metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis{[4-(di­methyl­amino)­phen­yl]di­phenyl­phosphane}palladium(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 30 September 2010; accepted 20 October 2010; online 23 October 2010)

The title compound, trans-[PdCl2{PPh2(4-Me2NC6H4)}2], crystallizes with the Pd atom on a center of symmetry, resulting in a distorted trans-PdCl2P2 square-planar geometry. The Pd—P and Pd—Cl bond lengths are 2.3550 (7) and 2.2906 (7) Å, respectively. Some weak inter­actions are observed between the aromatic rings of adjacent mol­ecules, with an inter­planar distance between two π-stacked rings of 3.505 (3) Å. Intra- and intermolecular C—H⋯Cl hydrogen bonds also occur.

Related literature

For a review on related compounds, see: Spessard & Miessler (1996[Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131-135. Upper Saddle River, New Jersey, USA: Prentice Hall.]). For related compounds, see: Burrow et al. (1994[Burrow, R. A., Farrar, D. H. & Honeyman, C. H. (1994). Acta Cryst. C50, 681-683.]); DiMeglio et al. (1990[DiMeglio, C. M., Luck, L. A., Rithner, C. D., Rheingold, A. L., Elcesser, W. L., Hubbard, J. L. & Bushweller, C. H. (1990). J. Phys. Chem. 94, 6255-6263.]); Edwards et al. (1998[Edwards, D. A., Mahon, M. F. & Paget, T. J. (1998). Polyhedron, 17, 4121-4130.]); Ferguson et al. (1982[Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679-2681.]); Grushin et al. (1994[Grushin, V. V., Bensimon, C. & Alper, H. (1994). Inorg. Chem. 33, 4804-4806.]); Kitano et al. (1983[Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015-1017.]); Leznoff et al. (1999[Leznoff, D. B., Rancurel, C., Sutter, J., Rettig, S. J., Pink, M. & Kahn, O. (1999). Organometallics, 18, 5097-5102.]); Meij et al. (2003[Meij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44-m45.]); Meijboom et al. (2006a[Meijboom, R., Muller, A., Roodt, A. & Janse van Rensburg, J. M. (2006a). Acta Cryst. E62, m894-m896.],b[Meijboom, R., Muller, A. & Roodt, A. (2006b). Acta Cryst. E62, m1603-m1605.]); Meijboom & Omondi (2010[Meijboom, R. & Omondi, B. (2010). Acta Cryst. B66. Submitted.]). For the synthesis of the starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C20H20NP)2]

  • Mr = 787.98

  • Triclinic, [P \overline 1]

  • a = 9.9006 (16) Å

  • b = 9.9815 (15) Å

  • c = 10.4021 (14) Å

  • α = 86.291 (4)°

  • β = 69.135 (4)°

  • γ = 65.383 (4)°

  • V = 869.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 100 K

  • 0.18 × 0.10 × 0.04 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker; 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.966

  • 10917 measured reflections

  • 4268 independent reflections

  • 3545 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.05

  • 4268 reflections

  • 216 parameters

  • H-atom parameters constrained

  • Δρmax = 2.04 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯Cli 0.95 2.79 3.710 (3) 163
C26—H26⋯Cl 0.95 2.74 3.159 (3) 108
C36—H36⋯Clii 0.95 2.77 3.529 (3) 138
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained.

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{PPh2(4-Me2NC6H4)}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 93.84 (2) and P—Pd—Cli = 86.16 (2)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. The title compound, having a Pd—Cl bond length of 2.2955 (13) Å and a Pd—P bond length of 2.3398 (12) Å, fits well into the typical range for complexes of this kind. It is notable that the title compound crystallized as an unsolvated complex, as these type of PdII complexes tend to crystallize as solvates (Meijboom & Omondi, 2010).

Related literature top

For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Burrow et al. (1994); DiMeglio et al. (1990); Edwards et al. (1998); Ferguson et al. (1982); Grushin et al. (1994); Kitano et al. (1983); Leznoff et al. (1999); Meij et al. (2003); Meijboom et al. (2006a,b); Meijboom & Omondi (2010). For the synthesis of the starting materials see: Drew & Doyle (1990).

Experimental top

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). A solution of diphenyl(4-dimethylaminophenyl)phosphine (0.2 mmol) in dichloromethane (2.0 cm3) was added to a solution of [PdCl2(COD)] (0.1 mmol) in dichloromethane (3.0 cm3). Slow evaporation of the solvent gave yellow crystals of the title compound.

Refinement top

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density

Structure description top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained.

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{PPh2(4-Me2NC6H4)}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 93.84 (2) and P—Pd—Cli = 86.16 (2)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. The title compound, having a Pd—Cl bond length of 2.2955 (13) Å and a Pd—P bond length of 2.3398 (12) Å, fits well into the typical range for complexes of this kind. It is notable that the title compound crystallized as an unsolvated complex, as these type of PdII complexes tend to crystallize as solvates (Meijboom & Omondi, 2010).

For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Burrow et al. (1994); DiMeglio et al. (1990); Edwards et al. (1998); Ferguson et al. (1982); Grushin et al. (1994); Kitano et al. (1983); Leznoff et al. (1999); Meij et al. (2003); Meijboom et al. (2006a,b); Meijboom & Omondi (2010). For the synthesis of the starting materials see: Drew & Doyle (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure (I), showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Accented lettering indicate atoms generated by symmetry (1 - x,1 - y,1 - z).
trans-Dichloridobis{[4- (dimethylamino)phenyl]diphenylphosphane}palladium(II) top
Crystal data top
[PdCl2(C20H20NP)2]Z = 1
Mr = 787.98F(000) = 404
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9006 (16) ÅCell parameters from 3426 reflections
b = 9.9815 (15) Åθ = 2.3–28.1°
c = 10.4021 (14) ŵ = 0.81 mm1
α = 86.291 (4)°T = 100 K
β = 69.135 (4)°Plate, yellow
γ = 65.383 (4)°0.18 × 0.1 × 0.04 mm
V = 869.0 (2) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4268 independent reflections
Radiation source: fine-focus sealed tube3545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 2.3°
φ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Bruker; 2004)
k = 1312
Tmin = 0.870, Tmax = 0.966l = 1313
10917 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5716P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.001
S = 1.05Δρmax = 2.04 e Å3
4268 reflectionsΔρmin = 0.72 e Å3
216 parameters
Crystal data top
[PdCl2(C20H20NP)2]γ = 65.383 (4)°
Mr = 787.98V = 869.0 (2) Å3
Triclinic, P1Z = 1
a = 9.9006 (16) ÅMo Kα radiation
b = 9.9815 (15) ŵ = 0.81 mm1
c = 10.4021 (14) ÅT = 100 K
α = 86.291 (4)°0.18 × 0.1 × 0.04 mm
β = 69.135 (4)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker; 2004)
3545 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.966Rint = 0.035
10917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 2.04 e Å3
4268 reflectionsΔρmin = 0.72 e Å3
216 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 50 s/frame. A total of 604 frames were collected with a frame width of 0.5° covering up to θ = 28.28° with 99.0% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.50.50.50.01593 (10)
Cl0.62710 (9)0.24815 (7)0.44885 (7)0.02265 (16)
P0.29234 (9)0.49076 (7)0.69623 (6)0.01476 (15)
C110.2478 (3)0.6133 (3)0.8410 (2)0.0151 (5)
C120.0928 (3)0.7106 (3)0.9190 (3)0.0172 (5)
H120.00750.71630.89360.021*
C130.0600 (3)0.7997 (3)1.0331 (3)0.0172 (5)
H130.0470.86651.08360.021*
C140.1827 (3)0.7926 (3)1.0749 (3)0.0178 (6)
C150.3404 (3)0.6938 (3)0.9942 (3)0.0180 (6)
H150.42660.68571.01950.022*
C160.3700 (3)0.6091 (3)0.8791 (3)0.0186 (6)
H160.47710.54630.82450.022*
N0.1501 (3)0.8796 (3)1.1885 (3)0.0266 (6)
C10.0146 (4)0.9674 (3)1.2752 (3)0.0255 (6)
H1A0.06911.03781.22040.038*
H1B0.01811.02181.35230.038*
H1C0.06790.9021.31130.038*
C20.2712 (4)0.8525 (4)1.2451 (3)0.0322 (7)
H2A0.31020.751.26840.048*
H2B0.2260.92021.32870.048*
H2C0.35970.86891.17680.048*
C210.3219 (3)0.3123 (3)0.7667 (3)0.0170 (5)
C220.3088 (3)0.2961 (3)0.9042 (3)0.0198 (6)
H220.28430.37880.96270.024*
C230.3316 (4)0.1597 (3)0.9563 (3)0.0250 (6)
H230.32190.14961.05020.03*
C240.3682 (4)0.0391 (3)0.8717 (4)0.0287 (7)
H240.38670.05470.90670.034*
C250.3781 (4)0.0548 (3)0.7352 (3)0.0264 (7)
H250.40080.02780.67760.032*
C260.3549 (3)0.1904 (3)0.6835 (3)0.0208 (6)
H260.36160.20050.59020.025*
C310.1021 (3)0.5480 (3)0.6741 (3)0.0171 (5)
C320.0064 (4)0.4905 (3)0.7501 (3)0.0206 (6)
H320.02250.41630.80950.025*
C330.1543 (4)0.5394 (3)0.7404 (3)0.0249 (6)
H330.22560.49790.7920.03*
C340.1998 (4)0.6491 (4)0.6554 (3)0.0275 (7)
H340.30230.68420.64950.033*
C350.0932 (4)0.7064 (4)0.5797 (3)0.0290 (7)
H350.12350.78170.52170.035*
C360.0567 (4)0.6564 (3)0.5868 (3)0.0238 (6)
H360.12890.69570.53230.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.02125 (18)0.01026 (15)0.01176 (14)0.00809 (12)0.00111 (11)0.00095 (10)
Cl0.0274 (4)0.0115 (3)0.0198 (3)0.0082 (3)0.0023 (3)0.0020 (2)
P0.0190 (4)0.0113 (3)0.0110 (3)0.0080 (3)0.0001 (3)0.0002 (2)
C110.0219 (15)0.0096 (12)0.0116 (11)0.0085 (11)0.0013 (10)0.0007 (9)
C120.0181 (14)0.0165 (13)0.0155 (12)0.0089 (12)0.0025 (11)0.0003 (10)
C130.0159 (14)0.0130 (13)0.0156 (12)0.0049 (11)0.0011 (10)0.0024 (10)
C140.0227 (15)0.0111 (13)0.0165 (12)0.0079 (11)0.0025 (11)0.0005 (10)
C150.0171 (14)0.0173 (14)0.0186 (12)0.0079 (12)0.0041 (11)0.0005 (10)
C160.0186 (15)0.0143 (13)0.0177 (12)0.0071 (11)0.0003 (11)0.0001 (10)
N0.0215 (14)0.0294 (14)0.0234 (12)0.0073 (12)0.0032 (11)0.0139 (10)
C10.0247 (17)0.0260 (16)0.0175 (13)0.0061 (13)0.0026 (12)0.0067 (11)
C20.0291 (18)0.039 (2)0.0296 (16)0.0137 (16)0.0112 (14)0.0086 (14)
C210.0169 (14)0.0135 (13)0.0169 (12)0.0085 (11)0.0001 (11)0.0018 (10)
C220.0186 (15)0.0200 (14)0.0195 (13)0.0090 (12)0.0047 (11)0.0037 (11)
C230.0216 (16)0.0255 (16)0.0295 (15)0.0125 (13)0.0096 (13)0.0123 (13)
C240.0210 (16)0.0168 (15)0.0468 (19)0.0091 (13)0.0113 (14)0.0144 (14)
C250.0216 (16)0.0154 (14)0.0377 (17)0.0096 (13)0.0032 (13)0.0012 (12)
C260.0206 (15)0.0155 (14)0.0225 (13)0.0090 (12)0.0016 (12)0.0000 (11)
C310.0227 (15)0.0137 (13)0.0129 (11)0.0073 (11)0.0042 (11)0.0019 (10)
C320.0259 (16)0.0189 (14)0.0155 (12)0.0099 (13)0.0052 (11)0.0024 (10)
C330.0282 (17)0.0269 (16)0.0216 (14)0.0152 (14)0.0069 (13)0.0010 (12)
C340.0292 (18)0.0280 (17)0.0269 (15)0.0102 (14)0.0139 (13)0.0001 (13)
C350.0373 (19)0.0247 (16)0.0285 (15)0.0116 (15)0.0184 (15)0.0074 (13)
C360.0331 (18)0.0219 (15)0.0183 (13)0.0150 (14)0.0077 (12)0.0040 (11)
Geometric parameters (Å, º) top
Pd—Cli2.2906 (7)C2—H2B0.98
Pd—Cl2.2906 (7)C2—H2C0.98
Pd—Pi2.3550 (7)C21—C261.393 (4)
Pd—P2.3550 (7)C21—C221.395 (4)
P—C111.809 (3)C22—C231.391 (4)
P—C311.823 (3)C22—H220.95
P—C211.829 (3)C23—C241.379 (5)
C11—C161.385 (4)C23—H230.95
C11—C121.389 (4)C24—C251.391 (5)
C12—C131.388 (4)C24—H240.95
C12—H120.95C25—C261.382 (4)
C13—C141.404 (4)C25—H250.95
C13—H130.95C26—H260.95
C14—N1.372 (3)C31—C361.398 (4)
C14—C151.416 (4)C31—C321.400 (4)
C15—C161.382 (4)C32—C331.377 (4)
C15—H150.95C32—H320.95
C16—H160.95C33—C341.390 (4)
N—C21.438 (4)C33—H330.95
N—C11.451 (4)C34—C351.384 (5)
C1—H1A0.98C34—H340.95
C1—H1B0.98C35—C361.383 (4)
C1—H1C0.98C35—H350.95
C2—H2A0.98C36—H360.95
Cli—Pd—Cl180.0000 (10)H2A—C2—H2B109.5
Cli—Pd—Pi93.84 (2)N—C2—H2C109.5
Cl—Pd—Pi86.16 (2)H2A—C2—H2C109.5
Cli—Pd—P86.16 (2)H2B—C2—H2C109.5
Cl—Pd—P93.84 (2)C26—C21—C22118.8 (2)
Pi—Pd—P180.0000 (10)C26—C21—P120.1 (2)
C11—P—C31104.37 (12)C22—C21—P121.1 (2)
C11—P—C21104.02 (12)C23—C22—C21120.4 (3)
C31—P—C21102.69 (13)C23—C22—H22119.8
C11—P—Pd111.57 (9)C21—C22—H22119.8
C31—P—Pd114.91 (8)C24—C23—C22120.1 (3)
C21—P—Pd117.81 (9)C24—C23—H23120
C16—C11—C12118.0 (2)C22—C23—H23120
C16—C11—P119.9 (2)C23—C24—C25120.0 (3)
C12—C11—P122.1 (2)C23—C24—H24120
C13—C12—C11121.4 (3)C25—C24—H24120
C13—C12—H12119.3C26—C25—C24120.0 (3)
C11—C12—H12119.3C26—C25—H25120
C12—C13—C14120.9 (3)C24—C25—H25120
C12—C13—H13119.6C25—C26—C21120.7 (3)
C14—C13—H13119.6C25—C26—H26119.7
N—C14—C13120.9 (3)C21—C26—H26119.7
N—C14—C15121.8 (3)C36—C31—C32118.2 (3)
C13—C14—C15117.3 (2)C36—C31—P121.0 (2)
C16—C15—C14120.5 (3)C32—C31—P120.7 (2)
C16—C15—H15119.7C33—C32—C31121.2 (3)
C14—C15—H15119.7C33—C32—H32119.4
C15—C16—C11121.8 (3)C31—C32—H32119.4
C15—C16—H16119.1C32—C33—C34120.3 (3)
C11—C16—H16119.1C32—C33—H33119.8
C14—N—C2120.2 (3)C34—C33—H33119.8
C14—N—C1119.3 (3)C35—C34—C33118.8 (3)
C2—N—C1118.0 (2)C35—C34—H34120.6
N—C1—H1A109.5C33—C34—H34120.6
N—C1—H1B109.5C36—C35—C34121.4 (3)
H1A—C1—H1B109.5C36—C35—H35119.3
N—C1—H1C109.5C34—C35—H35119.3
H1A—C1—H1C109.5C35—C36—C31120.0 (3)
H1B—C1—H1C109.5C35—C36—H36120
N—C2—H2A109.5C31—C36—H36120
N—C2—H2B109.5
Cli—Pd—P—C1144.26 (10)C31—P—C21—C2669.8 (3)
Cl—Pd—P—C11135.74 (10)Pd—P—C21—C2657.5 (3)
Cli—Pd—P—C3174.28 (10)C11—P—C21—C220.3 (3)
Cl—Pd—P—C31105.72 (10)C31—P—C21—C22108.9 (2)
Cli—Pd—P—C21164.46 (11)Pd—P—C21—C22123.7 (2)
Cl—Pd—P—C2115.54 (11)C26—C21—C22—C231.2 (4)
C31—P—C11—C16174.3 (2)P—C21—C22—C23180.0 (2)
C21—P—C11—C1678.4 (2)C21—C22—C23—C240.4 (4)
Pd—P—C11—C1649.7 (2)C22—C23—C24—C251.8 (5)
C31—P—C11—C127.3 (2)C23—C24—C25—C261.5 (5)
C21—P—C11—C12100.1 (2)C24—C25—C26—C210.1 (5)
Pd—P—C11—C12131.93 (19)C22—C21—C26—C251.5 (4)
C16—C11—C12—C131.0 (4)P—C21—C26—C25179.7 (2)
P—C11—C12—C13177.4 (2)C11—P—C31—C3690.4 (2)
C11—C12—C13—C141.0 (4)C21—P—C31—C36161.3 (2)
C12—C13—C14—N179.3 (3)Pd—P—C31—C3632.1 (3)
C12—C13—C14—C151.4 (4)C11—P—C31—C3286.0 (2)
N—C14—C15—C16179.0 (3)C21—P—C31—C3222.3 (2)
C13—C14—C15—C160.2 (4)Pd—P—C31—C32151.50 (19)
C14—C15—C16—C112.3 (4)C36—C31—C32—C330.4 (4)
C12—C11—C16—C152.7 (4)P—C31—C32—C33176.1 (2)
P—C11—C16—C15175.8 (2)C31—C32—C33—C340.8 (4)
C13—C14—N—C2168.6 (3)C32—C33—C34—C350.9 (5)
C15—C14—N—C212.2 (4)C33—C34—C35—C360.2 (5)
C13—C14—N—C17.0 (4)C34—C35—C36—C311.4 (5)
C15—C14—N—C1173.8 (3)C32—C31—C36—C351.5 (4)
C11—P—C21—C26178.4 (2)P—C31—C36—C35175.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···Clii0.952.793.710 (3)163
C26—H26···Cl0.952.743.159 (3)108
C36—H36···Cli0.952.773.529 (3)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C20H20NP)2]
Mr787.98
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.9006 (16), 9.9815 (15), 10.4021 (14)
α, β, γ (°)86.291 (4), 69.135 (4), 65.383 (4)
V3)869.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.18 × 0.1 × 0.04
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker; 2004)
Tmin, Tmax0.870, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
10917, 4268, 3545
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.05
No. of reflections4268
No. of parameters216
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.04, 0.72

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···Cli0.952.793.710 (3)163.2
C26—H26···Cl0.952.743.159 (3)107.7
C36—H36···Clii0.952.773.529 (3)137.6
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrow, R. A., Farrar, D. H. & Honeyman, C. H. (1994). Acta Cryst. C50, 681–683.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDiMeglio, C. M., Luck, L. A., Rithner, C. D., Rheingold, A. L., Elcesser, W. L., Hubbard, J. L. & Bushweller, C. H. (1990). J. Phys. Chem. 94, 6255–6263.  CSD CrossRef CAS Web of Science Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationEdwards, D. A., Mahon, M. F. & Paget, T. J. (1998). Polyhedron, 17, 4121–4130.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrushin, V. V., Bensimon, C. & Alper, H. (1994). Inorg. Chem. 33, 4804–4806.  CSD CrossRef CAS Web of Science Google Scholar
First citationKitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015–1017.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeznoff, D. B., Rancurel, C., Sutter, J., Rettig, S. J., Pink, M. & Kahn, O. (1999). Organometallics, 18, 5097–5102.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44–m45.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeijboom, R., Muller, A. & Roodt, A. (2006b). Acta Cryst. E62, m1603–m1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeijboom, R., Muller, A., Roodt, A. & Janse van Rensburg, J. M. (2006a). Acta Cryst. E62, m894–m896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeijboom, R. & Omondi, B. (2010). Acta Cryst. B66. Submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey, USA: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds