metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-2,3,5,6-Tetra­kis(2-pyrid­yl)pyrazine-κ6N6,N1,N2:N3,N4,N5]bis­­[di­aqua(di­hydrogen m-phenylene­di­phospho­nato-κO)nickel(II)] dihydrate

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 27 September 2010; accepted 13 October 2010; online 23 October 2010)

The title compound [Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O or [Ni2(tpyprz)(1,3-HO3PC6H4PO3H)2(H2O)4]·2H2O [tpyprz = tetra­kis­(2-pyrid­yl)pyrazine, C24H16N6] is a binuclear complex with a crystallographic inversion center located at the center of the pyrazine ring. The equivalent nickel(II) sites exhibit a distorted {NiO3N3} octa­hedral coordination, with the three nitro­gen donors of each terminus of the tpyprz ligand in a meridional orientation. An aqua ligand occupies the position trans to the pyrazine nitro­gen donor, while the second aqua ligand is trans to the oxygen donor of the dihydrogen-1,3-phenyl­diphospho­nate ligand. The Ni—O and Ni—N bond lengths fall in the range 2.011 (3) to 2.089 (3) Å. The protonation sites on the organo­phospho­nate ligand are evident in the significantly longer P—O bonds compared to the unprotonated sites. In the crystal structure, the complex mol­ecules and the solvent water mol­ecules are linked into a three-dimensional hydrogen-bonded framework through O—H⋯O inter­actions between the aqua ligands, the protonated organo­phospho­nate oxygen atoms and the water mol­ecules of crystallization. Intra­molecular π-stacking between the phenyl group of the phospho­nate ligand and a pyridyl group of the tpyprz ligand, at a distance of 3.244 (5) Å between ring centroids, is also observed.

Related literature

For general background to metal-organo­phospho­nates, see: Alberti et al. (1978[Alberti, G., Costantino, U., Alluli, S. & Tomassini, N. (1978). J. Inorg. Nucl. Chem. 40, 1113-1117.]); Clearfield (1998[Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371-510.]); Finn et al. (2003[Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421-601.]); Vermeulen (1997[Vermeulen, L. A. (1997). Prog. Inorg. Chem. 44, 143-166.]). For nickel–organo­phospho­nates, see: Bauer et al. (2008[Bauer, E. M., Bellito, C., Righini, G., Colapietro, M., Portalone, G., Drillon, M. & Rabu, P. (2008). Inorg. Chem. 47, 10945-10952.]). For nickel–tetra­kis­(2-pyrid­yl)pyrazine complexes, see: Burkholder et al. (2003[Burkholder, E., Golub, V., O'Connor, C. J. & Zubieta, J. (2003). Chem. Commun. pp. 2128-2129.]); Burkholder & Zubieta (2004[Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279-284.], 2005[Burkholder, E. & Zubieta, J. (2005). Inorg. Chim. Acta, 358, 116-122.]). For the use of tetra­kis­(2-pyrid­yl)pyrazine as a component in the construction of metal–organo­phospho­nate materials, see: Armatas et al. (2008[Armatas, G. N., Allis, D. A., Prosvirin, A., Carnutu, G., O'Connor, C. J., Dunbar, K. & Zubieta, J. (2008). Inorg. Chem. 47, 832-854.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O

  • Mr = 1086.04

  • Triclinic, [P \overline 1]

