organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Meth­oxy-1-{[(Z)-3-nitro­phenylimino](phenyl)methyl}-2-naphthol

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 29 September 2010; accepted 1 October 2010; online 9 October 2010)

In the title compound, C24H18N2O4, the phenyl and benzene rings are both oriented almost perpendicular to the naphthalene ring system at dihedral angles of 70.97 (5) and 84.64 (5)°. The former rings make a dihedral angle of 87.15 (6)°. The mol­ecule has a Z configuration about the C=N bond. In the crystal, mol­ecules are connected by a pair of inter­molecular O—H⋯O hydrogen bonds between the hy­droxy and the nitro group, forming centrosymmetric dimers. Inter­molecular C—H⋯O inter­actions also occur.

Related literature

For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o713.]); Watanabe et al. (2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]); Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.]); Nagasawa et al. (2010a[Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o2498.],b[Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o2677.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O4

  • Mr = 398.40

  • Triclinic, [P \overline 1]

  • a = 9.6709 (10) Å

  • b = 9.8345 (10) Å

  • c = 10.397 (1) Å

  • α = 88.640 (3)°

  • β = 89.194 (3)°

  • γ = 82.126 (3)°

  • V = 979.19 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.955, Tmax = 0.982

  • 15901 measured reflections

  • 4475 independent reflections

  • 3923 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.156

  • S = 1.13

  • 4475 reflections

  • 277 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.83 (2) 2.05 (2) 2.8559 (17) 163 (18)
C19—H19⋯O1 0.95 2.56 3.3241 (16) 138
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we reported crystal structures of several 1-monoaroylnaphthalene derivatives exemplified by 2-(2,7-dimethoxy-1-naphthoyl)benzoic acid (Hijikata et al., 2010), 2,7-dimethoxy-1-(4-nitrobenzoyl)-naphthalene (Watanabe et al., 2010) and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008). Furthermore, we also reported the crystal structure of 1-[(4-chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol-1,4-diazabicyclo[2.2.2]octane (2/1) (Nagasawa et al., 2010a) that formed 2:1 comolecular unit of triarylimine and 1,4-diazabicyclo[2.2.2]octane (DABCO). As a part of the continuous study on the molecular structures of this kind of homologous molecules, we have investigated imination reaction of aroylated naphthalene. The title compound was prepared from (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa et al., 2010b) and 3-nitroaniline in the presence of TiCl4 and DABCO.

An ORTEPIII (Burnett & Johnson, 1996) plot is shown in Fig. 1. In the molecule, interplanar angles of the least-squares plane of the benzene ring (C12–C17) attached to nitrogen atom (N1) and benzene ring (C18–C23) attached to carbon atom (C11) of imine moiety against the naphthalene ring (C1–C10) are 70.97 (5) and 84.64 (5)°, respectively. Furthermore, the interplanar angle between two benzene rings is 87.15 (6)°. The molecule has a Z configuration for the imine vector.

In the crystal structure, the molecular packing is mainly stabilized by intermolecular hydrogen bond and van der Waals interactions. The intermolecular O—H···O hydrogen bond between the hydorxy and nitro groups on the naphthalene ring and the N-aryl group along the c axis, is observed [H1···O3 = 2.05 (2) Å] (Fig. 2). The carbon atom in the naphthalene ring interacts with an oxygen atom in the nitro groups [C8···O4 = 3.079 (2) Å] along the c axis (Fig. 3). One hydrogen atom on a phenyl group has a close contact with the hydrogen atom on the phenyl group of the next molecule [H16···H17 = 2.27 Å], roughly along the a axis.

Related literature top

For the structures of closely related compounds, see: Hijikata et al. (2010); Watanabe et al. (2010); Mitsui et al. (2008); Nagasawa et al. (2010a,b).

Experimental top

To a solution of (2-hydroxy-7-methoxynaphthalen-1- yl)(phenyl)methanone (0.2 mmol, 56 mg) in chlorobenzene (1 ml), a mixture of 3-nitroaniline (0.22 mmol, 30 mg), TiCl4 (0.33 mmol, 62.4 mg), DABCO (1.32 mmol, 148.0 mg) and chlorobenzene (1 ml) was added by portions at 363 K under nitrogen atmosphere. After the reaction mixture was stirred at 398 K for 1.5 h, the resulting solution was filtered to remove the precipitate. The solvent was removed under reduced pressure to give crude material. The crude material thus obtained was subjected to crystallization from CHCl3/hexane to give compind (I) as yellow platelets (m.p. 508.5–509.0 K, yield 28 mg, 35%).

Spectroscopic Data: 1H NMR (300 MHz, DMSO-d6) δ; 10.23, (s, 1H), 7.69–7.60 (m, 6H), 7.49–7.38 (m, 3H), 7.30–7.26 (m, 2H), 6.97 (d, 1H), 6.84 (dd, 1H), 6.54 (d, 1H), 3.66 (s, 3H); 13C NMR (75 MHz, DMSO-d6) 168.5, 158.7, 154.1, 152.8, 148.0, 138.3, 132.5, 131.9, 131.0, 130.5, 130.1, 129.2, 128.7, 126.6, 123.1, 118.7, 115.6, 115.2, 114.8, 114.2, 102.6, 55.6; IR (KBr): 3416, 3073, 1626, 1614, 1511, 1341, 1210; HRMS (m/z): [M + H]+ calcd for C24H19N2O4, 399.1345; found, 399.1349.

Refinement top

All the H-atoms could be located in difference Fourier maps. The O—H hydrogen atom was freely refined: O1—H1 = 0.89 (2) Å. The C-bound H-atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C). Rigid bond restraints were applied to the Uij values of the naphthalene ring (C6 and C7) [1 restraint with the DELU command in SHELXL97].

Structure description top

Recently, we reported crystal structures of several 1-monoaroylnaphthalene derivatives exemplified by 2-(2,7-dimethoxy-1-naphthoyl)benzoic acid (Hijikata et al., 2010), 2,7-dimethoxy-1-(4-nitrobenzoyl)-naphthalene (Watanabe et al., 2010) and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008). Furthermore, we also reported the crystal structure of 1-[(4-chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol-1,4-diazabicyclo[2.2.2]octane (2/1) (Nagasawa et al., 2010a) that formed 2:1 comolecular unit of triarylimine and 1,4-diazabicyclo[2.2.2]octane (DABCO). As a part of the continuous study on the molecular structures of this kind of homologous molecules, we have investigated imination reaction of aroylated naphthalene. The title compound was prepared from (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa et al., 2010b) and 3-nitroaniline in the presence of TiCl4 and DABCO.

An ORTEPIII (Burnett & Johnson, 1996) plot is shown in Fig. 1. In the molecule, interplanar angles of the least-squares plane of the benzene ring (C12–C17) attached to nitrogen atom (N1) and benzene ring (C18–C23) attached to carbon atom (C11) of imine moiety against the naphthalene ring (C1–C10) are 70.97 (5) and 84.64 (5)°, respectively. Furthermore, the interplanar angle between two benzene rings is 87.15 (6)°. The molecule has a Z configuration for the imine vector.

In the crystal structure, the molecular packing is mainly stabilized by intermolecular hydrogen bond and van der Waals interactions. The intermolecular O—H···O hydrogen bond between the hydorxy and nitro groups on the naphthalene ring and the N-aryl group along the c axis, is observed [H1···O3 = 2.05 (2) Å] (Fig. 2). The carbon atom in the naphthalene ring interacts with an oxygen atom in the nitro groups [C8···O4 = 3.079 (2) Å] along the c axis (Fig. 3). One hydrogen atom on a phenyl group has a close contact with the hydrogen atom on the phenyl group of the next molecule [H16···H17 = 2.27 Å], roughly along the a axis.

For the structures of closely related compounds, see: Hijikata et al. (2010); Watanabe et al. (2010); Mitsui et al. (2008); Nagasawa et al. (2010a,b).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A partial crystal packing diagram of the compound, viewed down the b axis. Intermolecular O—H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A partial crystal packing diagram of the compound, viewed down the b axis. Intermolecular NO···C interactions are shown as dashed lines.
7-Methoxy-1-{[(Z)-3-nitrophenylimino](phenyl)methyl}-2-naphthol top
Crystal data top
C24H18N2O4Z = 2
Mr = 398.40F(000) = 416
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Melting point = 509.0–508.5 K
a = 9.6709 (10) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.8345 (10) ÅCell parameters from 11810 reflections
c = 10.397 (1) Åθ = 3.2–27.4°
α = 88.640 (3)°µ = 0.09 mm1
β = 89.194 (3)°T = 193 K
γ = 82.126 (3)°Platelet, yellow
V = 979.19 (16) Å30.50 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4475 independent reflections
Radiation source: rotating anode3923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 1212
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1212
Tmin = 0.955, Tmax = 0.982l = 1213
15901 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.098P)2 + 0.153P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4475 reflectionsΔρmax = 0.40 e Å3
277 parametersΔρmin = 0.40 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.039 (6)
Crystal data top
C24H18N2O4γ = 82.126 (3)°
Mr = 398.40V = 979.19 (16) Å3
Triclinic, P1Z = 2
a = 9.6709 (10) ÅMo Kα radiation
b = 9.8345 (10) ŵ = 0.09 mm1
c = 10.397 (1) ÅT = 193 K
α = 88.640 (3)°0.50 × 0.30 × 0.20 mm
β = 89.194 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4475 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3923 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.982Rint = 0.014
15901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.40 e Å3
4475 reflectionsΔρmin = 0.40 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51816 (11)0.18118 (11)0.75931 (11)0.0491 (3)
O21.18407 (11)0.40281 (11)0.59012 (12)0.0531 (3)
O30.64352 (12)0.1348 (2)1.01592 (12)0.0759 (5)
O40.82233 (15)0.1964 (2)1.12868 (14)0.0907 (6)
N10.81213 (10)0.03212 (10)0.59401 (9)0.0280 (2)
N20.76948 (13)0.15267 (13)1.02938 (11)0.0411 (3)
C10.73411 (13)0.24880 (12)0.70311 (10)0.0289 (3)
C20.61980 (15)0.25958 (13)0.78516 (12)0.0367 (3)
C30.61168 (17)0.34798 (16)0.89160 (13)0.0469 (4)
H30.53440.35220.94950.056*
C40.71436 (18)0.42664 (15)0.91081 (13)0.0470 (4)
H40.70780.48540.98250.056*
C50.83046 (16)0.42299 (13)0.82655 (12)0.0395 (3)
C60.93661 (19)0.50761 (15)0.84159 (16)0.0516 (4)
H60.92860.57110.90960.062*
C71.04946 (18)0.50021 (16)0.76113 (18)0.0522 (4)
H71.11840.55880.77270.063*
C81.06394 (15)0.40493 (13)0.66003 (14)0.0400 (3)
C90.96183 (13)0.32336 (12)0.63937 (12)0.0314 (3)
H90.97100.26200.56960.038*
C100.84274 (13)0.33059 (12)0.72195 (11)0.0302 (3)
C110.74138 (11)0.15216 (11)0.59275 (10)0.0261 (2)
C120.66388 (11)0.20074 (12)0.47405 (11)0.0273 (3)
C130.63505 (14)0.34105 (13)0.44511 (12)0.0360 (3)
H130.66360.40570.50210.043*
C140.56463 (16)0.38643 (15)0.33290 (13)0.0437 (3)
H140.54620.48190.31290.052*
C150.52155 (14)0.29251 (17)0.25059 (13)0.0427 (3)
H150.47240.32370.17470.051*
C160.54984 (13)0.15291 (16)0.27845 (13)0.0404 (3)
H160.52100.08880.22110.048*
C170.62029 (12)0.10671 (13)0.39009 (12)0.0337 (3)
H170.63880.01110.40930.040*
C180.87584 (12)0.02373 (11)0.70917 (11)0.0270 (2)
C190.79334 (12)0.05397 (12)0.81420 (11)0.0297 (3)
H190.69470.03060.81220.036*
C200.85794 (13)0.11863 (12)0.92129 (11)0.0311 (3)
C211.00158 (14)0.15383 (14)0.93041 (13)0.0377 (3)
H211.04310.19631.00610.045*
C221.08160 (13)0.12449 (14)0.82466 (14)0.0399 (3)
H221.18010.14820.82730.048*
C231.02033 (13)0.06076 (13)0.71432 (12)0.0339 (3)
H231.07710.04250.64240.041*
C241.20954 (18)0.30536 (19)0.4914 (2)0.0579 (4)
H24A1.30230.30940.45360.069*
H24B1.13870.32610.42470.069*
H24C1.20520.21310.52760.069*
H10.464 (3)0.185 (3)0.822 (2)0.076 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0450 (6)0.0501 (6)0.0521 (6)0.0085 (5)0.0258 (5)0.0018 (5)
O20.0429 (6)0.0436 (6)0.0771 (8)0.0202 (5)0.0011 (5)0.0073 (5)
O30.0408 (6)0.1428 (14)0.0451 (7)0.0213 (7)0.0094 (5)0.0244 (8)
O40.0673 (9)0.1390 (15)0.0587 (8)0.0001 (9)0.0038 (6)0.0621 (9)
N10.0285 (5)0.0284 (5)0.0273 (5)0.0052 (4)0.0036 (3)0.0012 (4)
N20.0428 (6)0.0427 (6)0.0377 (6)0.0076 (5)0.0058 (5)0.0080 (5)
C10.0369 (6)0.0261 (5)0.0224 (5)0.0000 (4)0.0039 (4)0.0015 (4)
C20.0445 (7)0.0319 (6)0.0314 (6)0.0015 (5)0.0110 (5)0.0039 (5)
C30.0622 (9)0.0442 (7)0.0285 (6)0.0119 (7)0.0167 (6)0.0015 (5)
C40.0715 (10)0.0383 (7)0.0258 (6)0.0129 (7)0.0007 (6)0.0076 (5)
C50.0565 (8)0.0299 (6)0.0291 (6)0.0059 (6)0.0090 (5)0.0040 (5)
C60.0715 (10)0.0347 (7)0.0476 (8)0.0000 (7)0.0208 (7)0.0152 (6)
C70.0567 (9)0.0362 (7)0.0656 (10)0.0102 (6)0.0183 (7)0.0121 (7)
C80.0427 (7)0.0298 (6)0.0486 (8)0.0076 (5)0.0098 (6)0.0006 (5)
C90.0377 (6)0.0259 (5)0.0312 (6)0.0058 (5)0.0049 (5)0.0018 (4)
C100.0411 (6)0.0249 (5)0.0232 (5)0.0007 (5)0.0048 (4)0.0014 (4)
C110.0263 (5)0.0278 (5)0.0251 (5)0.0078 (4)0.0066 (4)0.0001 (4)
C120.0247 (5)0.0315 (6)0.0259 (5)0.0054 (4)0.0051 (4)0.0009 (4)
C130.0440 (7)0.0334 (6)0.0308 (6)0.0067 (5)0.0003 (5)0.0029 (5)
C140.0515 (8)0.0416 (7)0.0361 (7)0.0009 (6)0.0021 (6)0.0098 (5)
C150.0349 (6)0.0617 (9)0.0299 (6)0.0011 (6)0.0027 (5)0.0047 (6)
C160.0299 (6)0.0542 (8)0.0377 (7)0.0068 (6)0.0041 (5)0.0073 (6)
C170.0275 (5)0.0367 (6)0.0376 (6)0.0065 (5)0.0002 (5)0.0027 (5)
C180.0299 (5)0.0230 (5)0.0284 (5)0.0040 (4)0.0024 (4)0.0026 (4)
C190.0258 (5)0.0303 (6)0.0333 (6)0.0050 (4)0.0025 (4)0.0001 (4)
C200.0339 (6)0.0282 (5)0.0315 (6)0.0060 (5)0.0043 (4)0.0019 (4)
C210.0365 (6)0.0346 (6)0.0404 (7)0.0006 (5)0.0043 (5)0.0072 (5)
C220.0272 (6)0.0418 (7)0.0483 (8)0.0025 (5)0.0015 (5)0.0046 (6)
C230.0293 (6)0.0343 (6)0.0373 (6)0.0019 (5)0.0079 (5)0.0003 (5)
C240.0444 (8)0.0529 (9)0.0798 (12)0.0189 (7)0.0171 (8)0.0103 (8)
Geometric parameters (Å, º) top
O1—C21.3630 (18)C11—C121.4876 (15)
O1—H10.83 (3)C12—C131.3963 (17)
O2—C81.3597 (19)C12—C171.3965 (17)
O2—C241.417 (2)C13—C141.3923 (18)
O3—N21.2162 (17)C13—H130.9500
O4—N21.2023 (17)C14—C151.383 (2)
N1—C111.2807 (15)C14—H140.9500
N1—C181.4184 (14)C15—C161.387 (2)
N2—C201.4630 (16)C15—H150.9500
C1—C21.3809 (17)C16—C171.3893 (18)
C1—C101.4261 (18)C16—H160.9500
C1—C111.5020 (15)C17—H170.9500
C2—C31.418 (2)C18—C191.3938 (16)
C3—C41.359 (2)C18—C231.3963 (16)
C3—H30.9500C19—C201.3825 (17)
C4—C51.412 (2)C19—H190.9500
C4—H40.9500C20—C211.3888 (18)
C5—C61.420 (2)C21—C221.3832 (19)
C5—C101.4269 (17)C21—H210.9500
C6—C71.361 (3)C22—C231.3940 (18)
C6—H60.9500C22—H220.9500
C7—C81.417 (2)C23—H230.9500
C7—H70.9500C24—H24A0.9800
C8—C91.3770 (17)C24—H24B0.9800
C9—C101.4217 (18)C24—H24C0.9800
C9—H90.9500
C2—O1—H1107.8 (17)C17—C12—C11120.44 (10)
C8—O2—C24117.74 (11)C14—C13—C12120.17 (12)
C11—N1—C18120.16 (10)C14—C13—H13119.9
O4—N2—O3121.85 (12)C12—C13—H13119.9
O4—N2—C20119.64 (12)C15—C14—C13119.99 (13)
O3—N2—C20118.51 (11)C15—C14—H14120.0
C2—C1—C10120.16 (11)C13—C14—H14120.0
C2—C1—C11119.33 (11)C14—C15—C16120.26 (12)
C10—C1—C11120.51 (10)C14—C15—H15119.9
O1—C2—C1116.99 (12)C16—C15—H15119.9
O1—C2—C3122.55 (12)C15—C16—C17120.13 (12)
C1—C2—C3120.45 (13)C15—C16—H16119.9
C4—C3—C2120.05 (13)C17—C16—H16119.9
C4—C3—H3120.0C16—C17—C12120.05 (12)
C2—C3—H3120.0C16—C17—H17120.0
C3—C4—C5121.45 (12)C12—C17—H17120.0
C3—C4—H4119.3C19—C18—C23119.36 (11)
C5—C4—H4119.3C19—C18—N1119.97 (10)
C4—C5—C6122.65 (13)C23—C18—N1120.40 (10)
C4—C5—C10119.09 (13)C20—C19—C18118.63 (11)
C6—C5—C10118.26 (14)C20—C19—H19120.7
C7—C6—C5121.75 (13)C18—C19—H19120.7
C7—C6—H6119.1C19—C20—C21123.33 (11)
C5—C6—H6119.1C19—C20—N2117.89 (11)
C6—C7—C8119.90 (14)C21—C20—N2118.78 (11)
C6—C7—H7120.1C22—C21—C20117.21 (12)
C8—C7—H7120.1C22—C21—H21121.4
O2—C8—C9125.18 (13)C20—C21—H21121.4
O2—C8—C7114.36 (13)C21—C22—C23121.21 (11)
C9—C8—C7120.46 (14)C21—C22—H22119.4
C8—C9—C10120.30 (12)C23—C22—H22119.4
C8—C9—H9119.9C22—C23—C18120.24 (11)
C10—C9—H9119.9C22—C23—H23119.9
C9—C10—C1122.02 (10)C18—C23—H23119.9
C9—C10—C5119.27 (12)O2—C24—H24A109.5
C1—C10—C5118.71 (12)O2—C24—H24B109.5
N1—C11—C12118.34 (10)H24A—C24—H24B109.5
N1—C11—C1123.99 (10)O2—C24—H24C109.5
C12—C11—C1117.66 (9)H24A—C24—H24C109.5
C13—C12—C17119.39 (11)H24B—C24—H24C109.5
C13—C12—C11120.16 (10)
C10—C1—C2—O1178.22 (10)C10—C1—C11—N181.52 (14)
C11—C1—C2—O10.66 (17)C2—C1—C11—C1281.77 (13)
C10—C1—C2—C32.39 (19)C10—C1—C11—C1297.11 (12)
C11—C1—C2—C3178.72 (11)N1—C11—C12—C13153.41 (11)
O1—C2—C3—C4178.23 (13)C1—C11—C12—C1325.30 (15)
C1—C2—C3—C42.4 (2)N1—C11—C12—C1726.07 (15)
C2—C3—C4—C50.1 (2)C1—C11—C12—C17155.22 (11)
C3—C4—C5—C6177.66 (13)C17—C12—C13—C140.60 (18)
C3—C4—C5—C102.5 (2)C11—C12—C13—C14178.89 (11)
C4—C5—C6—C7178.39 (14)C12—C13—C14—C150.8 (2)
C10—C5—C6—C71.4 (2)C13—C14—C15—C160.9 (2)
C5—C6—C7—C80.8 (2)C14—C15—C16—C170.7 (2)
C24—O2—C8—C92.7 (2)C15—C16—C17—C120.54 (19)
C24—O2—C8—C7176.88 (14)C13—C12—C17—C160.47 (18)
C6—C7—C8—O2177.06 (14)C11—C12—C17—C16179.01 (10)
C6—C7—C8—C92.6 (2)C11—N1—C18—C1965.82 (14)
O2—C8—C9—C10177.50 (12)C11—N1—C18—C23120.21 (12)
C7—C8—C9—C102.1 (2)C23—C18—C19—C200.75 (17)
C8—C9—C10—C1179.41 (11)N1—C18—C19—C20174.77 (10)
C8—C9—C10—C50.16 (18)C18—C19—C20—C210.78 (19)
C2—C1—C10—C9179.62 (11)C18—C19—C20—N2178.51 (10)
C11—C1—C10—C90.75 (17)O4—N2—C20—C19172.65 (16)
C2—C1—C10—C50.05 (17)O3—N2—C20—C196.9 (2)
C11—C1—C10—C5178.82 (10)O4—N2—C20—C218.0 (2)
C4—C5—C10—C9177.95 (11)O3—N2—C20—C21172.45 (15)
C6—C5—C10—C91.88 (18)C19—C20—C21—C221.5 (2)
C4—C5—C10—C12.47 (17)N2—C20—C21—C22177.76 (12)
C6—C5—C10—C1177.70 (11)C20—C21—C22—C230.8 (2)
C18—N1—C11—C12173.57 (9)C21—C22—C23—C180.7 (2)
C18—N1—C11—C17.81 (16)C19—C18—C23—C221.47 (18)
C2—C1—C11—N199.60 (14)N1—C18—C23—C22175.47 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (2)2.05 (2)2.8559 (17)163 (18)
C19—H19···O10.952.563.3241 (16)138
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC24H18N2O4
Mr398.40
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)9.6709 (10), 9.8345 (10), 10.397 (1)
α, β, γ (°)88.640 (3), 89.194 (3), 82.126 (3)
V3)979.19 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.955, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15901, 4475, 3923
Rint0.014
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.156, 1.13
No. of reflections4475
No. of parameters277
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (2)2.05 (2)2.8559 (17)163 (18)
C19—H19···O10.952.563.3241 (16)138
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o2677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds