organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-(1-Ammonio­prop­yl)phospho­nate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 10 September 2010; accepted 8 October 2010; online 20 October 2010)

The title compound, C3H10NO3P, crystallizes in its zwitterionic form, H3N+CH(C2H5)PO(O)(OH), with the asymmetric unit being composed by two of such entities (Z′ = 2). The crystal packing leads to a sequence of hydro­phobic and hydro­philic layers. While the hydro­phobic layer comprises the aliphatic substituent groups, the hydro­philic one is held together by a series of strong and rather directional N+—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]). For basic stereochemistry terminology, see: Moss (1996[Moss, G. P. (1996). Pure Appl. Chem. 68, 2193-2222.]). For the biological activity of the title compound, see: Hudson & Ismail (2001[Hudson, H. R. & Ismail, F. (2001). J. Labelled Comp. Radiopharm. 44, 549-552.]). For the crystal structure of a racemic mixture containing the title compound, see: Bashall et al. (2010[Bashall, A. P., Crowder, J., Dronia, H., Hägele, G., Hudson, H. R., Lee, R. J., McPartlin, M., Matthews, R. W. & Ollig, J. (2010). Heteroat. Chem. 21, 314-325.]). For previous work from our research group on the assembly of coordination polymers using phospho­nic-based mol­ecules, see: Cunha-Silva, Ananias et al. (2009[Cunha-Silva, L., Ananias, D., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2009). Z. Kristallogr. 224, 261-272.]); Cunha-Silva, Lima et al. (2009[Cunha-Silva, L., Lima, S., Ananias, D., Silva, P., Mafra, L., Carlos, L. D., Pillinger, M., Valente, A. A., Paz, F. A. A. & Rocha, J. (2009). J. Mater. Chem. 19, 2618-2632.]); Cunha-Silva et al. (2007[Cunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater. 19, 3527-3538.]); Rocha et al. (2009[Rocha, J., Paz, F. A. A., Shi, F. N., Ferreira, R. A. S., Trindade, T. & Carlos, L. D. (2009). Eur. J. Inorg. Chem. pp. 4931-4945.]); Shi, Cunha-Silva et al. (2008[Shi, F. N., Cunha-Silva, L., Ferreira, R. A. S., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150-167.]); Shi, Trindade et al. (2008[Shi, F. N., Trindade, T., Rocha, J. & Paz, F. A. A. (2008). Cryst. Growth Des. 8, 3917-3920.]). For a related structure, see: Fernandes et al. (2010[Fernandes, J. A., Almeida Paz, F. A., Vilela, S. M. F., Tomé, J. C., Cavaleiro, J. A. S., Ribeiro-Claro, P. J. A. & Rocha, J. (2010). Acta Cryst. E66, o2271-o2272.]). For a description of the TOPOS software, see: Blatov & Proserpio (2009[Blatov, V. A. & Proserpio, D. M. (2009). Acta Cryst. A65, 202-212.]).

[Scheme 1]

Experimental

Crystal data
  • C3H10NO3P

  • Mr = 139.09

  • Monoclinic, P 21

  • a = 9.3988 (13) Å

  • b = 6.2511 (8) Å

  • c = 10.8575 (15) Å

  • β = 105.731 (9)°

  • V = 614.02 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 150 K

  • 0.16 × 0.08 × 0.02 mm

Data collection
  • Bruker X8 Kappa CCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.993

  • 23447 measured reflections

  • 4196 independent reflections

  • 3465 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.088

  • S = 1.06

  • 4196 reflections

  • 171 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.55 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1730 Friedel pairs

  • Flack parameter: −0.03 (8)

Table 1
Selected torsion angles (°)

O3—P1—C1—C2 33.53 (18)
P1—C1—C2—C3 64.8 (2)
O6—P2—C4—C5 −77.88 (16)
P2—C4—C5—C6 170.61 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3D⋯O4i 0.94 (1) 1.66 (1) 2.583 (2) 168 (3)
N1—H1⋯O1ii 0.94 (1) 1.83 (1) 2.767 (2) 178 (2)
N1—H2⋯O2iii 0.95 (1) 1.97 (2) 2.794 (2) 144 (2)
N1—H3⋯O4iv 0.95 (1) 1.91 (1) 2.843 (3) 166 (2)
O6—H6A⋯O1 0.94 (1) 1.65 (1) 2.589 (2) 175 (3)
N2—H4⋯O4v 0.95 (1) 2.05 (2) 2.914 (2) 151 (2)
N2—H5⋯O5vi 0.95 (1) 1.78 (1) 2.697 (2) 162 (2)
N2—H6⋯O2vi 0.95 (1) 1.84 (1) 2.783 (2) 172 (2)
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) x, y-1, z; (vi) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The racemic mixture of the title compound is known as Ampropylfos and has been the object of several studies for its use as a pesticide (Hudson & Ismail, 2001), and its crystal structure has been very recently reported (Bashall et al., 2010). Following our interest in the use of phosphonic acid molecules (Fernandes et al., 2010; Cunha-Silva, Ananias et al., 2009; Cunha-Silva, Lima et al., 2009; Rocha et al., 2009; Shi, Cunha-Silva et al., 2008; Shi, Trindade et al., 2008; Cunha-Silva et al., 2007) here we wish to describe the crystal structure of the title compound (see Scheme).

The asymmetric unit is composed by two entities of the title compound in their zwitterionic form, in which the acidic phosphonate moiety donates one proton to the amino group (Figure 1). The geometrical conformations of the two molecules are considerably different: in one unit the two torsion angles O3—P1—C1—C2 and P1—C1—C2—C3 are both +synclinal and in the other the analogous torsion angles (O6—P2—C4—C5 and P2—C4—C5—C6) are -synclinal and antiperiplanar, respectively (see Table 1; Moss, 1996). The two crystallographically unique molecules are organized in the crystal structure into a supramolecular bilayer (in the ab plane) having the hydrophilic portion in the interior (composed by the amino, methyne and phosphonate moieties) and the hydrophobic in the outer position (formed by the pendant —CH2CH3 groups) (Figures 2 and 3).

Inside the hydrophilic section, individual functional groups are disposed in a zigzag fashion along the [010] direction of the unit cell, leading to the formation of a supramolecular chain held together by a combination of four N+—H···O hydrogen bridges (green dashed bonds in Figure 2; Table 2) - graph set motif R34(10) (Grell et al., 1999). Supramolecular chains are, in turn, interconnected in the ab plane via the remanant N+—H···O (orange dashed lines in Figure 2) and O—H···O hydrogen bonds (violet dashed lines in Figure 2).

Noteworthy, all hydrogen bonding interactions are rather strong with the internuclear D···A distances ranging from 2.583 (2) to 2.914 (2) Å. In addition, the (DHA) angles range from ca 144 to 177°. One acceptor atom (O4) participates in a D13(7) graph set motif with all (DHA) greater than ca 150°. Other acceptors (O1 and O2) are, in turn, involved in D12(5) motifs: N1—H2···O2 with (DHA) of ca 144° and the other three interactions having angles larger than ca 171°. O5 is the only acceptor in a S11 graph set motif: N2—H5···O5 with (DHA) of ca 162° (See Table 2).

The crystal can be better described by employing a topological approach for the description of the aforementioned hydrogen bonding interactions. Taking the geometrical centre of each molecular unit as a node, and being the hydrogen bonding interactions the connections between nodes, the structure can be simplified into a two-dimensional uninodal 7-connected single-penetrated planar (4,4)IIIb network, with total Schläfli symbol 36.412.53 (Blatov & Proserpio, 2009).

Related literature top

For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999). For basic stereochemistry terminology, see: Moss (1996). For the biological activity of the title compound, see: Hudson & Ismail (2001). For the crystal structure of a racemic mixture containing the title compound, see: Bashall et al. (2010). For previous work from our research group on the assembly of coordination polymers using phosphonic-based molecules, see: Cunha-Silva, Ananias et al. (2009); Cunha-Silva, Lima et al. (2009); Cunha-Silva et al. (2007); Rocha et al. (2009); Shi, Cunha-Silva et al. (2008); Shi, Trindade et al. (2008). For a related structure, see: Fernandes et al. (2010). For a description of the TOPOS software, see: Blatov & Proserpio (2009).

Experimental top

The title compound was purchased from Sigma-Aldrich (Aldrich, 98%) and was used as received without purification. Suitable single crystals were grown from an aqueous solution over a period of one month.

1H-NMR (300.13 MHz, D2O) δ: 0.91 (t, 3H, J(1H-1H) = 7.5 Hz, CH3), 1.56–1.63 and 1.75–1.86 (2 m, 2H, CH2) and 2.96–3.05 (m, 1H, CH).

13C-NMR (75.47 MHz, D2O) δ: 13.0 (d, J(13C-31P) = 9.7 Hz, CH3), 24.7 (d, J(13C-31P)= 1.6 Hz, CH2) and 53.5 (d, J(13C-31P)= 143.3 Hz, CH).

31P-NMR (121.49 MHz, D2O) δ: 14.1 (dt, J(31P-1H)= 12.1 and 23.1 Hz).

Refinement top

Hydrogen atoms bound to carbon were included in the final structural model using a riding-motion approximation with C—H = 1.00 Å (tertiary C—H), 0.99 Å (—CH2) or 0.98 Å (terminal —CH3). The isotropic thermal displacement parameters for these atoms were fixed at 1.2 (for the two former families) or 1.5 (for the terminal methyl group) times Ueq of the respective parent atom.

Hydrogen atoms associated with the protonated —NH3+ group or the pendant —OH moiety were directly located in difference Fourier maps and were included in the final structural model with the distances restrained to 0.95 (1) Å and Uiso=1.5×Ueq of the respective parent atom. The H···H distances of the —NH3+ terminal group have been further restrained to 1.55 (1) Å in order to ensure a chemically reasonable geometry.

A total of 1730 estimated Friedel pairs have not been merged and were used as independent data for the structure refinement. The Flack parameter (Flack, 1983) converged to -0.03 (8), ultimately assuring a valid absolute structure determination from the single-crystal data set.

Structure description top

The racemic mixture of the title compound is known as Ampropylfos and has been the object of several studies for its use as a pesticide (Hudson & Ismail, 2001), and its crystal structure has been very recently reported (Bashall et al., 2010). Following our interest in the use of phosphonic acid molecules (Fernandes et al., 2010; Cunha-Silva, Ananias et al., 2009; Cunha-Silva, Lima et al., 2009; Rocha et al., 2009; Shi, Cunha-Silva et al., 2008; Shi, Trindade et al., 2008; Cunha-Silva et al., 2007) here we wish to describe the crystal structure of the title compound (see Scheme).

The asymmetric unit is composed by two entities of the title compound in their zwitterionic form, in which the acidic phosphonate moiety donates one proton to the amino group (Figure 1). The geometrical conformations of the two molecules are considerably different: in one unit the two torsion angles O3—P1—C1—C2 and P1—C1—C2—C3 are both +synclinal and in the other the analogous torsion angles (O6—P2—C4—C5 and P2—C4—C5—C6) are -synclinal and antiperiplanar, respectively (see Table 1; Moss, 1996). The two crystallographically unique molecules are organized in the crystal structure into a supramolecular bilayer (in the ab plane) having the hydrophilic portion in the interior (composed by the amino, methyne and phosphonate moieties) and the hydrophobic in the outer position (formed by the pendant —CH2CH3 groups) (Figures 2 and 3).

Inside the hydrophilic section, individual functional groups are disposed in a zigzag fashion along the [010] direction of the unit cell, leading to the formation of a supramolecular chain held together by a combination of four N+—H···O hydrogen bridges (green dashed bonds in Figure 2; Table 2) - graph set motif R34(10) (Grell et al., 1999). Supramolecular chains are, in turn, interconnected in the ab plane via the remanant N+—H···O (orange dashed lines in Figure 2) and O—H···O hydrogen bonds (violet dashed lines in Figure 2).

Noteworthy, all hydrogen bonding interactions are rather strong with the internuclear D···A distances ranging from 2.583 (2) to 2.914 (2) Å. In addition, the (DHA) angles range from ca 144 to 177°. One acceptor atom (O4) participates in a D13(7) graph set motif with all (DHA) greater than ca 150°. Other acceptors (O1 and O2) are, in turn, involved in D12(5) motifs: N1—H2···O2 with (DHA) of ca 144° and the other three interactions having angles larger than ca 171°. O5 is the only acceptor in a S11 graph set motif: N2—H5···O5 with (DHA) of ca 162° (See Table 2).

The crystal can be better described by employing a topological approach for the description of the aforementioned hydrogen bonding interactions. Taking the geometrical centre of each molecular unit as a node, and being the hydrogen bonding interactions the connections between nodes, the structure can be simplified into a two-dimensional uninodal 7-connected single-penetrated planar (4,4)IIIb network, with total Schläfli symbol 36.412.53 (Blatov & Proserpio, 2009).

For a description of the graph-set notation for hydrogen-bonded aggregates, see: Grell et al. (1999). For basic stereochemistry terminology, see: Moss (1996). For the biological activity of the title compound, see: Hudson & Ismail (2001). For the crystal structure of a racemic mixture containing the title compound, see: Bashall et al. (2010). For previous work from our research group on the assembly of coordination polymers using phosphonic-based molecules, see: Cunha-Silva, Ananias et al. (2009); Cunha-Silva, Lima et al. (2009); Cunha-Silva et al. (2007); Rocha et al. (2009); Shi, Cunha-Silva et al. (2008); Shi, Trindade et al. (2008). For a related structure, see: Fernandes et al. (2010). For a description of the TOPOS software, see: Blatov & Proserpio (2009).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing the two crystallographically indenpendent molecular units. Thermal ellipsoids are drawn at the 80% probability level and the atomic labeling is provided for all non-hydrogen atoms. Hydrogen atoms are represented as small spheres with arbitrary radius.
[Figure 2] Fig. 2. Portion of the supramolecular bilayer showing the one-dimensional zigzag chain running parallel to the [010] direction of the unit cell (graph set motif R34(10) - dashed green lines) which is interconnected by the inter-chain O—H···O (violet) and N+—H···O (orange) hydrogen bonds. For hydrogen bonding geometrical details see Table 1.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed in perspective along the (a) [100] and (b) [001] directions of the unit cell. Hydrogen bonds are represented as dashed green (intra-chain N+—H···O), violet (inter-chain O—H···O) or orange (inter-chain N+—H···O) lines.
(R)-(1-Ammoniopropyl)phosphonate top
Crystal data top
C3H10NO3PF(000) = 296
Mr = 139.09Dx = 1.505 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6291 reflections
a = 9.3988 (13) Åθ = 2.3–32.1°
b = 6.2511 (8) ŵ = 0.37 mm1
c = 10.8575 (15) ÅT = 150 K
β = 105.731 (9)°Plate, colourless
V = 614.02 (14) Å30.16 × 0.08 × 0.02 mm
Z = 4
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
4196 independent reflections
Radiation source: fine-focus sealed tube3465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω and φ scansθmax = 33.1°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1414
Tmin = 0.943, Tmax = 0.993k = 79
23447 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.1217P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4196 reflectionsΔρmax = 0.38 e Å3
171 parametersΔρmin = 0.55 e Å3
15 restraintsAbsolute structure: Flack (1983), 1730 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C3H10NO3PV = 614.02 (14) Å3
Mr = 139.09Z = 4
Monoclinic, P21Mo Kα radiation
a = 9.3988 (13) ŵ = 0.37 mm1
b = 6.2511 (8) ÅT = 150 K
c = 10.8575 (15) Å0.16 × 0.08 × 0.02 mm
β = 105.731 (9)°
Data collection top
Bruker X8 Kappa CCD APEXII
diffractometer
4196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3465 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.993Rint = 0.053
23447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088Δρmax = 0.38 e Å3
S = 1.06Δρmin = 0.55 e Å3
4196 reflectionsAbsolute structure: Flack (1983), 1730 Friedel pairs
171 parametersAbsolute structure parameter: 0.03 (8)
15 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.17626 (5)0.89317 (8)0.65337 (5)0.01280 (11)
O10.29018 (16)0.7215 (2)0.69950 (15)0.0197 (3)
O20.10172 (14)0.8923 (3)0.51232 (13)0.0182 (3)
O30.06166 (16)0.8928 (3)0.73443 (14)0.0272 (4)
H3D0.0346 (16)0.837 (4)0.707 (3)0.041*
N10.1977 (2)1.3190 (3)0.60484 (18)0.0159 (4)
H10.231 (2)1.455 (2)0.6360 (19)0.024*
H20.0945 (11)1.307 (4)0.595 (2)0.024*
H30.217 (2)1.294 (4)0.5245 (13)0.024*
C10.2726 (2)1.1499 (4)0.69718 (19)0.0162 (4)
H1A0.37421.13200.68630.019*
C20.2910 (3)1.2237 (4)0.8348 (2)0.0218 (5)
H2A0.33401.36930.84530.026*
H2B0.19241.23170.85090.026*
C30.3897 (3)1.0758 (4)0.9338 (2)0.0248 (5)
H3A0.34380.93410.92870.037*
H3B0.40211.13511.01960.037*
H3C0.48651.06310.91670.037*
P20.64788 (6)0.66572 (8)0.65107 (5)0.01273 (11)
O40.78570 (16)0.7909 (2)0.65226 (15)0.0177 (3)
O50.54723 (16)0.6182 (2)0.52207 (13)0.0180 (3)
O60.57135 (16)0.7875 (2)0.74254 (14)0.0169 (3)
H6A0.4679 (11)0.771 (5)0.725 (2)0.025*
N20.71494 (19)0.2456 (3)0.63228 (17)0.0144 (4)
H40.744 (2)0.109 (2)0.6697 (19)0.022*
H50.6217 (12)0.230 (3)0.5709 (16)0.022*
H60.7853 (16)0.289 (3)0.5885 (18)0.022*
C40.6989 (2)0.4063 (3)0.72982 (18)0.0133 (4)
H4A0.61490.35880.76340.016*
C50.8369 (2)0.4151 (4)0.8428 (2)0.0208 (4)
H5A0.82690.53510.89940.025*
H5B0.92370.44490.81030.025*
C60.8649 (3)0.2079 (4)0.9217 (2)0.0298 (6)
H6B0.77460.16660.94430.045*
H6C0.94480.23120.99990.045*
H6D0.89320.09380.87110.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0114 (2)0.0102 (2)0.0176 (2)0.0005 (2)0.00522 (17)0.0016 (2)
O10.0169 (7)0.0114 (8)0.0292 (8)0.0003 (6)0.0034 (6)0.0005 (6)
O20.0167 (6)0.0171 (7)0.0207 (7)0.0024 (7)0.0049 (5)0.0027 (7)
O30.0165 (7)0.0427 (10)0.0238 (8)0.0090 (9)0.0079 (6)0.0080 (9)
N10.0193 (9)0.0098 (8)0.0178 (9)0.0005 (7)0.0035 (7)0.0007 (7)
C10.0172 (9)0.0099 (9)0.0200 (10)0.0010 (8)0.0025 (7)0.0007 (8)
C20.0295 (12)0.0170 (11)0.0175 (10)0.0027 (9)0.0040 (9)0.0034 (8)
C30.0323 (13)0.0226 (12)0.0177 (11)0.0008 (10)0.0037 (9)0.0007 (9)
P20.0117 (2)0.0087 (2)0.0174 (2)0.0009 (2)0.00322 (18)0.0000 (2)
O40.0141 (7)0.0133 (7)0.0261 (8)0.0006 (6)0.0063 (6)0.0003 (6)
O50.0214 (8)0.0124 (8)0.0173 (7)0.0038 (6)0.0002 (6)0.0011 (6)
O60.0162 (7)0.0130 (7)0.0212 (8)0.0013 (6)0.0046 (6)0.0041 (6)
N20.0155 (8)0.0094 (8)0.0163 (9)0.0010 (7)0.0006 (7)0.0016 (7)
C40.0142 (8)0.0090 (9)0.0164 (8)0.0006 (8)0.0034 (7)0.0028 (8)
C50.0195 (10)0.0186 (12)0.0203 (10)0.0030 (9)0.0014 (8)0.0004 (10)
C60.0359 (13)0.0264 (14)0.0217 (11)0.0088 (10)0.0015 (10)0.0037 (9)
Geometric parameters (Å, º) top
P1—O21.5014 (15)P2—O51.4921 (15)
P1—O11.5029 (15)P2—O41.5105 (15)
P1—O31.5649 (15)P2—O61.5718 (16)
P1—C11.841 (2)P2—C41.836 (2)
O3—H3D0.939 (10)O6—H6A0.944 (10)
N1—C11.495 (3)N2—C41.496 (3)
N1—H10.939 (9)N2—H40.952 (9)
N1—H20.950 (9)N2—H50.951 (9)
N1—H30.950 (9)N2—H60.953 (9)
C1—C21.528 (3)C4—C51.525 (3)
C1—H1A1.0000C4—H4A1.0000
C2—C31.527 (3)C5—C61.536 (3)
C2—H2A0.9900C5—H5A0.9900
C2—H2B0.9900C5—H5B0.9900
C3—H3A0.9800C6—H6B0.9800
C3—H3B0.9800C6—H6C0.9800
C3—H3C0.9800C6—H6D0.9800
O2—P1—O1115.51 (9)O5—P2—O4115.80 (9)
O2—P1—O3111.82 (8)O5—P2—O6114.03 (8)
O1—P1—O3110.39 (10)O4—P2—O6106.37 (9)
O2—P1—C1109.12 (9)O5—P2—C4106.28 (8)
O1—P1—C1106.29 (9)O4—P2—C4109.81 (9)
O3—P1—C1102.78 (10)O6—P2—C4103.89 (8)
P1—O3—H3D124.9 (18)P2—O6—H6A116.1 (16)
C1—N1—H1110.3 (14)C4—N2—H4111.8 (14)
C1—N1—H2107.5 (15)C4—N2—H5108.2 (14)
H1—N1—H2110.3 (12)H4—N2—H5108.1 (12)
C1—N1—H3109.2 (14)C4—N2—H6112.1 (14)
H1—N1—H3110.3 (12)H4—N2—H6108.3 (12)
H2—N1—H3109.2 (12)H5—N2—H6108.1 (11)
N1—C1—C2110.49 (17)N2—C4—C5111.50 (17)
N1—C1—P1109.52 (13)N2—C4—P2109.09 (13)
C2—C1—P1115.69 (16)C5—C4—P2113.58 (15)
N1—C1—H1A106.9N2—C4—H4A107.5
C2—C1—H1A106.9C5—C4—H4A107.5
P1—C1—H1A106.9P2—C4—H4A107.5
C3—C2—C1113.07 (19)C4—C5—C6113.4 (2)
C3—C2—H2A109.0C4—C5—H5A108.9
C1—C2—H2A109.0C6—C5—H5A108.9
C3—C2—H2B109.0C4—C5—H5B108.9
C1—C2—H2B109.0C6—C5—H5B108.9
H2A—C2—H2B107.8H5A—C5—H5B107.7
C2—C3—H3A109.5C5—C6—H6B109.5
C2—C3—H3B109.5C5—C6—H6C109.5
H3A—C3—H3B109.5H6B—C6—H6C109.5
C2—C3—H3C109.5C5—C6—H6D109.5
H3A—C3—H3C109.5H6B—C6—H6D109.5
H3B—C3—H3C109.5H6C—C6—H6D109.5
O2—P1—C1—N126.71 (17)O5—P2—C4—N236.46 (15)
O1—P1—C1—N1151.89 (14)O4—P2—C4—N289.49 (14)
O3—P1—C1—N192.10 (15)O6—P2—C4—N2157.07 (12)
O2—P1—C1—C2152.35 (15)O5—P2—C4—C5161.50 (14)
O1—P1—C1—C282.47 (17)O4—P2—C4—C535.56 (17)
O3—P1—C1—C233.53 (18)O6—P2—C4—C577.88 (16)
N1—C1—C2—C3170.11 (19)N2—C4—C5—C665.7 (2)
P1—C1—C2—C364.8 (2)P2—C4—C5—C6170.61 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···O4i0.94 (1)1.66 (1)2.583 (2)168 (3)
N1—H1···O1ii0.94 (1)1.83 (1)2.767 (2)178 (2)
N1—H2···O2iii0.95 (1)1.97 (2)2.794 (2)144 (2)
N1—H3···O4iv0.95 (1)1.91 (1)2.843 (3)166 (2)
O6—H6A···O10.94 (1)1.65 (1)2.589 (2)175 (3)
N2—H4···O4v0.95 (1)2.05 (2)2.914 (2)151 (2)
N2—H5···O5vi0.95 (1)1.78 (1)2.697 (2)162 (2)
N2—H6···O2vi0.95 (1)1.84 (1)2.783 (2)172 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x, y1, z; (vi) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC3H10NO3P
Mr139.09
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)9.3988 (13), 6.2511 (8), 10.8575 (15)
β (°) 105.731 (9)
V3)614.02 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.16 × 0.08 × 0.02
Data collection
DiffractometerBruker X8 Kappa CCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.943, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
23447, 4196, 3465
Rint0.053
(sin θ/λ)max1)0.767
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.088, 1.06
No. of reflections4196
No. of parameters171
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.55
Absolute structureFlack (1983), 1730 Friedel pairs
Absolute structure parameter0.03 (8)

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected torsion angles (º) top
O3—P1—C1—C233.53 (18)O6—P2—C4—C577.88 (16)
P1—C1—C2—C364.8 (2)P2—C4—C5—C6170.61 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···O4i0.939 (10)1.657 (11)2.583 (2)168 (3)
N1—H1···O1ii0.939 (9)1.829 (9)2.767 (2)177.5 (19)
N1—H2···O2iii0.950 (9)1.969 (17)2.794 (2)144.1 (19)
N1—H3···O4iv0.950 (9)1.913 (11)2.843 (3)166 (2)
O6—H6A···O10.944 (10)1.647 (10)2.589 (2)175 (3)
N2—H4···O4v0.952 (9)2.046 (15)2.914 (2)150.6 (19)
N2—H5···O5vi0.951 (9)1.778 (11)2.697 (2)161.5 (18)
N2—H6···O2vi0.953 (9)1.836 (9)2.783 (2)171.8 (17)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x, y1, z; (vi) x+1, y1/2, z+1.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (R&D project PTDC/QUI-QUI/098098/2008), for the post-doctoral and PhD research grants Nos. SFRH/BPD/63736/2009 (to JAF) and SFRH/BD/66371/2009 (to SMFV), and for specific funding toward the purchase of the diffractometer.

References

First citationBashall, A. P., Crowder, J., Dronia, H., Hägele, G., Hudson, H. R., Lee, R. J., McPartlin, M., Matthews, R. W. & Ollig, J. (2010). Heteroat. Chem. 21, 314–325.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlatov, V. A. & Proserpio, D. M. (2009). Acta Cryst. A65, 202–212.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunha-Silva, L., Ananias, D., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2009). Z. Kristallogr. 224, 261–272.  Web of Science CSD CrossRef CAS Google Scholar
First citationCunha-Silva, L., Lima, S., Ananias, D., Silva, P., Mafra, L., Carlos, L. D., Pillinger, M., Valente, A. A., Paz, F. A. A. & Rocha, J. (2009). J. Mater. Chem. 19, 2618–2632.  Web of Science CSD CrossRef CAS Google Scholar
First citationCunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater. 19, 3527–3538.  Web of Science CSD CrossRef CAS Google Scholar
First citationFernandes, J. A., Almeida Paz, F. A., Vilela, S. M. F., Tomé, J. C., Cavaleiro, J. A. S., Ribeiro-Claro, P. J. A. & Rocha, J. (2010). Acta Cryst. E66, o2271–o2272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHudson, H. R. & Ismail, F. (2001). J. Labelled Comp. Radiopharm. 44, 549–552.  Web of Science CrossRef CAS Google Scholar
First citationMoss, G. P. (1996). Pure Appl. Chem. 68, 2193–2222.  CrossRef CAS Web of Science Google Scholar
First citationRocha, J., Paz, F. A. A., Shi, F. N., Ferreira, R. A. S., Trindade, T. & Carlos, L. D. (2009). Eur. J. Inorg. Chem. pp. 4931–4945.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F. N., Cunha-Silva, L., Ferreira, R. A. S., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2008). J. Am. Chem. Soc. 130, 150–167.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShi, F. N., Trindade, T., Rocha, J. & Paz, F. A. A. (2008). Cryst. Growth Des. 8, 3917–3920.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds