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2102 reflections
a = 7.8515 (7) Åθ = 2.2–25.0°
b = 9.7739 (9) ŵ = 0.25 mm1
c = 15.6248 (14) ÅT = 273 K
β = 91.544 (2)°Block, colorless
V = 1198.61 (19) Å30.31 × 0.25 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2102 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 89
Tmin = 0.928, Tmax = 0.950k = 1111
5758 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters not refined
S = 1.04 w = 1/[σ2(Fo2) + (0.043P)2 + 0.3751P]
where P = (Fo2 + 2Fc2)/3
2102 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.33 e Å3
17 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H8N2SV = 1198.61 (19) Å3
Mr = 236.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8515 (7) ŵ = 0.25 mm1
b = 9.7739 (9) ÅT = 273 K
c = 15.6248 (14) Å0.31 × 0.25 × 0.21 mm
β = 91.544 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2102 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1818 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.950Rint = 0.015
5758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03717 restraints
wR(F2) = 0.098H-atom parameters not refined
S = 1.04Δρmax = 0.33 e Å3
2102 reflectionsΔρmin = 0.38 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.02062 (6)0.13035 (5)0.20832 (4)0.0706 (2)
N11.1713 (2)0.44401 (17)0.06030 (11)0.0689 (5)
N21.5357 (2)0.1851 (2)0.00461 (12)0.0759 (5)
C11.10678 (19)0.23614 (16)0.03502 (9)0.0428 (4)
C21.23816 (19)0.14420 (16)0.05715 (10)0.0437 (4)
C31.2075 (2)0.03475 (17)0.11030 (11)0.0496 (4)
H31.29540.02530.12520.060*
C41.0448 (2)0.01386 (16)0.14187 (11)0.0466 (4)
C50.9148 (2)0.10349 (18)0.11842 (11)0.0508 (4)
H50.80560.08900.13830.061*
C60.9453 (2)0.21380 (17)0.06595 (11)0.0504 (4)
H60.85710.27350.05120.061*
C71.1412 (2)0.35200 (18)0.01832 (11)0.0498 (4)
C81.4050 (2)0.16575 (18)0.02351 (12)0.0539 (4)
C90.8157 (2)0.10711 (17)0.25164 (11)0.0493 (4)
C100.7880 (3)0.0083 (2)0.31328 (12)0.0629 (5)
H100.87620.04910.33160.075*
C110.6272 (3)0.0044 (2)0.34748 (13)0.0723 (6)
H110.60750.07080.38870.087*
C120.4977 (3)0.0807 (2)0.32069 (14)0.0724 (6)
H120.39000.07150.34340.087*
C130.5263 (3)0.1780 (2)0.26123 (15)0.0736 (6)
H130.43800.23580.24370.088*
C140.6849 (2)0.1927 (2)0.22626 (12)0.0601 (5)
H140.70320.26040.18570.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0552 (3)0.0589 (3)0.0988 (4)0.0124 (2)0.0230 (3)0.0307 (3)
N10.0704 (11)0.0639 (10)0.0736 (11)0.0084 (8)0.0214 (8)0.0192 (9)
N20.0501 (10)0.0816 (12)0.0971 (13)0.0050 (8)0.0241 (9)0.0081 (10)
C10.0433 (8)0.0425 (8)0.0428 (8)0.0005 (7)0.0046 (6)0.0009 (7)
C20.0387 (8)0.0459 (9)0.0470 (9)0.0015 (7)0.0079 (6)0.0033 (7)
C30.0418 (9)0.0483 (9)0.0590 (10)0.0091 (7)0.0062 (7)0.0042 (8)
C40.0442 (9)0.0439 (9)0.0520 (9)0.0004 (7)0.0064 (7)0.0012 (7)
C50.0373 (8)0.0530 (10)0.0623 (10)0.0005 (7)0.0082 (7)0.0071 (8)
C60.0397 (8)0.0517 (9)0.0600 (10)0.0069 (7)0.0039 (7)0.0072 (8)
C70.0458 (9)0.0522 (10)0.0519 (9)0.0062 (8)0.0100 (7)0.0016 (8)
C80.0449 (9)0.0535 (10)0.0638 (11)0.0065 (8)0.0098 (8)0.0049 (8)
C90.0517 (9)0.0456 (9)0.0510 (9)0.0027 (7)0.0070 (7)0.0115 (7)
C100.0732 (12)0.0524 (10)0.0626 (11)0.0007 (9)0.0059 (9)0.0000 (9)
C110.0989 (16)0.0647 (12)0.0539 (11)0.0253 (12)0.0141 (11)0.0029 (9)
C120.0647 (12)0.0775 (14)0.0762 (14)0.0134 (11)0.0239 (10)0.0126 (11)
C130.0578 (11)0.0763 (14)0.0875 (15)0.0109 (10)0.0137 (10)0.0022 (12)
C140.0647 (11)0.0573 (11)0.0588 (11)0.0039 (9)0.0129 (9)0.0059 (9)
Geometric parameters (Å, º) top
S1—C41.7638 (16)C5—H50.9300
S1—C91.7770 (17)C6—H60.9300
N1—C71.142 (2)C9—C141.375 (3)
N2—C81.143 (2)C9—C101.385 (3)
C1—C61.386 (2)C10—C111.389 (3)
C1—C21.404 (2)C10—H100.9300
C1—C71.436 (2)C11—C121.370 (3)
C2—C31.379 (2)C11—H110.9300
C2—C81.440 (2)C12—C131.353 (3)
C3—C41.397 (2)C12—H120.9300
C3—H30.9300C13—C141.381 (3)
C4—C51.387 (2)C13—H130.9300
C5—C61.379 (2)C14—H140.9300
C4—S1—C9103.59 (7)N2—C8—C2178.3 (2)
C6—C1—C2119.07 (14)C14—C9—C10119.68 (17)
C6—C1—C7120.97 (14)C14—C9—S1119.29 (14)
C2—C1—C7119.95 (14)C10—C9—S1120.97 (14)
C3—C2—C1120.38 (14)C9—C10—C11119.38 (18)
C3—C2—C8120.55 (14)C9—C10—H10120.3
C1—C2—C8119.07 (14)C11—C10—H10120.3
C2—C3—C4120.13 (14)C12—C11—C10120.21 (18)
C2—C3—H3119.9C12—C11—H11119.9
C4—C3—H3119.9C10—C11—H11119.9
C5—C4—C3119.22 (15)C13—C12—C11120.05 (19)
C5—C4—S1124.76 (12)C13—C12—H12120.0
C3—C4—S1116.01 (12)C11—C12—H12120.0
C6—C5—C4120.80 (15)C12—C13—C14120.9 (2)
C6—C5—H5119.6C12—C13—H13119.6
C4—C5—H5119.6C14—C13—H13119.6
C5—C6—C1120.39 (15)C9—C14—C13119.80 (18)
C5—C6—H6119.8C9—C14—H14120.1
C1—C6—H6119.8C13—C14—H14120.1
N1—C7—C1178.87 (19)

Experimental details

Crystal data
Chemical formulaC14H8N2S
Mr236.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)7.8515 (7), 9.7739 (9), 15.6248 (14)
β (°) 91.544 (2)
V3)1198.61 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.31 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.928, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
5758, 2102, 1818
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.04
No. of reflections2102
No. of parameters154
No. of restraints17
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.33, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Postdoctoral Scientific Foundation of China (grant No. 20070411093), the Postdoctoral Scientific Foundation of Shandong Province (grant No. 200603070) and Independent Innovation Foundation of Shandong University, IIFSDU.

References

First citationAo. Q. (1995). Comput. Struct. 55, 119–126.  Google Scholar
First citationBeltrán, H. I., Esquive, R., Sosa-Sánchez, A., Sosa-Sánchez, J. L., Höpfl, H., Barba, V., Farfán, N., Galicia García, M., Olivares-Xometl, O. & Zamudio-Rivera, L. S. (2004). Inorg. Chem. 43, 3555–35557.  Web of Science PubMed Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLukCentyanets, E. A. (1999). J. Porphyrins Phthalocyanines, 3, 424–432.  Google Scholar
First citationRey, B., Keller, U. & Torres, T. (1998). J. Am. Chem. Soc. 120, 12808–12817.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirk, J. S. & Pong, R. G. S. (2000). J. Phys. Chem. 104, 1438–1449.  CrossRef CAS Google Scholar
First citationZhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds