metal-organic compounds
trans-Dichloridobis{[4-(dimethylamino)phenyl]diphenylphosphane}palladium(II)
aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za
The title compound, trans-[PdCl2{PPh2(4-Me2NC6H4)}2], crystallizes with the Pd atom on a center of symmetry, resulting in a distorted trans-PdCl2P2 square-planar geometry. The Pd—P and Pd—Cl bond lengths are 2.3550 (7) and 2.2906 (7) Å, respectively. Some weak interactions are observed between the aromatic rings of adjacent molecules, with an interplanar distance between two π-stacked rings of 3.505 (3) Å. Intra- and intermolecular C—H⋯Cl hydrogen bonds also occur.
Related literature
For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Burrow et al. (1994); DiMeglio et al. (1990); Edwards et al. (1998); Ferguson et al. (1982); Grushin et al. (1994); Kitano et al. (1983); Leznoff et al. (1999); Meij et al. (2003); Meijboom et al. (2006a,b); Meijboom & Omondi (2010). For the synthesis of the starting materials, see: Drew & Doyle (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810042595/pk2275sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810042595/pk2275Isup2.hkl
Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). A solution of diphenyl(4-dimethylaminophenyl)phosphine (0.2 mmol) in dichloromethane (2.0 cm3) was added to a solution of [PdCl2(COD)] (0.1 mmol) in dichloromethane (3.0 cm3). Slow evaporation of the solvent gave yellow crystals of the title compound.
The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density
Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained.
[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{PPh2(4-Me2NC6H4)}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the are close to the ideal value of 90°, with P—Pd—Cl = 93.84 (2) and P—Pd—Cli = 86.16 (2)°. As required by the the P—Pd—Pi and Cl—Pd—Cli angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.
The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. The title compound, having a Pd—Cl bond length of 2.2955 (13) Å and a Pd—P bond length of 2.3398 (12) Å, fits well into the typical range for complexes of this kind. It is notable that the title compound crystallized as an unsolvated complex, as these type of PdII complexes tend to crystallize as solvates (Meijboom & Omondi, 2010).
For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Burrow et al. (1994); DiMeglio et al. (1990); Edwards et al. (1998); Ferguson et al. (1982); Grushin et al. (1994); Kitano et al. (1983); Leznoff et al. (1999); Meij et al. (2003); Meijboom et al. (2006a,b); Meijboom & Omondi (2010). For the synthesis of the starting materials see: Drew & Doyle (1990).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).[PdCl2(C20H20NP)2] | Z = 1 |
Mr = 787.98 | F(000) = 404 |
Triclinic, P1 | Dx = 1.506 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.9006 (16) Å | Cell parameters from 3426 reflections |
b = 9.9815 (15) Å | θ = 2.3–28.1° |
c = 10.4021 (14) Å | µ = 0.81 mm−1 |
α = 86.291 (4)° | T = 100 K |
β = 69.135 (4)° | Plate, yellow |
γ = 65.383 (4)° | 0.18 × 0.1 × 0.04 mm |
V = 869.0 (2) Å3 |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 4268 independent reflections |
Radiation source: fine-focus sealed tube | 3545 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 8.4 pixels mm-1 | θmax = 28.3°, θmin = 2.3° |
φ and ω scans | h = −13→12 |
Absorption correction: multi-scan (SADABS; Bruker; 2004) | k = −13→12 |
Tmin = 0.870, Tmax = 0.966 | l = −13→13 |
10917 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5716P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.096 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 2.04 e Å−3 |
4268 reflections | Δρmin = −0.72 e Å−3 |
216 parameters |
[PdCl2(C20H20NP)2] | γ = 65.383 (4)° |
Mr = 787.98 | V = 869.0 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.9006 (16) Å | Mo Kα radiation |
b = 9.9815 (15) Å | µ = 0.81 mm−1 |
c = 10.4021 (14) Å | T = 100 K |
α = 86.291 (4)° | 0.18 × 0.1 × 0.04 mm |
β = 69.135 (4)° |
Bruker X8 APEXII 4K Kappa CCD diffractometer | 4268 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker; 2004) | 3545 reflections with I > 2σ(I) |
Tmin = 0.870, Tmax = 0.966 | Rint = 0.035 |
10917 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.05 | Δρmax = 2.04 e Å−3 |
4268 reflections | Δρmin = −0.72 e Å−3 |
216 parameters |
Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 50 s/frame. A total of 604 frames were collected with a frame width of 0.5° covering up to θ = 28.28° with 99.0% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd | 0.5 | 0.5 | 0.5 | 0.01593 (10) | |
Cl | 0.62710 (9) | 0.24815 (7) | 0.44885 (7) | 0.02265 (16) | |
P | 0.29234 (9) | 0.49076 (7) | 0.69623 (6) | 0.01476 (15) | |
C11 | 0.2478 (3) | 0.6133 (3) | 0.8410 (2) | 0.0151 (5) | |
C12 | 0.0928 (3) | 0.7106 (3) | 0.9190 (3) | 0.0172 (5) | |
H12 | 0.0075 | 0.7163 | 0.8936 | 0.021* | |
C13 | 0.0600 (3) | 0.7997 (3) | 1.0331 (3) | 0.0172 (5) | |
H13 | −0.047 | 0.8665 | 1.0836 | 0.021* | |
C14 | 0.1827 (3) | 0.7926 (3) | 1.0749 (3) | 0.0178 (6) | |
C15 | 0.3404 (3) | 0.6938 (3) | 0.9942 (3) | 0.0180 (6) | |
H15 | 0.4266 | 0.6857 | 1.0195 | 0.022* | |
C16 | 0.3700 (3) | 0.6091 (3) | 0.8791 (3) | 0.0186 (6) | |
H16 | 0.4771 | 0.5463 | 0.8245 | 0.022* | |
N | 0.1501 (3) | 0.8796 (3) | 1.1885 (3) | 0.0266 (6) | |
C1 | −0.0146 (4) | 0.9674 (3) | 1.2752 (3) | 0.0255 (6) | |
H1A | −0.0691 | 1.0378 | 1.2204 | 0.038* | |
H1B | −0.0181 | 1.0218 | 1.3523 | 0.038* | |
H1C | −0.0679 | 0.902 | 1.3113 | 0.038* | |
C2 | 0.2712 (4) | 0.8525 (4) | 1.2451 (3) | 0.0322 (7) | |
H2A | 0.3102 | 0.75 | 1.2684 | 0.048* | |
H2B | 0.226 | 0.9202 | 1.3287 | 0.048* | |
H2C | 0.3597 | 0.8689 | 1.1768 | 0.048* | |
C21 | 0.3219 (3) | 0.3123 (3) | 0.7667 (3) | 0.0170 (5) | |
C22 | 0.3088 (3) | 0.2961 (3) | 0.9042 (3) | 0.0198 (6) | |
H22 | 0.2843 | 0.3788 | 0.9627 | 0.024* | |
C23 | 0.3316 (4) | 0.1597 (3) | 0.9563 (3) | 0.0250 (6) | |
H23 | 0.3219 | 0.1496 | 1.0502 | 0.03* | |
C24 | 0.3682 (4) | 0.0391 (3) | 0.8717 (4) | 0.0287 (7) | |
H24 | 0.3867 | −0.0547 | 0.9067 | 0.034* | |
C25 | 0.3781 (4) | 0.0548 (3) | 0.7352 (3) | 0.0264 (7) | |
H25 | 0.4008 | −0.0278 | 0.6776 | 0.032* | |
C26 | 0.3549 (3) | 0.1904 (3) | 0.6835 (3) | 0.0208 (6) | |
H26 | 0.3616 | 0.2005 | 0.5902 | 0.025* | |
C31 | 0.1021 (3) | 0.5480 (3) | 0.6741 (3) | 0.0171 (5) | |
C32 | −0.0064 (4) | 0.4905 (3) | 0.7501 (3) | 0.0206 (6) | |
H32 | 0.0225 | 0.4163 | 0.8095 | 0.025* | |
C33 | −0.1543 (4) | 0.5394 (3) | 0.7404 (3) | 0.0249 (6) | |
H33 | −0.2256 | 0.4979 | 0.792 | 0.03* | |
C34 | −0.1998 (4) | 0.6491 (4) | 0.6554 (3) | 0.0275 (7) | |
H34 | −0.3023 | 0.6842 | 0.6495 | 0.033* | |
C35 | −0.0932 (4) | 0.7064 (4) | 0.5797 (3) | 0.0290 (7) | |
H35 | −0.1235 | 0.7817 | 0.5217 | 0.035* | |
C36 | 0.0567 (4) | 0.6564 (3) | 0.5868 (3) | 0.0238 (6) | |
H36 | 0.1289 | 0.6957 | 0.5323 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd | 0.02125 (18) | 0.01026 (15) | 0.01176 (14) | −0.00809 (12) | 0.00111 (11) | −0.00095 (10) |
Cl | 0.0274 (4) | 0.0115 (3) | 0.0198 (3) | −0.0082 (3) | 0.0023 (3) | −0.0020 (2) |
P | 0.0190 (4) | 0.0113 (3) | 0.0110 (3) | −0.0080 (3) | −0.0001 (3) | −0.0002 (2) |
C11 | 0.0219 (15) | 0.0096 (12) | 0.0116 (11) | −0.0085 (11) | −0.0013 (10) | 0.0007 (9) |
C12 | 0.0181 (14) | 0.0165 (13) | 0.0155 (12) | −0.0089 (12) | −0.0025 (11) | 0.0003 (10) |
C13 | 0.0159 (14) | 0.0130 (13) | 0.0156 (12) | −0.0049 (11) | 0.0011 (10) | −0.0024 (10) |
C14 | 0.0227 (15) | 0.0111 (13) | 0.0165 (12) | −0.0079 (11) | −0.0025 (11) | −0.0005 (10) |
C15 | 0.0171 (14) | 0.0173 (14) | 0.0186 (12) | −0.0079 (12) | −0.0041 (11) | −0.0005 (10) |
C16 | 0.0186 (15) | 0.0143 (13) | 0.0177 (12) | −0.0071 (11) | −0.0003 (11) | 0.0001 (10) |
N | 0.0215 (14) | 0.0294 (14) | 0.0234 (12) | −0.0073 (12) | −0.0032 (11) | −0.0139 (10) |
C1 | 0.0247 (17) | 0.0260 (16) | 0.0175 (13) | −0.0061 (13) | −0.0026 (12) | −0.0067 (11) |
C2 | 0.0291 (18) | 0.039 (2) | 0.0296 (16) | −0.0137 (16) | −0.0112 (14) | −0.0086 (14) |
C21 | 0.0169 (14) | 0.0135 (13) | 0.0169 (12) | −0.0085 (11) | 0.0001 (11) | 0.0018 (10) |
C22 | 0.0186 (15) | 0.0200 (14) | 0.0195 (13) | −0.0090 (12) | −0.0047 (11) | 0.0037 (11) |
C23 | 0.0216 (16) | 0.0255 (16) | 0.0295 (15) | −0.0125 (13) | −0.0096 (13) | 0.0123 (13) |
C24 | 0.0210 (16) | 0.0168 (15) | 0.0468 (19) | −0.0091 (13) | −0.0113 (14) | 0.0144 (14) |
C25 | 0.0216 (16) | 0.0154 (14) | 0.0377 (17) | −0.0096 (13) | −0.0032 (13) | −0.0012 (12) |
C26 | 0.0206 (15) | 0.0155 (14) | 0.0225 (13) | −0.0090 (12) | −0.0016 (12) | 0.0000 (11) |
C31 | 0.0227 (15) | 0.0137 (13) | 0.0129 (11) | −0.0073 (11) | −0.0042 (11) | −0.0019 (10) |
C32 | 0.0259 (16) | 0.0189 (14) | 0.0155 (12) | −0.0099 (13) | −0.0052 (11) | 0.0024 (10) |
C33 | 0.0282 (17) | 0.0269 (16) | 0.0216 (14) | −0.0152 (14) | −0.0069 (13) | 0.0010 (12) |
C34 | 0.0292 (18) | 0.0280 (17) | 0.0269 (15) | −0.0102 (14) | −0.0139 (13) | −0.0001 (13) |
C35 | 0.0373 (19) | 0.0247 (16) | 0.0285 (15) | −0.0116 (15) | −0.0184 (15) | 0.0074 (13) |
C36 | 0.0331 (18) | 0.0219 (15) | 0.0183 (13) | −0.0150 (14) | −0.0077 (12) | 0.0040 (11) |
Pd—Cli | 2.2906 (7) | C2—H2B | 0.98 |
Pd—Cl | 2.2906 (7) | C2—H2C | 0.98 |
Pd—Pi | 2.3550 (7) | C21—C26 | 1.393 (4) |
Pd—P | 2.3550 (7) | C21—C22 | 1.395 (4) |
P—C11 | 1.809 (3) | C22—C23 | 1.391 (4) |
P—C31 | 1.823 (3) | C22—H22 | 0.95 |
P—C21 | 1.829 (3) | C23—C24 | 1.379 (5) |
C11—C16 | 1.385 (4) | C23—H23 | 0.95 |
C11—C12 | 1.389 (4) | C24—C25 | 1.391 (5) |
C12—C13 | 1.388 (4) | C24—H24 | 0.95 |
C12—H12 | 0.95 | C25—C26 | 1.382 (4) |
C13—C14 | 1.404 (4) | C25—H25 | 0.95 |
C13—H13 | 0.95 | C26—H26 | 0.95 |
C14—N | 1.372 (3) | C31—C36 | 1.398 (4) |
C14—C15 | 1.416 (4) | C31—C32 | 1.400 (4) |
C15—C16 | 1.382 (4) | C32—C33 | 1.377 (4) |
C15—H15 | 0.95 | C32—H32 | 0.95 |
C16—H16 | 0.95 | C33—C34 | 1.390 (4) |
N—C2 | 1.438 (4) | C33—H33 | 0.95 |
N—C1 | 1.451 (4) | C34—C35 | 1.384 (5) |
C1—H1A | 0.98 | C34—H34 | 0.95 |
C1—H1B | 0.98 | C35—C36 | 1.383 (4) |
C1—H1C | 0.98 | C35—H35 | 0.95 |
C2—H2A | 0.98 | C36—H36 | 0.95 |
Cli—Pd—Cl | 180.0000 (10) | H2A—C2—H2B | 109.5 |
Cli—Pd—Pi | 93.84 (2) | N—C2—H2C | 109.5 |
Cl—Pd—Pi | 86.16 (2) | H2A—C2—H2C | 109.5 |
Cli—Pd—P | 86.16 (2) | H2B—C2—H2C | 109.5 |
Cl—Pd—P | 93.84 (2) | C26—C21—C22 | 118.8 (2) |
Pi—Pd—P | 180.0000 (10) | C26—C21—P | 120.1 (2) |
C11—P—C31 | 104.37 (12) | C22—C21—P | 121.1 (2) |
C11—P—C21 | 104.02 (12) | C23—C22—C21 | 120.4 (3) |
C31—P—C21 | 102.69 (13) | C23—C22—H22 | 119.8 |
C11—P—Pd | 111.57 (9) | C21—C22—H22 | 119.8 |
C31—P—Pd | 114.91 (8) | C24—C23—C22 | 120.1 (3) |
C21—P—Pd | 117.81 (9) | C24—C23—H23 | 120 |
C16—C11—C12 | 118.0 (2) | C22—C23—H23 | 120 |
C16—C11—P | 119.9 (2) | C23—C24—C25 | 120.0 (3) |
C12—C11—P | 122.1 (2) | C23—C24—H24 | 120 |
C13—C12—C11 | 121.4 (3) | C25—C24—H24 | 120 |
C13—C12—H12 | 119.3 | C26—C25—C24 | 120.0 (3) |
C11—C12—H12 | 119.3 | C26—C25—H25 | 120 |
C12—C13—C14 | 120.9 (3) | C24—C25—H25 | 120 |
C12—C13—H13 | 119.6 | C25—C26—C21 | 120.7 (3) |
C14—C13—H13 | 119.6 | C25—C26—H26 | 119.7 |
N—C14—C13 | 120.9 (3) | C21—C26—H26 | 119.7 |
N—C14—C15 | 121.8 (3) | C36—C31—C32 | 118.2 (3) |
C13—C14—C15 | 117.3 (2) | C36—C31—P | 121.0 (2) |
C16—C15—C14 | 120.5 (3) | C32—C31—P | 120.7 (2) |
C16—C15—H15 | 119.7 | C33—C32—C31 | 121.2 (3) |
C14—C15—H15 | 119.7 | C33—C32—H32 | 119.4 |
C15—C16—C11 | 121.8 (3) | C31—C32—H32 | 119.4 |
C15—C16—H16 | 119.1 | C32—C33—C34 | 120.3 (3) |
C11—C16—H16 | 119.1 | C32—C33—H33 | 119.8 |
C14—N—C2 | 120.2 (3) | C34—C33—H33 | 119.8 |
C14—N—C1 | 119.3 (3) | C35—C34—C33 | 118.8 (3) |
C2—N—C1 | 118.0 (2) | C35—C34—H34 | 120.6 |
N—C1—H1A | 109.5 | C33—C34—H34 | 120.6 |
N—C1—H1B | 109.5 | C36—C35—C34 | 121.4 (3) |
H1A—C1—H1B | 109.5 | C36—C35—H35 | 119.3 |
N—C1—H1C | 109.5 | C34—C35—H35 | 119.3 |
H1A—C1—H1C | 109.5 | C35—C36—C31 | 120.0 (3) |
H1B—C1—H1C | 109.5 | C35—C36—H36 | 120 |
N—C2—H2A | 109.5 | C31—C36—H36 | 120 |
N—C2—H2B | 109.5 | ||
Cli—Pd—P—C11 | −44.26 (10) | C31—P—C21—C26 | 69.8 (3) |
Cl—Pd—P—C11 | 135.74 (10) | Pd—P—C21—C26 | −57.5 (3) |
Cli—Pd—P—C31 | 74.28 (10) | C11—P—C21—C22 | −0.3 (3) |
Cl—Pd—P—C31 | −105.72 (10) | C31—P—C21—C22 | −108.9 (2) |
Cli—Pd—P—C21 | −164.46 (11) | Pd—P—C21—C22 | 123.7 (2) |
Cl—Pd—P—C21 | 15.54 (11) | C26—C21—C22—C23 | 1.2 (4) |
C31—P—C11—C16 | −174.3 (2) | P—C21—C22—C23 | 180.0 (2) |
C21—P—C11—C16 | 78.4 (2) | C21—C22—C23—C24 | 0.4 (4) |
Pd—P—C11—C16 | −49.7 (2) | C22—C23—C24—C25 | −1.8 (5) |
C31—P—C11—C12 | 7.3 (2) | C23—C24—C25—C26 | 1.5 (5) |
C21—P—C11—C12 | −100.1 (2) | C24—C25—C26—C21 | 0.1 (5) |
Pd—P—C11—C12 | 131.93 (19) | C22—C21—C26—C25 | −1.5 (4) |
C16—C11—C12—C13 | −1.0 (4) | P—C21—C26—C25 | 179.7 (2) |
P—C11—C12—C13 | 177.4 (2) | C11—P—C31—C36 | 90.4 (2) |
C11—C12—C13—C14 | −1.0 (4) | C21—P—C31—C36 | −161.3 (2) |
C12—C13—C14—N | −179.3 (3) | Pd—P—C31—C36 | −32.1 (3) |
C12—C13—C14—C15 | 1.4 (4) | C11—P—C31—C32 | −86.0 (2) |
N—C14—C15—C16 | −179.0 (3) | C21—P—C31—C32 | 22.3 (2) |
C13—C14—C15—C16 | 0.2 (4) | Pd—P—C31—C32 | 151.50 (19) |
C14—C15—C16—C11 | −2.3 (4) | C36—C31—C32—C33 | −0.4 (4) |
C12—C11—C16—C15 | 2.7 (4) | P—C31—C32—C33 | 176.1 (2) |
P—C11—C16—C15 | −175.8 (2) | C31—C32—C33—C34 | −0.8 (4) |
C13—C14—N—C2 | 168.6 (3) | C32—C33—C34—C35 | 0.9 (5) |
C15—C14—N—C2 | −12.2 (4) | C33—C34—C35—C36 | 0.2 (5) |
C13—C14—N—C1 | 7.0 (4) | C34—C35—C36—C31 | −1.4 (5) |
C15—C14—N—C1 | −173.8 (3) | C32—C31—C36—C35 | 1.5 (4) |
C11—P—C21—C26 | 178.4 (2) | P—C31—C36—C35 | −175.0 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25···Clii | 0.95 | 2.79 | 3.710 (3) | 163 |
C26—H26···Cl | 0.95 | 2.74 | 3.159 (3) | 108 |
C36—H36···Cli | 0.95 | 2.77 | 3.529 (3) | 138 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [PdCl2(C20H20NP)2] |
Mr | 787.98 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.9006 (16), 9.9815 (15), 10.4021 (14) |
α, β, γ (°) | 86.291 (4), 69.135 (4), 65.383 (4) |
V (Å3) | 869.0 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.18 × 0.1 × 0.04 |
Data collection | |
Diffractometer | Bruker X8 APEXII 4K Kappa CCD |
Absorption correction | Multi-scan (SADABS; Bruker; 2004) |
Tmin, Tmax | 0.870, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10917, 4268, 3545 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.096, 1.05 |
No. of reflections | 4268 |
No. of parameters | 216 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.04, −0.72 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25···Cli | 0.95 | 2.79 | 3.710 (3) | 163.2 |
C26—H26···Cl | 0.95 | 2.74 | 3.159 (3) | 107.7 |
C36—H36···Clii | 0.95 | 2.77 | 3.529 (3) | 137.6 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burrow, R. A., Farrar, D. H. & Honeyman, C. H. (1994). Acta Cryst. C50, 681–683. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
DiMeglio, C. M., Luck, L. A., Rithner, C. D., Rheingold, A. L., Elcesser, W. L., Hubbard, J. L. & Bushweller, C. H. (1990). J. Phys. Chem. 94, 6255–6263. CSD CrossRef CAS Web of Science Google Scholar
Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349. CrossRef CAS Web of Science Google Scholar
Edwards, D. A., Mahon, M. F. & Paget, T. J. (1998). Polyhedron, 17, 4121–4130. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Grushin, V. V., Bensimon, C. & Alper, H. (1994). Inorg. Chem. 33, 4804–4806. CSD CrossRef CAS Web of Science Google Scholar
Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015–1017. CSD CrossRef CAS IUCr Journals Google Scholar
Leznoff, D. B., Rancurel, C., Sutter, J., Rettig, S. J., Pink, M. & Kahn, O. (1999). Organometallics, 18, 5097–5102. Web of Science CSD CrossRef CAS Google Scholar
Meij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44–m45. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meijboom, R., Muller, A. & Roodt, A. (2006b). Acta Cryst. E62, m1603–m1605. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meijboom, R., Muller, A., Roodt, A. & Janse van Rensburg, J. M. (2006a). Acta Cryst. E62, m894–m896. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meijboom, R. & Omondi, B. (2010). Acta Cryst. B66. Submitted. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey, USA: Prentice Hall. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound were obtained.
[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{PPh2(4-Me2NC6H4)}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 93.84 (2) and P—Pd—Cli = 86.16 (2)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.
The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. The title compound, having a Pd—Cl bond length of 2.2955 (13) Å and a Pd—P bond length of 2.3398 (12) Å, fits well into the typical range for complexes of this kind. It is notable that the title compound crystallized as an unsolvated complex, as these type of PdII complexes tend to crystallize as solvates (Meijboom & Omondi, 2010).