  • a = 7.9702 (6) Å

  • b = 10.0785 (8) Å

  • c = 14.0960 (12) Å

  • α = 85.386 (2)°

  • β = 81.707 (1)°

  • γ = 69.364 (1)°

  • V = 1048.03 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 298 K

  • 0.20 × 0.14 × 0.11 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.885

  • 10484 measured reflections

  • 5044 independent reflections

  • 4821 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.133

  • S = 1.32

  • 5044 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2′⋯O3i 0.82 1.91 2.536 (4) 132
O5—H5′⋯O6ii 0.82 1.82 2.606 (4) 162
O40—H40A⋯O3iii 0.84 1.95 2.784 (4) 170
O40—H40B⋯O4iv 0.88 1.83 2.711 (4) 175
O41—H41B⋯O6iv 0.83 1.82 2.625 (4) 163
O90—H90B⋯O4v 0.92 1.84 2.747 (4) 166
O41—H41A⋯O90 0.88 1.83 2.643 (4) 151
O90—H90A⋯O1 0.92 1.92 2.780 (4) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+2; (iii) x-1, y, z; (iv) x-1, y+1, z; (v) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The chemistry of metal-organophosphonates has witnessed dramatic growth (Clearfield, 1998; Finn et al., 2003; Vermeulen, 1997) since the first reports in the 1970s of the layered metal-organophosphonates (Alberti et al., 1978). In our investigations of metal oxide materials, we have used organodiphosphonates as tethers between metal or metal oxide nodes (Armatas et al., 2008). Structural expansion and diversity could be accomplished by introducing additional components, most commonly a M(II)-organonitrogen ligand complex. A particularly useful nitrogen donor ligand for structural manipulation is the dipodal tetrakis(2-pyridyl)pyrazine (tpyprz) (Armatas et al., 2008; Bauer et al., 2008). While Cu(II) has generally served as the secondary metal in the M(II)-organonitrogen ligand complex, Ni(II)-containing subunits have also been exploited as subunits (Burkholder et al., 2003; Burkholder and Zubieta, 2004; Burkholder and Zubieta, 2005). While the secondary metal M(II) bonds to the tpyprz ligand and aqua ligands and/or cluster oxide groups in such materials, the title complex was prepared in the absence of metal oxide, affording the binuclear [Ni2(tpyprz)(1,3-HO3PC6H4PO3H) (H2O)4]dihydrate.

As shown in Fig. 1, the structure of the title compound is binuclear, with a crystallographic inversion center at the mid-point of the pyrazine group. The distorted {NiO3N3} octahedral geometry at the Ni(II) site is defined by the nitrogen donors of the tpyprz ligand in a meridional orientation, two aqua ligands and an oxygen donor from the pendant monodentate 1,3-phenyldiphosphonate ligand. One aqua ligand is trans to the pyrazine nitrogen donor of the tpyprz ligand, while the second occupies a position trans to the phosphonate oxygen donor. The shortest Ni—N distance is to the pyrazine nitrogen, Ni—N2 of 2.011 (3) Å, while the Ni-pyridyl bond distances are 2.076 (3) Å and 2.089 (3) Å. The Ni—O(aqua) distances are 2.015 (3) Å and 2.081 (3) Å, while the Ni—O(phosphonate) distance is 2.082 (3) Å.

Charge compensation considerations require that the phenyldiphosphonate ligand be in the doubly deprotonated state [H2(O3PC6H4PO3)]2-. The protonation sites were revealed in the difference Fourier map by peaks adjacent to O2 and O5 at distances consistent with bound hydrogen. The P—O bond lengths support these protonation sites with P—O2 and P—O5 of 1.567 (3) Å and 1.574 (3) Å, respectively, compared to an average P—O distance of 1.515 (4)Å for the remaining P—O distances.

The structure is stabilized by intermolecular hydrogen bonding between the aqua ligands, the P—OH groups and the waters of crystallization. The binuclear complexes and the water of crystallization are linked into a three-dimensional framework through this hydrogen bonding (Fig. 2). There is also intramolecular π-stacking between the phosphonate phenyl ring and a pyridyl group of the tpyprz ligand with a distance of 3.244 (5)Å between centroids. Intermolecular π-stacking between the phosphonate phenyl group and a pyridyl ring of a tpyprz ligand of an adjacent molecule exhibits a distance of 3.584 (5)Å between centroids.

Related literature top

For general background to metal-organophosphonates, see: Alberti et al. (1978); Clearfield (1998); Finn et al. (2003); Vermeulen (1997). For nickel–organophosphonates, see: Bauer et al. (2008). For nickel–tetrakis(2-pyridyl)pyrazine complexes, see: Burkholder et al. (2003); Burkholder & Zubieta (2004); Burkholder & Zubieta (2005). For the use of tetrakis(2-pyridyl)pyrazine as a component in the construction of metal–organophosphonate materials, see: Armatas et al. (2008).

Experimental top

A solution of Ni(CH3CO2)2•4H2O (0.074 g, 0.297 mmol), tpyprz (0.085 g, 0.219 mmol) and 1,3-phenyldiphosphonic acid (0.071 g, 0.301 mmol) in water (10 ml) was placed in a Parr acid digestion bomb and heated to 170°C for 48 h. Yellow blocks of the compound suitable for x-ray diffraction studies were isolated in 65% yield. Anal Calcd. for C36H40N6Ni2O18P4: C, 39.8; H, 3.68; N. 7.73. Found: C, 39.6; H, 3.75; N, 7.65.

Refinement top

Pyridyl hydrogen atoms were discernable in the difference Fourier map. These hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C). The hydrogen atoms associated with the oxygen of the phosphonate ligand, the aqua ligands and the water of crystallization were also found on the difference Fourier map. The P—OH hydrogen atoms were included in calculated positions with O—H = 0.82 Å and included in the riding model approximation with Uiso(H) = 1.5Ueq(O). The H atoms of the water molecules were included using the coordinate riding approximation with Uiso(H) free to vary.

Structure description top

The chemistry of metal-organophosphonates has witnessed dramatic growth (Clearfield, 1998; Finn et al., 2003; Vermeulen, 1997) since the first reports in the 1970s of the layered metal-organophosphonates (Alberti et al., 1978). In our investigations of metal oxide materials, we have used organodiphosphonates as tethers between metal or metal oxide nodes (Armatas et al., 2008). Structural expansion and diversity could be accomplished by introducing additional components, most commonly a M(II)-organonitrogen ligand complex. A particularly useful nitrogen donor ligand for structural manipulation is the dipodal tetrakis(2-pyridyl)pyrazine (tpyprz) (Armatas et al., 2008; Bauer et al., 2008). While Cu(II) has generally served as the secondary metal in the M(II)-organonitrogen ligand complex, Ni(II)-containing subunits have also been exploited as subunits (Burkholder et al., 2003; Burkholder and Zubieta, 2004; Burkholder and Zubieta, 2005). While the secondary metal M(II) bonds to the tpyprz ligand and aqua ligands and/or cluster oxide groups in such materials, the title complex was prepared in the absence of metal oxide, affording the binuclear [Ni2(tpyprz)(1,3-HO3PC6H4PO3H) (H2O)4]dihydrate.

As shown in Fig. 1, the structure of the title compound is binuclear, with a crystallographic inversion center at the mid-point of the pyrazine group. The distorted {NiO3N3} octahedral geometry at the Ni(II) site is defined by the nitrogen donors of the tpyprz ligand in a meridional orientation, two aqua ligands and an oxygen donor from the pendant monodentate 1,3-phenyldiphosphonate ligand. One aqua ligand is trans to the pyrazine nitrogen donor of the tpyprz ligand, while the second occupies a position trans to the phosphonate oxygen donor. The shortest Ni—N distance is to the pyrazine nitrogen, Ni—N2 of 2.011 (3) Å, while the Ni-pyridyl bond distances are 2.076 (3) Å and 2.089 (3) Å. The Ni—O(aqua) distances are 2.015 (3) Å and 2.081 (3) Å, while the Ni—O(phosphonate) distance is 2.082 (3) Å.

Charge compensation considerations require that the phenyldiphosphonate ligand be in the doubly deprotonated state [H2(O3PC6H4PO3)]2-. The protonation sites were revealed in the difference Fourier map by peaks adjacent to O2 and O5 at distances consistent with bound hydrogen. The P—O bond lengths support these protonation sites with P—O2 and P—O5 of 1.567 (3) Å and 1.574 (3) Å, respectively, compared to an average P—O distance of 1.515 (4)Å for the remaining P—O distances.

The structure is stabilized by intermolecular hydrogen bonding between the aqua ligands, the P—OH groups and the waters of crystallization. The binuclear complexes and the water of crystallization are linked into a three-dimensional framework through this hydrogen bonding (Fig. 2). There is also intramolecular π-stacking between the phosphonate phenyl ring and a pyridyl group of the tpyprz ligand with a distance of 3.244 (5)Å between centroids. Intermolecular π-stacking between the phosphonate phenyl group and a pyridyl ring of a tpyprz ligand of an adjacent molecule exhibits a distance of 3.584 (5)Å between centroids.

For general background to metal-organophosphonates, see: Alberti et al. (1978); Clearfield (1998); Finn et al. (2003); Vermeulen (1997). For nickel–organophosphonates, see: Bauer et al. (2008). For nickel–tetrakis(2-pyridyl)pyrazine complexes, see: Burkholder et al. (2003); Burkholder & Zubieta (2004); Burkholder & Zubieta (2005). For the use of tetrakis(2-pyridyl)pyrazine as a component in the construction of metal–organophosphonate materials, see: Armatas et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of the structure of the binuclear complex [Ni2(tpyprz)(HO3PC6H4PO3H)2(H2O)4], showing the atom labeling scheme for the asymmetric unit and displacement ellipsoids at the 50% probability level for all non-H atoms. Hydrogen atms are shown as small arbitrary spheres. Color scheme: Ni, green; P, yellow; oxygen, red; nitrogen, blue; carbon, black.
[Figure 2] Fig. 2. Packing diagram in the bc plane. The hydrogen bonds are shown as rendered multi-band cylinders in red and gray.
[µ-2,3,5,6-Tetrakis(2-pyridyl)pyrazine- κ6N6,N1,N2:N3,N4,N5] bis[diaqua(dihydrogen m-phenylenediphosphonato-κO)nickel(II)] dihydrate top
Crystal data top
[Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2OZ = 1
Mr = 1086.04F(000) = 558
Triclinic, P1Dx = 1.721 Mg m3
Dm = 1.724 (2) Mg m3
Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9702 (6) ÅCell parameters from 3874 reflections
b = 10.0785 (8) Åθ = 2.8–28.2°
c = 14.0960 (12) ŵ = 1.14 mm1
α = 85.386 (2)°T = 298 K
β = 81.707 (1)°Block, yellow
γ = 69.364 (1)°0.20 × 0.14 × 0.11 mm
V = 1048.03 (15) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
5044 independent reflections
Radiation source: fine-focus sealed tube4821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 28.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.804, Tmax = 0.885k = 1313
10484 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.32 w = 1/[σ2(Fo2) + (0.0262P)2 + 4.5072P]
where P = (Fo2 + 2Fc2)/3
5044 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2Oγ = 69.364 (1)°
Mr = 1086.04V = 1048.03 (15) Å3
Triclinic, P1Z = 1
a = 7.9702 (6) ÅMo Kα radiation
b = 10.0785 (8) ŵ = 1.14 mm1
c = 14.0960 (12) ÅT = 298 K
α = 85.386 (2)°0.20 × 0.14 × 0.11 mm
β = 81.707 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5044 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4821 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.885Rint = 0.023
10484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.32Δρmax = 0.91 e Å3
5044 reflectionsΔρmin = 0.80 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.07580 (6)0.67510 (5)0.69829 (3)0.00726 (13)
P10.36680 (13)0.53302 (10)0.64046 (7)0.00822 (19)
P20.44896 (13)0.03282 (10)0.85848 (7)0.0097 (2)
O10.1916 (4)0.6581 (3)0.6542 (2)0.0117 (5)
O20.3592 (4)0.4229 (3)0.5703 (2)0.0121 (5)
H2'0.33910.46170.51770.018*
O30.5296 (4)0.5787 (3)0.60760 (19)0.0118 (5)
O40.4279 (4)0.0163 (3)0.76433 (19)0.0125 (5)
O50.2948 (4)0.0145 (3)0.9359 (2)0.0151 (6)
H5'0.30430.04090.98780.023*
O60.6315 (4)0.0397 (3)0.8936 (2)0.0131 (6)
O400.3505 (4)0.7120 (3)0.7354 (2)0.0135 (6)
H40A0.39990.67700.69980.020 (13)*
H40B0.41910.80190.74170.019 (13)*
O410.0740 (4)0.7601 (3)0.82264 (19)0.0125 (6)
H41A0.01290.79650.81620.041 (17)*
H41B0.17660.81050.84610.036 (17)*
O900.1372 (4)0.9039 (3)0.7492 (2)0.0190 (6)
H90A0.18110.83210.70590.038 (17)*
H90B0.23630.92220.76350.049 (19)*
N10.0352 (4)0.4705 (3)0.7536 (2)0.0101 (6)
N20.0652 (4)0.5726 (3)0.5797 (2)0.0089 (6)
N30.1409 (4)0.8436 (3)0.5978 (2)0.0107 (6)
C10.3907 (5)0.4355 (4)0.7530 (3)0.0102 (7)
C20.4116 (5)0.2912 (4)0.7604 (3)0.0114 (7)
H20.42370.24230.70520.014*
C30.4145 (5)0.2200 (4)0.8494 (3)0.0102 (7)
C40.3956 (6)0.2949 (4)0.9323 (3)0.0145 (8)
H40.39610.24880.99220.017*
C50.3764 (6)0.4373 (4)0.9252 (3)0.0149 (8)
H50.36540.48610.98030.018*
C60.3734 (5)0.5074 (4)0.8364 (3)0.0132 (8)
H60.35980.60310.83240.016*
C70.0568 (5)0.4352 (4)0.8473 (3)0.0138 (8)
H7A0.05390.49730.89190.017*
C80.0831 (6)0.3106 (4)0.8799 (3)0.0175 (8)
H8A0.09390.28770.94520.021*
C90.0931 (6)0.2202 (4)0.8141 (3)0.0177 (8)
H90.11520.13710.83470.021*
C100.0699 (5)0.2546 (4)0.7170 (3)0.0137 (8)
H100.07610.19500.67160.016*
C110.0373 (5)0.3793 (4)0.6889 (3)0.0113 (7)
C120.0117 (5)0.4313 (4)0.5878 (3)0.0080 (7)
C130.0605 (5)0.6454 (4)0.4965 (3)0.0087 (7)
C140.1448 (5)0.8029 (4)0.5091 (3)0.0100 (7)
C150.2340 (5)0.8978 (4)0.4408 (3)0.0124 (7)
H150.24210.86670.38180.015*
C160.3113 (5)1.0407 (4)0.4623 (3)0.0134 (8)
H160.37291.10660.41800.016*
C170.2956 (5)1.0839 (4)0.5507 (3)0.0146 (8)
H170.33951.17960.56490.017*
C180.2134 (5)0.9818 (4)0.6170 (3)0.0132 (8)
H180.20831.01010.67740.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0073 (2)0.0063 (2)0.0088 (2)0.00260 (17)0.00161 (17)0.00129 (17)
P10.0087 (4)0.0077 (4)0.0083 (4)0.0029 (3)0.0011 (3)0.0003 (3)
P20.0117 (5)0.0082 (4)0.0089 (4)0.0027 (4)0.0022 (4)0.0002 (3)
O10.0107 (13)0.0096 (13)0.0151 (13)0.0043 (10)0.0013 (10)0.0003 (10)
O20.0142 (13)0.0122 (13)0.0115 (13)0.0064 (11)0.0020 (10)0.0004 (10)
O30.0134 (13)0.0162 (14)0.0085 (12)0.0082 (11)0.0019 (10)0.0014 (10)
O40.0164 (14)0.0101 (13)0.0112 (13)0.0041 (11)0.0022 (11)0.0032 (10)
O50.0158 (14)0.0177 (14)0.0125 (14)0.0071 (12)0.0009 (11)0.0006 (11)
O60.0126 (13)0.0123 (13)0.0119 (13)0.0009 (11)0.0022 (10)0.0003 (10)
O400.0120 (13)0.0124 (14)0.0174 (14)0.0050 (11)0.0018 (11)0.0050 (11)
O410.0116 (13)0.0121 (13)0.0140 (13)0.0041 (11)0.0005 (11)0.0042 (11)
O900.0168 (15)0.0183 (15)0.0248 (16)0.0097 (12)0.0010 (12)0.0063 (13)
N10.0075 (14)0.0113 (15)0.0109 (15)0.0017 (12)0.0027 (12)0.0003 (12)
N20.0062 (14)0.0081 (15)0.0136 (15)0.0026 (12)0.0040 (12)0.0017 (12)
N30.0091 (15)0.0101 (15)0.0142 (16)0.0046 (12)0.0015 (12)0.0023 (12)
C10.0090 (17)0.0116 (18)0.0100 (17)0.0039 (14)0.0001 (14)0.0004 (14)
C20.0106 (17)0.0122 (18)0.0126 (18)0.0041 (14)0.0040 (14)0.0022 (14)
C30.0095 (17)0.0091 (17)0.0128 (18)0.0035 (14)0.0036 (14)0.0008 (14)
C40.019 (2)0.0152 (19)0.0095 (17)0.0062 (16)0.0027 (15)0.0001 (15)
C50.020 (2)0.0149 (19)0.0112 (18)0.0061 (16)0.0019 (15)0.0052 (15)
C60.0157 (19)0.0077 (17)0.0169 (19)0.0046 (15)0.0031 (15)0.0006 (14)
C70.0126 (18)0.0165 (19)0.0117 (18)0.0037 (15)0.0004 (14)0.0041 (15)
C80.022 (2)0.015 (2)0.0118 (18)0.0031 (16)0.0012 (16)0.0041 (15)
C90.021 (2)0.0093 (18)0.020 (2)0.0053 (16)0.0039 (17)0.0028 (15)
C100.0171 (19)0.0086 (17)0.0157 (19)0.0052 (15)0.0001 (15)0.0021 (14)
C110.0096 (17)0.0092 (17)0.0145 (18)0.0015 (14)0.0024 (14)0.0031 (14)
C120.0095 (16)0.0093 (17)0.0076 (16)0.0052 (13)0.0054 (13)0.0025 (13)
C130.0083 (16)0.0064 (16)0.0128 (17)0.0030 (13)0.0040 (14)0.0010 (13)
C140.0091 (17)0.0085 (17)0.0132 (18)0.0043 (14)0.0004 (14)0.0008 (14)
C150.0141 (18)0.0119 (18)0.0112 (18)0.0044 (15)0.0009 (14)0.0017 (14)
C160.0108 (17)0.0112 (18)0.0151 (19)0.0006 (14)0.0013 (15)0.0028 (15)
C170.0165 (19)0.0083 (18)0.018 (2)0.0044 (15)0.0008 (16)0.0030 (15)
C180.0115 (18)0.0140 (19)0.0154 (19)0.0063 (15)0.0012 (15)0.0040 (15)
Geometric parameters (Å, º) top
Ni1—N22.011 (3)C1—C21.402 (5)
Ni1—O412.016 (3)C2—C31.393 (5)
Ni1—N12.076 (3)C2—H20.9300
Ni1—O402.082 (3)C3—C41.403 (5)
Ni1—O12.082 (3)C4—C51.385 (6)
Ni1—N32.089 (3)C4—H40.9300
P1—O11.516 (3)C5—C61.385 (6)
P1—O31.525 (3)C5—H50.9300
P1—O21.566 (3)C6—H60.9300
P1—C11.795 (4)C7—C81.377 (6)
P2—O41.504 (3)C7—H7A0.9300
P2—O61.515 (3)C8—C91.380 (6)
P2—O51.574 (3)C8—H8A0.9300
P2—C31.805 (4)C9—C101.387 (6)
O2—H2'0.8200C9—H90.9300
O5—H5'0.8200C10—C111.388 (5)
O40—H40A0.8445C10—H100.9300
O40—H40B0.8824C11—C121.489 (5)
O41—H41A0.8831C12—C13i1.406 (5)
O41—H41B0.8318C13—C12i1.406 (5)
O90—H90A0.9213C13—C141.504 (5)
O90—H90B0.9235C14—C151.386 (5)
N1—C71.342 (5)C15—C161.392 (5)
N1—C111.353 (5)C15—H150.9300
N2—C131.336 (5)C16—C171.388 (6)
N2—C121.336 (5)C16—H160.9300
N3—C181.339 (5)C17—C181.382 (6)
N3—C141.355 (5)C17—H170.9300
C1—C61.394 (5)C18—H180.9300
N2—Ni1—O41174.66 (12)C3—C2—H2119.6
N2—Ni1—N178.70 (13)C1—C2—H2119.6
O41—Ni1—N196.31 (12)C2—C3—C4119.1 (4)
N2—Ni1—O4092.64 (12)C2—C3—P2120.8 (3)
O41—Ni1—O4088.91 (11)C4—C3—P2120.1 (3)
N1—Ni1—O4086.27 (12)C5—C4—C3120.2 (4)
N2—Ni1—O187.69 (12)C5—C4—H4119.9
O41—Ni1—O191.29 (11)C3—C4—H4119.9
N1—Ni1—O199.42 (11)C4—C5—C6120.4 (4)
O40—Ni1—O1174.25 (11)C4—C5—H5119.8
N2—Ni1—N378.95 (13)C6—C5—H5119.8
O41—Ni1—N3106.20 (12)C5—C6—C1120.5 (4)
N1—Ni1—N3156.87 (13)C5—C6—H6119.7
O40—Ni1—N388.87 (12)C1—C6—H6119.7
O1—Ni1—N385.55 (12)N1—C7—C8122.5 (4)
O1—P1—O3112.44 (16)N1—C7—H7A118.7
O1—P1—O2112.43 (16)C8—C7—H7A118.7
O3—P1—O2110.23 (15)C7—C8—C9119.0 (4)
O1—P1—C1107.08 (17)C7—C8—H8A120.5
O3—P1—C1110.95 (16)C9—C8—H8A120.5
O2—P1—C1103.31 (17)C8—C9—C10119.2 (4)
O4—P2—O6115.53 (16)C8—C9—H9120.4
O4—P2—O5108.24 (16)C10—C9—H9120.4
O6—P2—O5110.12 (16)C9—C10—C11118.9 (4)
O4—P2—C3109.86 (17)C9—C10—H10120.6
O6—P2—C3106.30 (17)C11—C10—H10120.6
O5—P2—C3106.41 (17)N1—C11—C10121.7 (4)
P1—O1—Ni1133.25 (16)N1—C11—C12113.1 (3)
P1—O2—H2'109.5C10—C11—C12125.1 (3)
P2—O5—H5'109.5N2—C12—C13i117.7 (3)
Ni1—O40—H40A116.6N2—C12—C11112.5 (3)
Ni1—O40—H40B115.1C13i—C12—C11129.9 (3)
H40A—O40—H40B106.5N2—C13—C12i118.1 (3)
Ni1—O41—H41A109.6N2—C13—C14112.0 (3)
Ni1—O41—H41B112.7C12i—C13—C14129.8 (3)
H41A—O41—H41B117.7N3—C14—C15122.0 (3)
H90A—O90—H90B106.4N3—C14—C13113.7 (3)
C7—N1—C11118.6 (3)C15—C14—C13124.0 (3)
C7—N1—Ni1124.9 (3)C14—C15—C16118.5 (4)
C11—N1—Ni1113.8 (3)C14—C15—H15120.7
C13—N2—C12124.1 (3)C16—C15—H15120.7
C13—N2—Ni1116.3 (2)C17—C16—C15119.4 (4)
C12—N2—Ni1116.6 (2)C17—C16—H16120.3
C18—N3—C14118.6 (3)C15—C16—H16120.3
C18—N3—Ni1126.3 (3)C18—C17—C16118.6 (4)
C14—N3—Ni1113.3 (2)C18—C17—H17120.7
C6—C1—C2118.9 (3)C16—C17—H17120.7
C6—C1—P1119.3 (3)N3—C18—C17122.6 (4)
C2—C1—P1121.6 (3)N3—C18—H18118.7
C3—C2—C1120.9 (3)C17—C18—H18118.7
O3—P1—O1—Ni1179.15 (19)O4—P2—C3—C4168.7 (3)
O2—P1—O1—Ni155.7 (3)O6—P2—C3—C465.6 (3)
C1—P1—O1—Ni157.0 (3)O5—P2—C3—C451.8 (4)
N2—Ni1—O1—P164.4 (2)C2—C3—C4—C50.7 (6)
O41—Ni1—O1—P1110.4 (2)P2—C3—C4—C5177.4 (3)
N1—Ni1—O1—P113.8 (2)C3—C4—C5—C60.8 (6)
N3—Ni1—O1—P1143.5 (2)C4—C5—C6—C10.4 (6)
N2—Ni1—N1—C7166.2 (3)C2—C1—C6—C50.1 (6)
O41—Ni1—N1—C715.7 (3)P1—C1—C6—C5174.7 (3)
O40—Ni1—N1—C772.8 (3)C11—N1—C7—C80.8 (6)
O1—Ni1—N1—C7108.1 (3)Ni1—N1—C7—C8159.6 (3)
N3—Ni1—N1—C7151.1 (3)N1—C7—C8—C92.0 (6)
N2—Ni1—N1—C115.1 (3)C7—C8—C9—C102.3 (6)
O41—Ni1—N1—C11176.9 (3)C8—C9—C10—C110.0 (6)
O40—Ni1—N1—C1188.4 (3)C7—N1—C11—C103.2 (6)
O1—Ni1—N1—C1190.8 (3)Ni1—N1—C11—C10159.2 (3)
N3—Ni1—N1—C1110.1 (5)C7—N1—C11—C12179.9 (3)
N1—Ni1—N2—C13171.4 (3)Ni1—N1—C11—C1217.7 (4)
O40—Ni1—N2—C13103.0 (3)C9—C10—C11—N12.8 (6)
O1—Ni1—N2—C1371.3 (3)C9—C10—C11—C12179.3 (4)
N3—Ni1—N2—C1314.6 (3)C13—N2—C12—C13i2.5 (6)
N1—Ni1—N2—C1210.2 (3)Ni1—N2—C12—C13i157.1 (3)
O40—Ni1—N2—C1295.8 (3)C13—N2—C12—C11178.3 (3)
O1—Ni1—N2—C1289.9 (3)Ni1—N2—C12—C1122.1 (4)
N3—Ni1—N2—C12175.8 (3)N1—C11—C12—N226.0 (4)
N2—Ni1—N3—C18165.3 (3)C10—C11—C12—N2150.7 (4)
O41—Ni1—N3—C1816.1 (3)N1—C11—C12—C13i153.1 (4)
N1—Ni1—N3—C18150.2 (3)C10—C11—C12—C13i30.2 (6)
O40—Ni1—N3—C1872.4 (3)C12—N2—C13—C12i2.5 (6)
O1—Ni1—N3—C18106.2 (3)Ni1—N2—C13—C12i157.1 (3)
N2—Ni1—N3—C140.5 (3)C12—N2—C13—C14174.8 (3)
O41—Ni1—N3—C14179.0 (2)Ni1—N2—C13—C1425.5 (4)
N1—Ni1—N3—C1414.6 (5)C18—N3—C14—C155.4 (5)
O40—Ni1—N3—C1492.4 (3)Ni1—N3—C14—C15160.7 (3)
O1—Ni1—N3—C1489.0 (3)C18—N3—C14—C13179.6 (3)
O1—P1—C1—C651.1 (3)Ni1—N3—C14—C1313.5 (4)
O3—P1—C1—C672.0 (3)N2—C13—C14—N325.5 (4)
O2—P1—C1—C6169.9 (3)C12i—C13—C14—N3157.6 (4)
O1—P1—C1—C2123.6 (3)N2—C13—C14—C15148.6 (4)
O3—P1—C1—C2113.4 (3)C12i—C13—C14—C1528.3 (6)
O2—P1—C1—C24.7 (4)N3—C14—C15—C164.3 (6)
C6—C1—C2—C30.2 (6)C13—C14—C15—C16178.0 (4)
P1—C1—C2—C3174.5 (3)C14—C15—C16—C170.5 (6)
C1—C2—C3—C40.2 (6)C15—C16—C17—C184.2 (6)
C1—C2—C3—P2177.9 (3)C14—N3—C18—C171.5 (6)
O4—P2—C3—C213.2 (4)Ni1—N3—C18—C17162.6 (3)
O6—P2—C3—C2112.5 (3)C16—C17—C18—N33.2 (6)
O5—P2—C3—C2130.2 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3ii0.821.912.536 (4)132
O5—H5···O6iii0.821.822.606 (4)162
O40—H40A···O3iv0.841.952.784 (4)170
O40—H40B···O4v0.881.832.711 (4)175
O41—H41B···O6v0.831.822.625 (4)163
O90—H90B···O4vi0.921.842.747 (4)166
O41—H41A···O900.881.832.643 (4)151
O90—H90A···O10.921.922.780 (4)154
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z+2; (iv) x1, y, z; (v) x1, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O
Mr1086.04
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9702 (6), 10.0785 (8), 14.0960 (12)
α, β, γ (°)85.386 (2), 81.707 (1), 69.364 (1)
V3)1048.03 (15)
Z1
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.20 × 0.14 × 0.11
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.804, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
10484, 5044, 4821
Rint0.023
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.133, 1.32
No. of reflections5044
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.80

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2'···O3i0.821.912.536 (4)131.9
O5—H5'···O6ii0.821.822.606 (4)161.6
O40—H40A···O3iii0.841.952.784 (4)169.9
O40—H40B···O4iv0.881.832.711 (4)174.9
O41—H41B···O6iv0.831.822.625 (4)162.9
O90—H90B···O4v0.921.842.747 (4)166.1
O41—H41A···O900.881.832.643 (4)151.2
O90—H90A···O10.921.922.780 (4)153.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2; (iii) x1, y, z; (iv) x1, y+1, z; (v) x, y+1, z.
 

Acknowledgements

This work was supported by a grant from the National Science Foundation, CHE-0907787.

References

First citationAlberti, G., Costantino, U., Alluli, S. & Tomassini, N. (1978). J. Inorg. Nucl. Chem. 40, 1113–1117.  CrossRef CAS Web of Science Google Scholar
First citationArmatas, G. N., Allis, D. A., Prosvirin, A., Carnutu, G., O'Connor, C. J., Dunbar, K. & Zubieta, J. (2008). Inorg. Chem. 47, 832–854.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBauer, E. M., Bellito, C., Righini, G., Colapietro, M., Portalone, G., Drillon, M. & Rabu, P. (2008). Inorg. Chem. 47, 10945–10952.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBurkholder, E., Golub, V., O'Connor, C. J. & Zubieta, J. (2003). Chem. Commun. pp. 2128–2129.  Web of Science CSD CrossRef Google Scholar
First citationBurkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurkholder, E. & Zubieta, J. (2005). Inorg. Chim. Acta, 358, 116–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationClearfield, A. (1998). Prog. Inorg. Chem. 47, 371–510.  CrossRef CAS Google Scholar
First citationFinn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421–601.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVermeulen, L. A. (1997). Prog. Inorg. Chem. 44, 143–166.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds