metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-thio­cyanato-κ2N:S;κ2S:N-bis­­[bis­­(2-methyl-1H-benzimidazole-κN3)(thio­cyanato-κN)cadmium(II)]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 12 October 2010; accepted 19 October 2010; online 23 October 2010)

The title compound, [Cd2(NCS)4(C8H8N2)4], is a centrosymmetric dinuclear cadmium(II) complex in which each two metal ions are linked by a pair of thio­cyanate N:S-bridges. Two 2-methyl­benzimidazole N-atom donors and one terminal thio­cyanate N atom complete a highly distorted square-pyramidal geometry around the Cd atom. In the crystal structure, two N—H⋯S hydrogen-bonding inter­actions occur, resulting in a three-dimensional polymeric structure. The apical 2-methyl­benzimidazole ring and its symmetry-related counterpart are arranged in an anti­parallel manner with a centroid–centroid separation of 3.6050 (14) Å, indicative of a ππ inter­action.

Related literature

For cadmium complexes having a [Cd2(μ2-NCS)2(NCS)2] unit, see: Gou et al. (2008[Gou, L., Wu, Q. R., Hu, H. M., Qin, T., Xue, G. L., Yang, M. L. & Tang, Z. X. (2008). Polyhedron, 27, 1517-1526.]); Govor et al. (2008[Govor, E. V., Lysenko, A. B., Domasevitch, K. V., Rusanov, E. B. & Chernega, A. N. (2008). Acta Cryst. C64, m117-m120.]); Shi et al. (2004[Shi, Q., Xu, L. J., Ji, J. X., Li, Y. M., Wang, R. H., Zhou, Z. Y., Cao, R., Hong, M. C. & Chan, A. S. C. (2004). Inorg. Chem. Commun. 7, 1254-1257.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(NCS)4(C8H8N2)4]

  • Mr = 985.78

  • Monoclinic, C 2/c

  • a = 18.1519 (11) Å

  • b = 10.2098 (6) Å

  • c = 21.7385 (13) Å

  • β = 97.864 (1)°

  • V = 3990.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 100 K

  • 0.38 × 0.20 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.634, Tmax = 0.847

  • 9361 measured reflections

  • 3593 independent reflections

  • 3213 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.047

  • S = 1.03

  • 3593 reflections

  • 253 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.86 (2) 2.45 (2) 3.273 (2) 163 (2)
N4—H4N⋯S1ii 0.84 (2) 2.48 (2) 3.281 (2) 159 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is a mixed-ligand cadmium(II) complex with thiocyanate and 2-methylbenzimidazole. The thiocyanate ions act as either bridging or terminal ligands. The pairs of the former, link each two metal ions into a centrosymmetric dinuclear complex. The resulting eight-membered Cd22-NCS)2 ring is almost planar (r.m.s = 0.015), unlike the chair conformation observed in most of the similar structures (Gou et al. 2008; Govor et al. 2008; Shi et al. 2004). The terminal thiocyanate ligand forms two types of hydrogen bond with the amine hydrogen atoms (Fig. 2), leading to an infinite three-dimensional network. Two 2-methylbenzimidazole ligands, one in the apical position and the other one equatorially positioned, complete the penta-coordinate cadmium(II) complex in a highly distorted square pyramidal geometry (τ = 0.26). The apical 2-methylbenzimidazole ring and its symmetry related counterpart at (-x+1, -y, -z+1) are arranged in an antiparallel manner with separation of 3.6050 (14) Å, indicative of a π-π interaction.

Related literature top

For cadmium(II) complexes having a [Cd22-NCS)2(NCS)2] unit, see: Gou et al. (2008); Govor et al. (2008); Shi et al. (2004).

Experimental top

An ethanolic solution (15 ml) of 2-methylbenzimidazole (1.32 g, 10 mmol) was added to an aqueous solution (20 ml) of CdCl2. H2O (0.5 g, 2.5 mmol) followed by addition of an aqueous solution (15 ml) of KSCN (0.49 g, 5 mmol). The mixture was heated in a water bath for 30 min with constant stirring. The resulting precipitate was filtered off and recrystallized from ethanol to give the colorless crystals of the title cadmium(II) complex.

Refinement top

The C-bound hydrogen atoms were placed in idealized locations (C—H = 0.95–0.98 Å) and refined as riding on their parent carbon atoms. The N-bound hydrogen atoms were located in a difference Fourier map and were refined with distance restraints of N—H 0.88 (2) Å. U(H) were set to either 1.2 Ueq of the parent atom, or 1.5 Ueq(C) for methyl H. An additional rigid-bond type restraint (DELU in SHELXL97) was placed on the displacement parameters of S1 and C17.

Structure description top

The title compound is a mixed-ligand cadmium(II) complex with thiocyanate and 2-methylbenzimidazole. The thiocyanate ions act as either bridging or terminal ligands. The pairs of the former, link each two metal ions into a centrosymmetric dinuclear complex. The resulting eight-membered Cd22-NCS)2 ring is almost planar (r.m.s = 0.015), unlike the chair conformation observed in most of the similar structures (Gou et al. 2008; Govor et al. 2008; Shi et al. 2004). The terminal thiocyanate ligand forms two types of hydrogen bond with the amine hydrogen atoms (Fig. 2), leading to an infinite three-dimensional network. Two 2-methylbenzimidazole ligands, one in the apical position and the other one equatorially positioned, complete the penta-coordinate cadmium(II) complex in a highly distorted square pyramidal geometry (τ = 0.26). The apical 2-methylbenzimidazole ring and its symmetry related counterpart at (-x+1, -y, -z+1) are arranged in an antiparallel manner with separation of 3.6050 (14) Å, indicative of a π-π interaction.

For cadmium(II) complexes having a [Cd22-NCS)2(NCS)2] unit, see: Gou et al. (2008); Govor et al. (2008); Shi et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are generated by the symmetry operation (–x + 1, –y + 1, –z + 1).
[Figure 2] Fig. 2. A view of the hydrogen bonding interactions (dashed lines). C-bound hydrogen atoms have been omitted for clarity. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1/2, y + 1/2, z; (iii) -x + 3/2, -y + 3/2, -z + 1/2; (iv) -x+3/2, y - 1/2, - z+3/2.
Di-µ-thiocyanato-κ2N:S;κ2S:N- bis[bis(2-methyl-1H-benzimidazole-κN3)(thiocyanato- κN)cadmium(II)] top
Crystal data top
[Cd2(NCS)4(C8H8N2)4]F(000) = 1968
Mr = 985.78Dx = 1.641 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4666 reflections
a = 18.1519 (11) Åθ = 2.3–30.1°
b = 10.2098 (6) ŵ = 1.32 mm1
c = 21.7385 (13) ÅT = 100 K
β = 97.864 (1)°Block, colorless
V = 3990.8 (4) Å30.38 × 0.20 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3593 independent reflections
Radiation source: fine-focus sealed tube3213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.634, Tmax = 0.847k = 128
9361 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0169P)2 + 6.0676P]
where P = (Fo2 + 2Fc2)/3
3593 reflections(Δ/σ)max = 0.003
253 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cd2(NCS)4(C8H8N2)4]V = 3990.8 (4) Å3
Mr = 985.78Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.1519 (11) ŵ = 1.32 mm1
b = 10.2098 (6) ÅT = 100 K
c = 21.7385 (13) Å0.38 × 0.20 × 0.13 mm
β = 97.864 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3593 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3213 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.847Rint = 0.022
9361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
3593 reflectionsΔρmin = 0.31 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.611050 (9)0.354819 (16)0.590885 (7)0.01561 (6)
S10.88100 (3)0.33657 (6)0.67126 (3)0.02608 (15)
S20.63546 (3)0.42113 (7)0.47897 (3)0.02741 (16)
N10.62322 (10)0.41831 (19)0.69141 (9)0.0181 (4)
N20.63781 (11)0.5391 (2)0.77688 (9)0.0211 (5)
H2N0.6364 (14)0.609 (2)0.7982 (11)0.025*
N30.57608 (10)0.14637 (19)0.58946 (8)0.0166 (4)
N40.50684 (11)0.0294 (2)0.59628 (9)0.0193 (4)
H4N0.4715 (12)0.075 (2)0.6062 (11)0.023*
N50.73824 (11)0.3290 (2)0.60377 (10)0.0258 (5)
N60.49556 (11)0.4528 (2)0.57293 (9)0.0227 (5)
C10.57531 (15)0.6482 (2)0.68162 (12)0.0279 (6)
H1A0.58520.64620.63840.042*
H1B0.59530.72930.70140.042*
H1C0.52150.64440.68260.042*
C20.61150 (12)0.5342 (2)0.71553 (11)0.0195 (5)
C30.67023 (13)0.4198 (2)0.79411 (11)0.0199 (5)
C40.70777 (13)0.3741 (3)0.85017 (11)0.0256 (6)
H40.71570.42770.88620.031*
C50.73278 (13)0.2465 (3)0.85032 (11)0.0267 (6)
H50.75900.21150.88750.032*
C60.72085 (13)0.1674 (3)0.79777 (11)0.0244 (6)
H60.73760.07910.80040.029*
C70.68519 (13)0.2141 (2)0.74170 (11)0.0207 (5)
H70.67820.16060.70560.025*
C80.66004 (12)0.3433 (2)0.74051 (10)0.0180 (5)
C90.47424 (14)0.1670 (2)0.65538 (11)0.0235 (6)
H9A0.50700.19800.69210.035*
H9B0.43690.10740.66830.035*
H9C0.44930.24190.63330.035*
C100.51909 (12)0.0964 (2)0.61350 (10)0.0180 (5)
C110.55900 (12)0.0656 (2)0.55862 (10)0.0179 (5)
C120.57193 (13)0.1818 (2)0.52880 (11)0.0215 (5)
H120.54170.25700.53160.026*
C130.63096 (14)0.1828 (2)0.49486 (11)0.0224 (5)
H130.64210.26100.47430.027*
C140.67477 (13)0.0712 (2)0.49010 (11)0.0221 (5)
H140.71460.07520.46600.027*
C150.66144 (13)0.0441 (2)0.51961 (10)0.0191 (5)
H150.69140.11940.51640.023*
C160.60252 (12)0.0460 (2)0.55436 (10)0.0162 (5)
C170.79736 (13)0.3327 (2)0.63127 (11)0.0190 (5)
C180.55777 (13)0.4945 (2)0.44892 (10)0.0181 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01419 (9)0.01624 (10)0.01592 (9)0.00017 (7)0.00037 (6)0.00061 (7)
S10.0177 (3)0.0296 (4)0.0292 (3)0.0058 (3)0.0026 (3)0.0120 (3)
S20.0179 (3)0.0383 (4)0.0273 (3)0.0099 (3)0.0080 (3)0.0139 (3)
N10.0166 (10)0.0187 (11)0.0187 (10)0.0004 (8)0.0009 (8)0.0010 (9)
N20.0222 (11)0.0219 (12)0.0193 (11)0.0006 (9)0.0026 (9)0.0070 (9)
N30.0148 (9)0.0179 (10)0.0169 (9)0.0008 (8)0.0016 (8)0.0001 (8)
N40.0176 (10)0.0214 (11)0.0190 (10)0.0059 (8)0.0024 (8)0.0023 (9)
N50.0183 (11)0.0351 (13)0.0245 (11)0.0003 (9)0.0043 (9)0.0033 (10)
N60.0210 (11)0.0283 (12)0.0188 (10)0.0040 (9)0.0031 (9)0.0008 (9)
C10.0305 (14)0.0229 (14)0.0288 (13)0.0028 (11)0.0010 (12)0.0035 (12)
C20.0150 (11)0.0213 (13)0.0223 (12)0.0009 (10)0.0027 (10)0.0012 (11)
C30.0160 (12)0.0262 (14)0.0181 (12)0.0029 (10)0.0043 (10)0.0003 (11)
C40.0209 (13)0.0399 (17)0.0162 (12)0.0057 (11)0.0033 (10)0.0021 (11)
C50.0186 (13)0.0414 (17)0.0202 (13)0.0015 (11)0.0023 (10)0.0108 (12)
C60.0185 (12)0.0260 (14)0.0298 (14)0.0029 (10)0.0071 (11)0.0095 (11)
C70.0177 (12)0.0222 (14)0.0222 (12)0.0005 (10)0.0027 (10)0.0000 (11)
C80.0138 (11)0.0215 (13)0.0185 (12)0.0012 (10)0.0018 (9)0.0018 (10)
C90.0232 (13)0.0284 (15)0.0197 (12)0.0038 (11)0.0061 (10)0.0028 (11)
C100.0164 (12)0.0220 (13)0.0148 (11)0.0014 (10)0.0002 (10)0.0035 (10)
C110.0178 (12)0.0211 (13)0.0139 (11)0.0015 (10)0.0016 (9)0.0039 (10)
C120.0248 (13)0.0182 (13)0.0198 (12)0.0046 (10)0.0025 (10)0.0013 (10)
C130.0256 (13)0.0197 (13)0.0206 (12)0.0024 (10)0.0010 (11)0.0029 (10)
C140.0194 (12)0.0262 (14)0.0208 (12)0.0011 (10)0.0032 (10)0.0010 (11)
C150.0174 (12)0.0184 (13)0.0210 (12)0.0023 (10)0.0002 (10)0.0004 (10)
C160.0156 (11)0.0176 (12)0.0141 (11)0.0004 (9)0.0023 (9)0.0016 (10)
C170.0201 (12)0.0184 (13)0.0193 (12)0.0006 (10)0.0061 (10)0.0050 (10)
C180.0177 (12)0.0207 (13)0.0164 (12)0.0015 (10)0.0048 (10)0.0004 (10)
Geometric parameters (Å, º) top
Cd1—N32.2199 (19)C3—C81.394 (3)
Cd1—N12.2611 (19)C4—C51.379 (4)
Cd1—N52.302 (2)C4—H40.9500
Cd1—N62.307 (2)C5—C61.392 (4)
Cd1—S22.6207 (7)C5—H50.9500
S1—C171.644 (2)C6—C71.385 (3)
S2—C181.651 (2)C6—H60.9500
N1—C21.323 (3)C7—C81.394 (3)
N1—C81.406 (3)C7—H70.9500
N2—C21.355 (3)C9—C101.488 (3)
N2—C31.382 (3)C9—H9A0.9800
N2—H2N0.856 (17)C9—H9B0.9800
N3—C101.323 (3)C9—H9C0.9800
N3—C161.401 (3)C11—C121.388 (3)
N4—C101.347 (3)C11—C161.396 (3)
N4—C111.384 (3)C12—C131.382 (3)
N4—H4N0.844 (16)C12—H120.9500
N5—C171.155 (3)C13—C141.401 (3)
N6—C18i1.152 (3)C13—H130.9500
C1—C21.482 (3)C14—C151.378 (3)
C1—H1A0.9800C14—H140.9500
C1—H1B0.9800C15—C161.391 (3)
C1—H1C0.9800C15—H150.9500
C3—C41.393 (3)C18—N6i1.152 (3)
N3—Cd1—N1106.16 (7)C4—C5—H5118.9
N3—Cd1—N599.90 (7)C6—C5—H5118.9
N1—Cd1—N587.22 (7)C7—C6—C5121.6 (2)
N3—Cd1—N699.32 (7)C7—C6—H6119.2
N1—Cd1—N690.32 (7)C5—C6—H6119.2
N5—Cd1—N6160.55 (7)C6—C7—C8117.1 (2)
N3—Cd1—S2108.61 (5)C6—C7—H7121.5
N1—Cd1—S2144.74 (5)C8—C7—H7121.5
N5—Cd1—S281.28 (5)C3—C8—C7120.6 (2)
N6—Cd1—S289.77 (5)C3—C8—N1108.9 (2)
C18—S2—Cd1103.94 (8)C7—C8—N1130.5 (2)
C2—N1—C8105.77 (19)C10—C9—H9A109.5
C2—N1—Cd1129.77 (16)C10—C9—H9B109.5
C8—N1—Cd1123.42 (15)H9A—C9—H9B109.5
C2—N2—C3108.3 (2)C10—C9—H9C109.5
C2—N2—H2N122.1 (18)H9A—C9—H9C109.5
C3—N2—H2N129.4 (18)H9B—C9—H9C109.5
C10—N3—C16106.11 (19)N3—C10—N4111.5 (2)
C10—N3—Cd1126.99 (16)N3—C10—C9125.3 (2)
C16—N3—Cd1126.17 (15)N4—C10—C9123.2 (2)
C10—N4—C11108.57 (19)N4—C11—C12132.7 (2)
C10—N4—H4N123.9 (18)N4—C11—C16105.1 (2)
C11—N4—H4N127.4 (18)C12—C11—C16122.2 (2)
C17—N5—Cd1154.70 (19)C13—C12—C11116.7 (2)
C18i—N6—Cd1164.86 (18)C13—C12—H12121.7
C2—C1—H1A109.5C11—C12—H12121.7
C2—C1—H1B109.5C12—C13—C14121.5 (2)
H1A—C1—H1B109.5C12—C13—H13119.2
C2—C1—H1C109.5C14—C13—H13119.2
H1A—C1—H1C109.5C15—C14—C13121.5 (2)
H1B—C1—H1C109.5C15—C14—H14119.2
N1—C2—N2111.7 (2)C13—C14—H14119.2
N1—C2—C1126.1 (2)C14—C15—C16117.5 (2)
N2—C2—C1122.2 (2)C14—C15—H15121.2
N2—C3—C4132.2 (2)C16—C15—H15121.2
N2—C3—C8105.3 (2)C15—C16—C11120.5 (2)
C4—C3—C8122.4 (2)C15—C16—N3130.7 (2)
C5—C4—C3116.1 (2)C11—C16—N3108.8 (2)
C5—C4—H4121.9N5—C17—S1179.1 (2)
C3—C4—H4121.9N6i—C18—S2178.5 (2)
C4—C5—C6122.2 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1ii0.86 (2)2.45 (2)3.273 (2)163 (2)
N4—H4N···S1iii0.84 (2)2.48 (2)3.281 (2)159 (2)
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cd2(NCS)4(C8H8N2)4]
Mr985.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.1519 (11), 10.2098 (6), 21.7385 (13)
β (°) 97.864 (1)
V3)3990.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.38 × 0.20 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.634, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
9361, 3593, 3213
Rint0.022
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.047, 1.03
No. of reflections3593
No. of parameters253
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.856 (17)2.445 (18)3.273 (2)163 (2)
N4—H4N···S1ii0.844 (16)2.481 (18)3.281 (2)159 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1/2, y1/2, z.
 

Acknowledgements

The authors thank University of Malaya for funding this study (UMRG grant RG024/09BIO).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGou, L., Wu, Q. R., Hu, H. M., Qin, T., Xue, G. L., Yang, M. L. & Tang, Z. X. (2008). Polyhedron, 27, 1517–1526.  Web of Science CSD CrossRef CAS Google Scholar
First citationGovor, E. V., Lysenko, A. B., Domasevitch, K. V., Rusanov, E. B. & Chernega, A. N. (2008). Acta Cryst. C64, m117–m120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Q., Xu, L. J., Ji, J. X., Li, Y. M., Wang, R. H., Zhou, Z. Y., Cao, R., Hong, M. C. & Chan, A. S. C. (2004). Inorg. Chem. Commun. 7, 1254–1257.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds