metal-organic compounds
[μ-2,3,5,6-Tetrakis(2-pyridyl)pyrazine-κ6N6,N1,N2:N3,N4,N5]bis[diaqua(dihydrogen m-phenylenediphosphonato-κO)nickel(II)] dihydrate
aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu
The title compound [Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O or [Ni2(tpyprz)(1,3-HO3PC6H4PO3H)2(H2O)4]·2H2O [tpyprz = tetrakis(2-pyridyl)pyrazine, C24H16N6] is a binuclear complex with a crystallographic inversion center located at the center of the pyrazine ring. The equivalent nickel(II) sites exhibit a distorted {NiO3N3} octahedral coordination, with the three nitrogen donors of each terminus of the tpyprz ligand in a meridional orientation. An aqua ligand occupies the position trans to the pyrazine nitrogen donor, while the second aqua ligand is trans to the oxygen donor of the dihydrogen-1,3-phenyldiphosphonate ligand. The Ni—O and Ni—N bond lengths fall in the range 2.011 (3) to 2.089 (3) Å. The protonation sites on the organophosphonate ligand are evident in the significantly longer P—O bonds compared to the unprotonated sites. In the the complex molecules and the solvent water molecules are linked into a three-dimensional hydrogen-bonded framework through O—H⋯O interactions between the aqua ligands, the protonated organophosphonate oxygen atoms and the water molecules of crystallization. Intramolecular π-stacking between the phenyl group of the phosphonate ligand and a pyridyl group of the tpyprz ligand, at a distance of 3.244 (5) Å between ring centroids, is also observed.
Related literature
For general background to metal-organophosphonates, see: Alberti et al. (1978); Clearfield (1998); Finn et al. (2003); Vermeulen (1997). For nickel–organophosphonates, see: Bauer et al. (2008). For nickel–tetrakis(2-pyridyl)pyrazine complexes, see: Burkholder et al. (2003); Burkholder & Zubieta (2004, 2005). For the use of tetrakis(2-pyridyl)pyrazine as a component in the construction of metal–organophosphonate materials, see: Armatas et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810041279/pk2273sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041279/pk2273Isup2.hkl
A solution of Ni(CH3CO2)2•4H2O (0.074 g, 0.297 mmol), tpyprz (0.085 g, 0.219 mmol) and 1,3-phenyldiphosphonic acid (0.071 g, 0.301 mmol) in water (10 ml) was placed in a Parr acid digestion bomb and heated to 170°C for 48 h. Yellow blocks of the compound suitable for x-ray diffraction studies were isolated in 65% yield. Anal Calcd. for C36H40N6Ni2O18P4: C, 39.8; H, 3.68; N. 7.73. Found: C, 39.6; H, 3.75; N, 7.65.
Pyridyl hydrogen atoms were discernable in the difference Fourier map. These hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C). The hydrogen atoms associated with the oxygen of the phosphonate ligand, the aqua ligands and the water of crystallization were also found on the difference Fourier map. The P—OH hydrogen atoms were included in calculated positions with O—H = 0.82 Å and included in the riding model approximation with Uiso(H) = 1.5Ueq(O). The H atoms of the water molecules were included using the coordinate riding approximation with Uiso(H) free to vary.
The chemistry of metal-organophosphonates has witnessed dramatic growth (Clearfield, 1998; Finn et al., 2003; Vermeulen, 1997) since the first reports in the 1970s of the layered metal-organophosphonates (Alberti et al., 1978). In our investigations of metal oxide materials, we have used organodiphosphonates as tethers between metal or metal oxide nodes (Armatas et al., 2008). Structural expansion and diversity could be accomplished by introducing additional components, most commonly a M(II)-organonitrogen ligand complex. A particularly useful nitrogen donor ligand for structural manipulation is the dipodal tetrakis(2-pyridyl)pyrazine (tpyprz) (Armatas et al., 2008; Bauer et al., 2008). While Cu(II) has generally served as the secondary metal in the M(II)-organonitrogen ligand complex, Ni(II)-containing subunits have also been exploited as subunits (Burkholder et al., 2003; Burkholder and Zubieta, 2004; Burkholder and Zubieta, 2005). While the secondary metal M(II) bonds to the tpyprz ligand and aqua ligands and/or cluster oxide groups in such materials, the title complex was prepared in the absence of metal oxide, affording the binuclear [Ni2(tpyprz)(1,3-HO3PC6H4PO3H) (H2O)4]dihydrate.
As shown in Fig. 1, the structure of the title compound is binuclear, with a crystallographic inversion center at the mid-point of the pyrazine group. The distorted {NiO3N3} octahedral geometry at the Ni(II) site is defined by the nitrogen donors of the tpyprz ligand in a meridional orientation, two aqua ligands and an oxygen donor from the pendant monodentate 1,3-phenyldiphosphonate ligand. One aqua ligand is trans to the pyrazine nitrogen donor of the tpyprz ligand, while the second occupies a position trans to the phosphonate oxygen donor. The shortest Ni—N distance is to the pyrazine nitrogen, Ni—N2 of 2.011 (3) Å, while the Ni-pyridyl bond distances are 2.076 (3) Å and 2.089 (3) Å. The Ni—O(aqua) distances are 2.015 (3) Å and 2.081 (3) Å, while the Ni—O(phosphonate) distance is 2.082 (3) Å.
Charge compensation considerations require that the phenyldiphosphonate ligand be in the doubly deprotonated state [H2(O3PC6H4PO3)]2-. The protonation sites were revealed in the difference Fourier map by peaks adjacent to O2 and O5 at distances consistent with bound hydrogen. The P—O bond lengths support these protonation sites with P—O2 and P—O5 of 1.567 (3) Å and 1.574 (3) Å, respectively, compared to an average P—O distance of 1.515 (4)Å for the remaining P—O distances.
The structure is stabilized by intermolecular hydrogen bonding between the aqua ligands, the P—OH groups and the waters of crystallization. The binuclear complexes and the water of crystallization are linked into a three-dimensional framework through this hydrogen bonding (Fig. 2). There is also intramolecular π-stacking between the phosphonate phenyl ring and a pyridyl group of the tpyprz ligand with a distance of 3.244 (5)Å between centroids. Intermolecular π-stacking between the phosphonate phenyl group and a pyridyl ring of a tpyprz ligand of an adjacent molecule exhibits a distance of 3.584 (5)Å between centroids.
For general background to metal-organophosphonates, see: Alberti et al. (1978); Clearfield (1998); Finn et al. (2003); Vermeulen (1997). For nickel–organophosphonates, see: Bauer et al. (2008). For nickel–tetrakis(2-pyridyl)pyrazine complexes, see: Burkholder et al. (2003); Burkholder & Zubieta (2004); Burkholder & Zubieta (2005). For the use of tetrakis(2-pyridyl)pyrazine as a component in the construction of metal–organophosphonate materials, see: Armatas et al. (2008).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. An ellipsoid plot of the structure of the binuclear complex [Ni2(tpyprz)(HO3PC6H4PO3H)2(H2O)4], showing the atom labeling scheme for the asymmetric unit and displacement ellipsoids at the 50% probability level for all non-H atoms. Hydrogen atms are shown as small arbitrary spheres. Color scheme: Ni, green; P, yellow; oxygen, red; nitrogen, blue; carbon, black. | |
Fig. 2. Packing diagram in the bc plane. The hydrogen bonds are shown as rendered multi-band cylinders in red and gray. |
[Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O | Z = 1 |
Mr = 1086.04 | F(000) = 558 |
Triclinic, P1 | Dx = 1.721 Mg m−3 Dm = 1.724 (2) Mg m−3 Dm measured by flotation |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9702 (6) Å | Cell parameters from 3874 reflections |
b = 10.0785 (8) Å | θ = 2.8–28.2° |
c = 14.0960 (12) Å | µ = 1.14 mm−1 |
α = 85.386 (2)° | T = 298 K |
β = 81.707 (1)° | Block, yellow |
γ = 69.364 (1)° | 0.20 × 0.14 × 0.11 mm |
V = 1048.03 (15) Å3 |
Bruker APEX CCD area-detector diffractometer | 5044 independent reflections |
Radiation source: fine-focus sealed tube | 4821 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
φ and ω scans | θmax = 28.1°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −10→10 |
Tmin = 0.804, Tmax = 0.885 | k = −13→13 |
10484 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.32 | w = 1/[σ2(Fo2) + (0.0262P)2 + 4.5072P] where P = (Fo2 + 2Fc2)/3 |
5044 reflections | (Δ/σ)max < 0.001 |
304 parameters | Δρmax = 0.91 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
[Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O | γ = 69.364 (1)° |
Mr = 1086.04 | V = 1048.03 (15) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.9702 (6) Å | Mo Kα radiation |
b = 10.0785 (8) Å | µ = 1.14 mm−1 |
c = 14.0960 (12) Å | T = 298 K |
α = 85.386 (2)° | 0.20 × 0.14 × 0.11 mm |
β = 81.707 (1)° |
Bruker APEX CCD area-detector diffractometer | 5044 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 4821 reflections with I > 2σ(I) |
Tmin = 0.804, Tmax = 0.885 | Rint = 0.023 |
10484 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.32 | Δρmax = 0.91 e Å−3 |
5044 reflections | Δρmin = −0.80 e Å−3 |
304 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | −0.07580 (6) | 0.67510 (5) | 0.69829 (3) | 0.00726 (13) | |
P1 | 0.36680 (13) | 0.53302 (10) | 0.64046 (7) | 0.00822 (19) | |
P2 | 0.44896 (13) | 0.03282 (10) | 0.85848 (7) | 0.0097 (2) | |
O1 | 0.1916 (4) | 0.6581 (3) | 0.6542 (2) | 0.0117 (5) | |
O2 | 0.3592 (4) | 0.4229 (3) | 0.5703 (2) | 0.0121 (5) | |
H2' | 0.3391 | 0.4617 | 0.5177 | 0.018* | |
O3 | 0.5296 (4) | 0.5787 (3) | 0.60760 (19) | 0.0118 (5) | |
O4 | 0.4279 (4) | −0.0163 (3) | 0.76433 (19) | 0.0125 (5) | |
O5 | 0.2948 (4) | 0.0145 (3) | 0.9359 (2) | 0.0151 (6) | |
H5' | 0.3043 | 0.0409 | 0.9878 | 0.023* | |
O6 | 0.6315 (4) | −0.0397 (3) | 0.8936 (2) | 0.0131 (6) | |
O40 | −0.3505 (4) | 0.7120 (3) | 0.7354 (2) | 0.0135 (6) | |
H40A | −0.3999 | 0.6770 | 0.6998 | 0.020 (13)* | |
H40B | −0.4191 | 0.8019 | 0.7417 | 0.019 (13)* | |
O41 | −0.0740 (4) | 0.7601 (3) | 0.82264 (19) | 0.0125 (6) | |
H41A | 0.0129 | 0.7965 | 0.8162 | 0.041 (17)* | |
H41B | −0.1766 | 0.8105 | 0.8461 | 0.036 (17)* | |
O90 | 0.1372 (4) | 0.9039 (3) | 0.7492 (2) | 0.0190 (6) | |
H90A | 0.1811 | 0.8321 | 0.7059 | 0.038 (17)* | |
H90B | 0.2363 | 0.9222 | 0.7635 | 0.049 (19)* | |
N1 | −0.0352 (4) | 0.4705 (3) | 0.7536 (2) | 0.0101 (6) | |
N2 | −0.0652 (4) | 0.5726 (3) | 0.5797 (2) | 0.0089 (6) | |
N3 | −0.1409 (4) | 0.8436 (3) | 0.5978 (2) | 0.0107 (6) | |
C1 | 0.3907 (5) | 0.4355 (4) | 0.7530 (3) | 0.0102 (7) | |
C2 | 0.4116 (5) | 0.2912 (4) | 0.7604 (3) | 0.0114 (7) | |
H2 | 0.4237 | 0.2423 | 0.7052 | 0.014* | |
C3 | 0.4145 (5) | 0.2200 (4) | 0.8494 (3) | 0.0102 (7) | |
C4 | 0.3956 (6) | 0.2949 (4) | 0.9323 (3) | 0.0145 (8) | |
H4 | 0.3961 | 0.2488 | 0.9922 | 0.017* | |
C5 | 0.3764 (6) | 0.4373 (4) | 0.9252 (3) | 0.0149 (8) | |
H5 | 0.3654 | 0.4861 | 0.9803 | 0.018* | |
C6 | 0.3734 (5) | 0.5074 (4) | 0.8364 (3) | 0.0132 (8) | |
H6 | 0.3598 | 0.6031 | 0.8324 | 0.016* | |
C7 | −0.0568 (5) | 0.4352 (4) | 0.8473 (3) | 0.0138 (8) | |
H7A | −0.0539 | 0.4973 | 0.8919 | 0.017* | |
C8 | −0.0831 (6) | 0.3106 (4) | 0.8799 (3) | 0.0175 (8) | |
H8A | −0.0939 | 0.2877 | 0.9452 | 0.021* | |
C9 | −0.0931 (6) | 0.2202 (4) | 0.8141 (3) | 0.0177 (8) | |
H9 | −0.1152 | 0.1371 | 0.8347 | 0.021* | |
C10 | −0.0699 (5) | 0.2546 (4) | 0.7170 (3) | 0.0137 (8) | |
H10 | −0.0761 | 0.1950 | 0.6716 | 0.016* | |
C11 | −0.0373 (5) | 0.3793 (4) | 0.6889 (3) | 0.0113 (7) | |
C12 | −0.0117 (5) | 0.4313 (4) | 0.5878 (3) | 0.0080 (7) | |
C13 | −0.0605 (5) | 0.6454 (4) | 0.4965 (3) | 0.0087 (7) | |
C14 | −0.1448 (5) | 0.8029 (4) | 0.5091 (3) | 0.0100 (7) | |
C15 | −0.2340 (5) | 0.8978 (4) | 0.4408 (3) | 0.0124 (7) | |
H15 | −0.2421 | 0.8667 | 0.3818 | 0.015* | |
C16 | −0.3113 (5) | 1.0407 (4) | 0.4623 (3) | 0.0134 (8) | |
H16 | −0.3729 | 1.1066 | 0.4180 | 0.016* | |
C17 | −0.2956 (5) | 1.0839 (4) | 0.5507 (3) | 0.0146 (8) | |
H17 | −0.3395 | 1.1796 | 0.5649 | 0.017* | |
C18 | −0.2134 (5) | 0.9818 (4) | 0.6170 (3) | 0.0132 (8) | |
H18 | −0.2083 | 1.0101 | 0.6774 | 0.016* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0073 (2) | 0.0063 (2) | 0.0088 (2) | −0.00260 (17) | −0.00161 (17) | −0.00129 (17) |
P1 | 0.0087 (4) | 0.0077 (4) | 0.0083 (4) | −0.0029 (3) | −0.0011 (3) | −0.0003 (3) |
P2 | 0.0117 (5) | 0.0082 (4) | 0.0089 (4) | −0.0027 (4) | −0.0022 (4) | 0.0002 (3) |
O1 | 0.0107 (13) | 0.0096 (13) | 0.0151 (13) | −0.0043 (10) | −0.0013 (10) | 0.0003 (10) |
O2 | 0.0142 (13) | 0.0122 (13) | 0.0115 (13) | −0.0064 (11) | −0.0020 (10) | −0.0004 (10) |
O3 | 0.0134 (13) | 0.0162 (14) | 0.0085 (12) | −0.0082 (11) | −0.0019 (10) | −0.0014 (10) |
O4 | 0.0164 (14) | 0.0101 (13) | 0.0112 (13) | −0.0041 (11) | −0.0022 (11) | −0.0032 (10) |
O5 | 0.0158 (14) | 0.0177 (14) | 0.0125 (14) | −0.0071 (12) | −0.0009 (11) | −0.0006 (11) |
O6 | 0.0126 (13) | 0.0123 (13) | 0.0119 (13) | −0.0009 (11) | −0.0022 (10) | −0.0003 (10) |
O40 | 0.0120 (13) | 0.0124 (14) | 0.0174 (14) | −0.0050 (11) | −0.0018 (11) | −0.0050 (11) |
O41 | 0.0116 (13) | 0.0121 (13) | 0.0140 (13) | −0.0041 (11) | −0.0005 (11) | −0.0042 (11) |
O90 | 0.0168 (15) | 0.0183 (15) | 0.0248 (16) | −0.0097 (12) | 0.0010 (12) | −0.0063 (13) |
N1 | 0.0075 (14) | 0.0113 (15) | 0.0109 (15) | −0.0017 (12) | −0.0027 (12) | −0.0003 (12) |
N2 | 0.0062 (14) | 0.0081 (15) | 0.0136 (15) | −0.0026 (12) | −0.0040 (12) | −0.0017 (12) |
N3 | 0.0091 (15) | 0.0101 (15) | 0.0142 (16) | −0.0046 (12) | −0.0015 (12) | −0.0023 (12) |
C1 | 0.0090 (17) | 0.0116 (18) | 0.0100 (17) | −0.0039 (14) | −0.0001 (14) | −0.0004 (14) |
C2 | 0.0106 (17) | 0.0122 (18) | 0.0126 (18) | −0.0041 (14) | −0.0040 (14) | −0.0022 (14) |
C3 | 0.0095 (17) | 0.0091 (17) | 0.0128 (18) | −0.0035 (14) | −0.0036 (14) | 0.0008 (14) |
C4 | 0.019 (2) | 0.0152 (19) | 0.0095 (17) | −0.0062 (16) | −0.0027 (15) | 0.0001 (15) |
C5 | 0.020 (2) | 0.0149 (19) | 0.0112 (18) | −0.0061 (16) | −0.0019 (15) | −0.0052 (15) |
C6 | 0.0157 (19) | 0.0077 (17) | 0.0169 (19) | −0.0046 (15) | −0.0031 (15) | −0.0006 (14) |
C7 | 0.0126 (18) | 0.0165 (19) | 0.0117 (18) | −0.0037 (15) | −0.0004 (14) | −0.0041 (15) |
C8 | 0.022 (2) | 0.015 (2) | 0.0118 (18) | −0.0031 (16) | −0.0012 (16) | 0.0041 (15) |
C9 | 0.021 (2) | 0.0093 (18) | 0.020 (2) | −0.0053 (16) | 0.0039 (17) | 0.0028 (15) |
C10 | 0.0171 (19) | 0.0086 (17) | 0.0157 (19) | −0.0052 (15) | 0.0001 (15) | −0.0021 (14) |
C11 | 0.0096 (17) | 0.0092 (17) | 0.0145 (18) | −0.0015 (14) | −0.0024 (14) | −0.0031 (14) |
C12 | 0.0095 (16) | 0.0093 (17) | 0.0076 (16) | −0.0052 (13) | −0.0054 (13) | 0.0025 (13) |
C13 | 0.0083 (16) | 0.0064 (16) | 0.0128 (17) | −0.0030 (13) | −0.0040 (14) | −0.0010 (13) |
C14 | 0.0091 (17) | 0.0085 (17) | 0.0132 (18) | −0.0043 (14) | −0.0004 (14) | −0.0008 (14) |
C15 | 0.0141 (18) | 0.0119 (18) | 0.0112 (18) | −0.0044 (15) | −0.0009 (14) | −0.0017 (14) |
C16 | 0.0108 (17) | 0.0112 (18) | 0.0151 (19) | −0.0006 (14) | −0.0013 (15) | 0.0028 (15) |
C17 | 0.0165 (19) | 0.0083 (18) | 0.018 (2) | −0.0044 (15) | 0.0008 (16) | −0.0030 (15) |
C18 | 0.0115 (18) | 0.0140 (19) | 0.0154 (19) | −0.0063 (15) | 0.0012 (15) | −0.0040 (15) |
Ni1—N2 | 2.011 (3) | C1—C2 | 1.402 (5) |
Ni1—O41 | 2.016 (3) | C2—C3 | 1.393 (5) |
Ni1—N1 | 2.076 (3) | C2—H2 | 0.9300 |
Ni1—O40 | 2.082 (3) | C3—C4 | 1.403 (5) |
Ni1—O1 | 2.082 (3) | C4—C5 | 1.385 (6) |
Ni1—N3 | 2.089 (3) | C4—H4 | 0.9300 |
P1—O1 | 1.516 (3) | C5—C6 | 1.385 (6) |
P1—O3 | 1.525 (3) | C5—H5 | 0.9300 |
P1—O2 | 1.566 (3) | C6—H6 | 0.9300 |
P1—C1 | 1.795 (4) | C7—C8 | 1.377 (6) |
P2—O4 | 1.504 (3) | C7—H7A | 0.9300 |
P2—O6 | 1.515 (3) | C8—C9 | 1.380 (6) |
P2—O5 | 1.574 (3) | C8—H8A | 0.9300 |
P2—C3 | 1.805 (4) | C9—C10 | 1.387 (6) |
O2—H2' | 0.8200 | C9—H9 | 0.9300 |
O5—H5' | 0.8200 | C10—C11 | 1.388 (5) |
O40—H40A | 0.8445 | C10—H10 | 0.9300 |
O40—H40B | 0.8824 | C11—C12 | 1.489 (5) |
O41—H41A | 0.8831 | C12—C13i | 1.406 (5) |
O41—H41B | 0.8318 | C13—C12i | 1.406 (5) |
O90—H90A | 0.9213 | C13—C14 | 1.504 (5) |
O90—H90B | 0.9235 | C14—C15 | 1.386 (5) |
N1—C7 | 1.342 (5) | C15—C16 | 1.392 (5) |
N1—C11 | 1.353 (5) | C15—H15 | 0.9300 |
N2—C13 | 1.336 (5) | C16—C17 | 1.388 (6) |
N2—C12 | 1.336 (5) | C16—H16 | 0.9300 |
N3—C18 | 1.339 (5) | C17—C18 | 1.382 (6) |
N3—C14 | 1.355 (5) | C17—H17 | 0.9300 |
C1—C6 | 1.394 (5) | C18—H18 | 0.9300 |
N2—Ni1—O41 | 174.66 (12) | C3—C2—H2 | 119.6 |
N2—Ni1—N1 | 78.70 (13) | C1—C2—H2 | 119.6 |
O41—Ni1—N1 | 96.31 (12) | C2—C3—C4 | 119.1 (4) |
N2—Ni1—O40 | 92.64 (12) | C2—C3—P2 | 120.8 (3) |
O41—Ni1—O40 | 88.91 (11) | C4—C3—P2 | 120.1 (3) |
N1—Ni1—O40 | 86.27 (12) | C5—C4—C3 | 120.2 (4) |
N2—Ni1—O1 | 87.69 (12) | C5—C4—H4 | 119.9 |
O41—Ni1—O1 | 91.29 (11) | C3—C4—H4 | 119.9 |
N1—Ni1—O1 | 99.42 (11) | C4—C5—C6 | 120.4 (4) |
O40—Ni1—O1 | 174.25 (11) | C4—C5—H5 | 119.8 |
N2—Ni1—N3 | 78.95 (13) | C6—C5—H5 | 119.8 |
O41—Ni1—N3 | 106.20 (12) | C5—C6—C1 | 120.5 (4) |
N1—Ni1—N3 | 156.87 (13) | C5—C6—H6 | 119.7 |
O40—Ni1—N3 | 88.87 (12) | C1—C6—H6 | 119.7 |
O1—Ni1—N3 | 85.55 (12) | N1—C7—C8 | 122.5 (4) |
O1—P1—O3 | 112.44 (16) | N1—C7—H7A | 118.7 |
O1—P1—O2 | 112.43 (16) | C8—C7—H7A | 118.7 |
O3—P1—O2 | 110.23 (15) | C7—C8—C9 | 119.0 (4) |
O1—P1—C1 | 107.08 (17) | C7—C8—H8A | 120.5 |
O3—P1—C1 | 110.95 (16) | C9—C8—H8A | 120.5 |
O2—P1—C1 | 103.31 (17) | C8—C9—C10 | 119.2 (4) |
O4—P2—O6 | 115.53 (16) | C8—C9—H9 | 120.4 |
O4—P2—O5 | 108.24 (16) | C10—C9—H9 | 120.4 |
O6—P2—O5 | 110.12 (16) | C9—C10—C11 | 118.9 (4) |
O4—P2—C3 | 109.86 (17) | C9—C10—H10 | 120.6 |
O6—P2—C3 | 106.30 (17) | C11—C10—H10 | 120.6 |
O5—P2—C3 | 106.41 (17) | N1—C11—C10 | 121.7 (4) |
P1—O1—Ni1 | 133.25 (16) | N1—C11—C12 | 113.1 (3) |
P1—O2—H2' | 109.5 | C10—C11—C12 | 125.1 (3) |
P2—O5—H5' | 109.5 | N2—C12—C13i | 117.7 (3) |
Ni1—O40—H40A | 116.6 | N2—C12—C11 | 112.5 (3) |
Ni1—O40—H40B | 115.1 | C13i—C12—C11 | 129.9 (3) |
H40A—O40—H40B | 106.5 | N2—C13—C12i | 118.1 (3) |
Ni1—O41—H41A | 109.6 | N2—C13—C14 | 112.0 (3) |
Ni1—O41—H41B | 112.7 | C12i—C13—C14 | 129.8 (3) |
H41A—O41—H41B | 117.7 | N3—C14—C15 | 122.0 (3) |
H90A—O90—H90B | 106.4 | N3—C14—C13 | 113.7 (3) |
C7—N1—C11 | 118.6 (3) | C15—C14—C13 | 124.0 (3) |
C7—N1—Ni1 | 124.9 (3) | C14—C15—C16 | 118.5 (4) |
C11—N1—Ni1 | 113.8 (3) | C14—C15—H15 | 120.7 |
C13—N2—C12 | 124.1 (3) | C16—C15—H15 | 120.7 |
C13—N2—Ni1 | 116.3 (2) | C17—C16—C15 | 119.4 (4) |
C12—N2—Ni1 | 116.6 (2) | C17—C16—H16 | 120.3 |
C18—N3—C14 | 118.6 (3) | C15—C16—H16 | 120.3 |
C18—N3—Ni1 | 126.3 (3) | C18—C17—C16 | 118.6 (4) |
C14—N3—Ni1 | 113.3 (2) | C18—C17—H17 | 120.7 |
C6—C1—C2 | 118.9 (3) | C16—C17—H17 | 120.7 |
C6—C1—P1 | 119.3 (3) | N3—C18—C17 | 122.6 (4) |
C2—C1—P1 | 121.6 (3) | N3—C18—H18 | 118.7 |
C3—C2—C1 | 120.9 (3) | C17—C18—H18 | 118.7 |
O3—P1—O1—Ni1 | −179.15 (19) | O4—P2—C3—C4 | 168.7 (3) |
O2—P1—O1—Ni1 | 55.7 (3) | O6—P2—C3—C4 | −65.6 (3) |
C1—P1—O1—Ni1 | −57.0 (3) | O5—P2—C3—C4 | 51.8 (4) |
N2—Ni1—O1—P1 | −64.4 (2) | C2—C3—C4—C5 | −0.7 (6) |
O41—Ni1—O1—P1 | 110.4 (2) | P2—C3—C4—C5 | 177.4 (3) |
N1—Ni1—O1—P1 | 13.8 (2) | C3—C4—C5—C6 | 0.8 (6) |
N3—Ni1—O1—P1 | −143.5 (2) | C4—C5—C6—C1 | −0.4 (6) |
N2—Ni1—N1—C7 | −166.2 (3) | C2—C1—C6—C5 | −0.1 (6) |
O41—Ni1—N1—C7 | 15.7 (3) | P1—C1—C6—C5 | 174.7 (3) |
O40—Ni1—N1—C7 | −72.8 (3) | C11—N1—C7—C8 | −0.8 (6) |
O1—Ni1—N1—C7 | 108.1 (3) | Ni1—N1—C7—C8 | 159.6 (3) |
N3—Ni1—N1—C7 | −151.1 (3) | N1—C7—C8—C9 | −2.0 (6) |
N2—Ni1—N1—C11 | −5.1 (3) | C7—C8—C9—C10 | 2.3 (6) |
O41—Ni1—N1—C11 | 176.9 (3) | C8—C9—C10—C11 | 0.0 (6) |
O40—Ni1—N1—C11 | 88.4 (3) | C7—N1—C11—C10 | 3.2 (6) |
O1—Ni1—N1—C11 | −90.8 (3) | Ni1—N1—C11—C10 | −159.2 (3) |
N3—Ni1—N1—C11 | 10.1 (5) | C7—N1—C11—C12 | −179.9 (3) |
N1—Ni1—N2—C13 | −171.4 (3) | Ni1—N1—C11—C12 | 17.7 (4) |
O40—Ni1—N2—C13 | 103.0 (3) | C9—C10—C11—N1 | −2.8 (6) |
O1—Ni1—N2—C13 | −71.3 (3) | C9—C10—C11—C12 | −179.3 (4) |
N3—Ni1—N2—C13 | 14.6 (3) | C13—N2—C12—C13i | 2.5 (6) |
N1—Ni1—N2—C12 | −10.2 (3) | Ni1—N2—C12—C13i | −157.1 (3) |
O40—Ni1—N2—C12 | −95.8 (3) | C13—N2—C12—C11 | −178.3 (3) |
O1—Ni1—N2—C12 | 89.9 (3) | Ni1—N2—C12—C11 | 22.1 (4) |
N3—Ni1—N2—C12 | 175.8 (3) | N1—C11—C12—N2 | −26.0 (4) |
N2—Ni1—N3—C18 | 165.3 (3) | C10—C11—C12—N2 | 150.7 (4) |
O41—Ni1—N3—C18 | −16.1 (3) | N1—C11—C12—C13i | 153.1 (4) |
N1—Ni1—N3—C18 | 150.2 (3) | C10—C11—C12—C13i | −30.2 (6) |
O40—Ni1—N3—C18 | 72.4 (3) | C12—N2—C13—C12i | −2.5 (6) |
O1—Ni1—N3—C18 | −106.2 (3) | Ni1—N2—C13—C12i | 157.1 (3) |
N2—Ni1—N3—C14 | 0.5 (3) | C12—N2—C13—C14 | 174.8 (3) |
O41—Ni1—N3—C14 | 179.0 (2) | Ni1—N2—C13—C14 | −25.5 (4) |
N1—Ni1—N3—C14 | −14.6 (5) | C18—N3—C14—C15 | −5.4 (5) |
O40—Ni1—N3—C14 | −92.4 (3) | Ni1—N3—C14—C15 | 160.7 (3) |
O1—Ni1—N3—C14 | 89.0 (3) | C18—N3—C14—C13 | −179.6 (3) |
O1—P1—C1—C6 | −51.1 (3) | Ni1—N3—C14—C13 | −13.5 (4) |
O3—P1—C1—C6 | 72.0 (3) | N2—C13—C14—N3 | 25.5 (4) |
O2—P1—C1—C6 | −169.9 (3) | C12i—C13—C14—N3 | −157.6 (4) |
O1—P1—C1—C2 | 123.6 (3) | N2—C13—C14—C15 | −148.6 (4) |
O3—P1—C1—C2 | −113.4 (3) | C12i—C13—C14—C15 | 28.3 (6) |
O2—P1—C1—C2 | 4.7 (4) | N3—C14—C15—C16 | 4.3 (6) |
C6—C1—C2—C3 | 0.2 (6) | C13—C14—C15—C16 | 178.0 (4) |
P1—C1—C2—C3 | −174.5 (3) | C14—C15—C16—C17 | 0.5 (6) |
C1—C2—C3—C4 | 0.2 (6) | C15—C16—C17—C18 | −4.2 (6) |
C1—C2—C3—P2 | −177.9 (3) | C14—N3—C18—C17 | 1.5 (6) |
O4—P2—C3—C2 | −13.2 (4) | Ni1—N3—C18—C17 | −162.6 (3) |
O6—P2—C3—C2 | 112.5 (3) | C16—C17—C18—N3 | 3.2 (6) |
O5—P2—C3—C2 | −130.2 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2′···O3ii | 0.82 | 1.91 | 2.536 (4) | 132 |
O5—H5′···O6iii | 0.82 | 1.82 | 2.606 (4) | 162 |
O40—H40A···O3iv | 0.84 | 1.95 | 2.784 (4) | 170 |
O40—H40B···O4v | 0.88 | 1.83 | 2.711 (4) | 175 |
O41—H41B···O6v | 0.83 | 1.82 | 2.625 (4) | 163 |
O90—H90B···O4vi | 0.92 | 1.84 | 2.747 (4) | 166 |
O41—H41A···O90 | 0.88 | 1.83 | 2.643 (4) | 151 |
O90—H90A···O1 | 0.92 | 1.92 | 2.780 (4) | 154 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2; (iv) x−1, y, z; (v) x−1, y+1, z; (vi) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni2(C6H6O6P2)2(C24H16N6)(H2O)4]·2H2O |
Mr | 1086.04 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.9702 (6), 10.0785 (8), 14.0960 (12) |
α, β, γ (°) | 85.386 (2), 81.707 (1), 69.364 (1) |
V (Å3) | 1048.03 (15) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.20 × 0.14 × 0.11 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.804, 0.885 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10484, 5044, 4821 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.133, 1.32 |
No. of reflections | 5044 |
No. of parameters | 304 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.91, −0.80 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2'···O3i | 0.82 | 1.91 | 2.536 (4) | 131.9 |
O5—H5'···O6ii | 0.82 | 1.82 | 2.606 (4) | 161.6 |
O40—H40A···O3iii | 0.84 | 1.95 | 2.784 (4) | 169.9 |
O40—H40B···O4iv | 0.88 | 1.83 | 2.711 (4) | 174.9 |
O41—H41B···O6iv | 0.83 | 1.82 | 2.625 (4) | 162.9 |
O90—H90B···O4v | 0.92 | 1.84 | 2.747 (4) | 166.1 |
O41—H41A···O90 | 0.88 | 1.83 | 2.643 (4) | 151.2 |
O90—H90A···O1 | 0.92 | 1.92 | 2.780 (4) | 153.8 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+2; (iii) x−1, y, z; (iv) x−1, y+1, z; (v) x, y+1, z. |
Acknowledgements
This work was supported by a grant from the National Science Foundation, CHE-0907787.
References
Alberti, G., Costantino, U., Alluli, S. & Tomassini, N. (1978). J. Inorg. Nucl. Chem. 40, 1113–1117. CrossRef CAS Web of Science Google Scholar
Armatas, G. N., Allis, D. A., Prosvirin, A., Carnutu, G., O'Connor, C. J., Dunbar, K. & Zubieta, J. (2008). Inorg. Chem. 47, 832–854. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bauer, E. M., Bellito, C., Righini, G., Colapietro, M., Portalone, G., Drillon, M. & Rabu, P. (2008). Inorg. Chem. 47, 10945–10952. Web of Science CSD CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Burkholder, E., Golub, V., O'Connor, C. J. & Zubieta, J. (2003). Chem. Commun. pp. 2128–2129. Web of Science CSD CrossRef Google Scholar
Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284. Web of Science CSD CrossRef CAS Google Scholar
Burkholder, E. & Zubieta, J. (2005). Inorg. Chim. Acta, 358, 116–122. Web of Science CSD CrossRef CAS Google Scholar
Clearfield, A. (1998). Prog. Inorg. Chem. 47, 371–510. CrossRef CAS Google Scholar
Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421–601. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vermeulen, L. A. (1997). Prog. Inorg. Chem. 44, 143–166. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of metal-organophosphonates has witnessed dramatic growth (Clearfield, 1998; Finn et al., 2003; Vermeulen, 1997) since the first reports in the 1970s of the layered metal-organophosphonates (Alberti et al., 1978). In our investigations of metal oxide materials, we have used organodiphosphonates as tethers between metal or metal oxide nodes (Armatas et al., 2008). Structural expansion and diversity could be accomplished by introducing additional components, most commonly a M(II)-organonitrogen ligand complex. A particularly useful nitrogen donor ligand for structural manipulation is the dipodal tetrakis(2-pyridyl)pyrazine (tpyprz) (Armatas et al., 2008; Bauer et al., 2008). While Cu(II) has generally served as the secondary metal in the M(II)-organonitrogen ligand complex, Ni(II)-containing subunits have also been exploited as subunits (Burkholder et al., 2003; Burkholder and Zubieta, 2004; Burkholder and Zubieta, 2005). While the secondary metal M(II) bonds to the tpyprz ligand and aqua ligands and/or cluster oxide groups in such materials, the title complex was prepared in the absence of metal oxide, affording the binuclear [Ni2(tpyprz)(1,3-HO3PC6H4PO3H) (H2O)4]dihydrate.
As shown in Fig. 1, the structure of the title compound is binuclear, with a crystallographic inversion center at the mid-point of the pyrazine group. The distorted {NiO3N3} octahedral geometry at the Ni(II) site is defined by the nitrogen donors of the tpyprz ligand in a meridional orientation, two aqua ligands and an oxygen donor from the pendant monodentate 1,3-phenyldiphosphonate ligand. One aqua ligand is trans to the pyrazine nitrogen donor of the tpyprz ligand, while the second occupies a position trans to the phosphonate oxygen donor. The shortest Ni—N distance is to the pyrazine nitrogen, Ni—N2 of 2.011 (3) Å, while the Ni-pyridyl bond distances are 2.076 (3) Å and 2.089 (3) Å. The Ni—O(aqua) distances are 2.015 (3) Å and 2.081 (3) Å, while the Ni—O(phosphonate) distance is 2.082 (3) Å.
Charge compensation considerations require that the phenyldiphosphonate ligand be in the doubly deprotonated state [H2(O3PC6H4PO3)]2-. The protonation sites were revealed in the difference Fourier map by peaks adjacent to O2 and O5 at distances consistent with bound hydrogen. The P—O bond lengths support these protonation sites with P—O2 and P—O5 of 1.567 (3) Å and 1.574 (3) Å, respectively, compared to an average P—O distance of 1.515 (4)Å for the remaining P—O distances.
The structure is stabilized by intermolecular hydrogen bonding between the aqua ligands, the P—OH groups and the waters of crystallization. The binuclear complexes and the water of crystallization are linked into a three-dimensional framework through this hydrogen bonding (Fig. 2). There is also intramolecular π-stacking between the phosphonate phenyl ring and a pyridyl group of the tpyprz ligand with a distance of 3.244 (5)Å between centroids. Intermolecular π-stacking between the phosphonate phenyl group and a pyridyl ring of a tpyprz ligand of an adjacent molecule exhibits a distance of 3.584 (5)Å between centroids.