organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[(E)-(3-methyl-2-thienyl)methyl­­idene]ethane-1,2-di­amine

aChemistry Group, BITS, Pilani – K. K. Birla Goa Campus, Goa, India 403 726, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 13 October 2010; accepted 15 October 2010; online 23 October 2010)

Two independent half-mol­ecules, each being completed by inversion symmetry, comprise the asymmetric unit of the title compound, C14H16N2S2. The major difference between the mol­ecules is found in the central C—C bond [the C—N—C—C torsion angles are 114.66 (18) and 128.94 (18)° in the two mol­ecules]. The thio­phene and imine groups are almost co-planar in each case [S—C—C—N torsion angles = −6.9 (2) and −3.6 (2)°]. In the crystal, the mol­ecules aggregate into supra­molecular chains via C—H⋯π inter­actions.

Related literature

For background to 2-substituted thio­phenes, see: Campaigne (1984[Campaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863-934. Oxford: Pergamon.]); Kleemann et al. (2006[Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.]). For related structures, see: Wang et al. (2007[Wang, D.-Q., Wang, Q. & Xiao, L.-J. (2007). Acta Cryst. E63, o4865.]); Wardell et al. (2010[Wardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271-o272.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2S2

  • Mr = 276.41

  • Triclinic, [P \overline 1]

  • a = 8.7610 (6) Å

  • b = 8.9502 (6) Å

  • c = 8.9853 (6) Å

  • α = 92.760 (1)°

  • β = 91.653 (1)°

  • γ = 106.066 (1)°

  • V = 675.61 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.797, Tmax = 0.862

  • 6435 measured reflections

  • 3089 independent reflections

  • 2822 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.100

  • S = 1.10

  • 3089 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1,C3–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Cg1i 0.95 2.89 3.6179 (19) 134
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title bifunctional Schiff base features 2-substituted thiophene rings (Campaigne, 1984; Kleemann et al., 2006) of interest owing to their putative biological activity (Wardell et al., 2010). The asymmetric unit comprises two half molecules of, as each of the two independent molecules, Figs 1 and 2, is located about crystallographic centres of inversion. The major difference between the molecules is found around the central C—C bond as manifested in the C2—N1—C1—C1i and C9—N2—C8—C8ii torsion angles of 114.66 (18)° and 128.94 (18)°, respectively [symmetry operation i: 1 - x, 2 - y, -z and ii: -x, 2 - y, 2 - z]. Further, the twist of the thiophene ring from the imine bond is more pronounced for the first independent molecule [the N1—C2—C3—S1 torsion angle = -6.9 (2)°] compared to that found in the second independent molecule [N2—C9—C10—S2 = -3.6 (2)°]. The conformation about each of the imine N1—C2 [1.274 (2) Å] and N2—C9 [1.272 (2) Å] bonds is E. The observed conformations match closely that found for the unsubstituted parent compound (Wang et al., 2007).

The most prominent feature of the crystal packing is the formation of supramolecular chains comprising both independent molecules, Fig. 3, that are sustained by C—H···π interactions, Table 1. The chains pack in layers parallel to (1 1 0), Fig. 4.

Related literature top

For background to 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For related structures, see: Wang et al. (2007); Wardell et al. (2010).

Experimental top

A mixture of 3-methyl-2-thiophenecarboxaldehyde (0.43 ml, 0.004 M) and ethylenediamine (0.13 ml, 0.002 M) was stirred in dichloromethane for 3 h at room temperature. The solvent was removed under reduced pressure, and the resulting solid was dried and purified by column chromatography using a 1:3 mixture of ethyl acetate and hexane. Recrystallization was by slow evaporation of a dichloromethane solution which yielded colourless needles; yield: 81%. M. pt. 385–387 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Structure description top

The title bifunctional Schiff base features 2-substituted thiophene rings (Campaigne, 1984; Kleemann et al., 2006) of interest owing to their putative biological activity (Wardell et al., 2010). The asymmetric unit comprises two half molecules of, as each of the two independent molecules, Figs 1 and 2, is located about crystallographic centres of inversion. The major difference between the molecules is found around the central C—C bond as manifested in the C2—N1—C1—C1i and C9—N2—C8—C8ii torsion angles of 114.66 (18)° and 128.94 (18)°, respectively [symmetry operation i: 1 - x, 2 - y, -z and ii: -x, 2 - y, 2 - z]. Further, the twist of the thiophene ring from the imine bond is more pronounced for the first independent molecule [the N1—C2—C3—S1 torsion angle = -6.9 (2)°] compared to that found in the second independent molecule [N2—C9—C10—S2 = -3.6 (2)°]. The conformation about each of the imine N1—C2 [1.274 (2) Å] and N2—C9 [1.272 (2) Å] bonds is E. The observed conformations match closely that found for the unsubstituted parent compound (Wang et al., 2007).

The most prominent feature of the crystal packing is the formation of supramolecular chains comprising both independent molecules, Fig. 3, that are sustained by C—H···π interactions, Table 1. The chains pack in layers parallel to (1 1 0), Fig. 4.

For background to 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For related structures, see: Wang et al. (2007); Wardell et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the first independent molecule showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Symmetry operation i: 1 - x, 2 - y, -z.
[Figure 2] Fig. 2. Molecular structure of the second independent molecule in showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Symmetry operation ii: -x, 2 - y, 2 - z.
[Figure 3] Fig. 3. Supramolecular chain sustained by C—H···π contacts (shown as purple dashed lines).
[Figure 4] Fig. 4. Unit-cell contents viewed in projection along the c axis. The C—H···π contacts are shown as purple dashed lines.
N,N'-Bis[(E)-(3-methyl-2-thienyl)methylidene]ethane- 1,2-diamine top
Crystal data top
C14H16N2S2Z = 2
Mr = 276.41F(000) = 292
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7610 (6) ÅCell parameters from 4410 reflections
b = 8.9502 (6) Åθ = 4.3–28.3°
c = 8.9853 (6) ŵ = 0.38 mm1
α = 92.760 (1)°T = 100 K
β = 91.653 (1)°Prism, colourless
γ = 106.066 (1)°0.30 × 0.30 × 0.10 mm
V = 675.61 (8) Å3
Data collection top
Bruker SMART APEX
diffractometer
3089 independent reflections
Radiation source: fine-focus sealed tube2822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.797, Tmax = 0.862k = 1110
6435 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.4238P]
where P = (Fo2 + 2Fc2)/3
3089 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H16N2S2γ = 106.066 (1)°
Mr = 276.41V = 675.61 (8) Å3
Triclinic, P1Z = 2
a = 8.7610 (6) ÅMo Kα radiation
b = 8.9502 (6) ŵ = 0.38 mm1
c = 8.9853 (6) ÅT = 100 K
α = 92.760 (1)°0.30 × 0.30 × 0.10 mm
β = 91.653 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3089 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2822 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.862Rint = 0.019
6435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.10Δρmax = 0.45 e Å3
3089 reflectionsΔρmin = 0.27 e Å3
165 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47805 (4)0.72178 (4)0.45069 (4)0.01583 (12)
N10.48699 (16)0.93243 (16)0.19349 (14)0.0171 (3)
C10.47949 (19)1.03494 (19)0.07326 (17)0.0170 (3)
H1A0.55541.13870.09680.020*
H1B0.37121.04830.06370.020*
C20.59455 (18)0.98652 (18)0.29593 (17)0.0151 (3)
H20.66411.08810.28900.018*
C30.61453 (18)0.89825 (18)0.42300 (17)0.0147 (3)
C40.73245 (18)0.93799 (18)0.53428 (17)0.0157 (3)
C50.7128 (2)0.82044 (19)0.63988 (17)0.0174 (3)
H50.78440.82640.72280.021*
C60.5808 (2)0.69924 (19)0.60906 (17)0.0180 (3)
H60.54930.61200.66860.022*
C70.8608 (2)1.0898 (2)0.5493 (2)0.0223 (3)
H7A0.82131.16820.60350.033*
H7B0.89131.12470.45000.033*
H7C0.95351.07560.60430.033*
S20.08033 (5)0.56857 (5)0.69562 (4)0.01757 (12)
N20.01928 (16)0.80946 (15)0.92178 (15)0.0166 (3)
C80.0229 (2)0.91842 (18)1.02823 (18)0.0179 (3)
H8A0.03280.91891.12570.021*
H8B0.13880.88461.04270.021*
C90.09982 (18)0.72358 (18)0.97335 (17)0.0151 (3)
H90.13200.73691.07610.018*
C100.14457 (18)0.60595 (17)0.88127 (17)0.0138 (3)
C110.23606 (18)0.51136 (18)0.92386 (17)0.0147 (3)
C120.25375 (19)0.40900 (18)0.80306 (18)0.0177 (3)
H120.31340.33560.81160.021*
C130.1767 (2)0.42700 (19)0.67441 (19)0.0196 (3)
H130.17640.36800.58360.023*
C140.30760 (19)0.5131 (2)1.07776 (18)0.0191 (3)
H14A0.36630.62001.11080.029*
H14B0.38030.44731.07660.029*
H14C0.22290.47311.14640.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0184 (2)0.01340 (19)0.0147 (2)0.00282 (14)0.00089 (14)0.00138 (14)
N10.0216 (7)0.0169 (6)0.0123 (6)0.0044 (5)0.0017 (5)0.0028 (5)
C10.0196 (7)0.0176 (7)0.0136 (7)0.0046 (6)0.0003 (6)0.0034 (6)
C20.0176 (7)0.0133 (7)0.0152 (7)0.0054 (6)0.0039 (6)0.0008 (5)
C30.0172 (7)0.0130 (7)0.0142 (7)0.0045 (6)0.0029 (6)0.0009 (5)
C40.0185 (7)0.0146 (7)0.0149 (7)0.0061 (6)0.0014 (6)0.0001 (6)
C50.0229 (8)0.0178 (7)0.0133 (7)0.0090 (6)0.0003 (6)0.0006 (6)
C60.0250 (8)0.0171 (7)0.0140 (7)0.0087 (6)0.0034 (6)0.0031 (6)
C70.0213 (8)0.0178 (8)0.0256 (8)0.0024 (6)0.0047 (6)0.0022 (6)
S20.0210 (2)0.0169 (2)0.0142 (2)0.00442 (15)0.00034 (14)0.00084 (14)
N20.0193 (6)0.0113 (6)0.0188 (6)0.0040 (5)0.0001 (5)0.0004 (5)
C80.0230 (8)0.0132 (8)0.0187 (7)0.0068 (6)0.0021 (6)0.0007 (6)
C90.0148 (7)0.0129 (7)0.0159 (7)0.0010 (5)0.0007 (5)0.0015 (6)
C100.0148 (7)0.0115 (7)0.0144 (7)0.0022 (5)0.0018 (5)0.0012 (5)
C110.0134 (7)0.0138 (7)0.0160 (7)0.0017 (5)0.0032 (5)0.0024 (6)
C120.0163 (7)0.0141 (7)0.0225 (8)0.0034 (6)0.0059 (6)0.0011 (6)
C130.0214 (8)0.0158 (7)0.0199 (8)0.0026 (6)0.0061 (6)0.0026 (6)
C140.0171 (7)0.0228 (8)0.0186 (8)0.0069 (6)0.0005 (6)0.0034 (6)
Geometric parameters (Å, º) top
S1—C61.7119 (16)S2—C131.7125 (17)
S1—C31.7309 (16)S2—C101.7318 (16)
N1—C21.274 (2)N2—C91.272 (2)
N1—C11.4621 (19)N2—C81.460 (2)
C1—C1i1.525 (3)C8—C8ii1.520 (3)
C1—H1A0.9900C8—H8A0.9900
C1—H1B0.9900C8—H8B0.9900
C2—C31.453 (2)C9—C101.453 (2)
C2—H20.9500C9—H90.9500
C3—C41.377 (2)C10—C111.377 (2)
C4—C51.429 (2)C11—C121.426 (2)
C4—C71.502 (2)C11—C141.499 (2)
C5—C61.360 (2)C12—C131.361 (2)
C5—H50.9500C12—H120.9500
C6—H60.9500C13—H130.9500
C7—H7A0.9800C14—H14A0.9800
C7—H7B0.9800C14—H14B0.9800
C7—H7C0.9800C14—H14C0.9800
C6—S1—C391.47 (8)C13—S2—C1091.55 (8)
C2—N1—C1116.35 (13)C9—N2—C8116.78 (14)
N1—C1—C1i109.83 (16)N2—C8—C8ii110.34 (17)
N1—C1—H1A109.7N2—C8—H8A109.6
C1i—C1—H1A109.7C8ii—C8—H8A109.6
N1—C1—H1B109.7N2—C8—H8B109.6
C1i—C1—H1B109.7C8ii—C8—H8B109.6
H1A—C1—H1B108.2H8A—C8—H8B108.1
N1—C2—C3122.28 (14)N2—C9—C10122.61 (14)
N1—C2—H2118.9N2—C9—H9118.7
C3—C2—H2118.9C10—C9—H9118.7
C4—C3—C2127.93 (14)C11—C10—C9127.42 (14)
C4—C3—S1111.67 (12)C11—C10—S2111.68 (12)
C2—C3—S1120.39 (12)C9—C10—S2120.89 (11)
C3—C4—C5111.63 (14)C10—C11—C12111.52 (14)
C3—C4—C7124.67 (14)C10—C11—C14124.84 (14)
C5—C4—C7123.60 (14)C12—C11—C14123.64 (14)
C6—C5—C4112.87 (14)C13—C12—C11113.24 (14)
C6—C5—H5123.6C13—C12—H12123.4
C4—C5—H5123.6C11—C12—H12123.4
C5—C6—S1112.33 (12)C12—C13—S2112.00 (12)
C5—C6—H6123.8C12—C13—H13124.0
S1—C6—H6123.8S2—C13—H13124.0
C4—C7—H7A109.5C11—C14—H14A109.5
C4—C7—H7B109.5C11—C14—H14B109.5
H7A—C7—H7B109.5H14A—C14—H14B109.5
C4—C7—H7C109.5C11—C14—H14C109.5
H7A—C7—H7C109.5H14A—C14—H14C109.5
H7B—C7—H7C109.5H14B—C14—H14C109.5
C2—N1—C1—C1i114.66 (18)C9—N2—C8—C8ii128.94 (18)
C1—N1—C2—C3179.26 (14)C8—N2—C9—C10177.52 (14)
N1—C2—C3—C4174.57 (16)N2—C9—C10—C11177.29 (16)
N1—C2—C3—S16.9 (2)N2—C9—C10—S23.6 (2)
C6—S1—C3—C41.13 (13)C13—S2—C10—C110.31 (12)
C6—S1—C3—C2179.90 (13)C13—S2—C10—C9179.53 (13)
C2—C3—C4—C5179.55 (15)C9—C10—C11—C12179.52 (15)
S1—C3—C4—C51.80 (17)S2—C10—C11—C120.36 (17)
C2—C3—C4—C73.9 (3)C9—C10—C11—C140.1 (3)
S1—C3—C4—C7174.74 (13)S2—C10—C11—C14179.05 (12)
C3—C4—C5—C61.7 (2)C10—C11—C12—C130.2 (2)
C7—C4—C5—C6174.86 (15)C14—C11—C12—C13179.18 (14)
C4—C5—C6—S10.86 (18)C11—C12—C13—S20.01 (18)
C3—S1—C6—C50.14 (13)C10—S2—C13—C120.17 (13)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C3–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1iii0.952.893.6179 (19)134
Symmetry code: (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N2S2
Mr276.41
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7610 (6), 8.9502 (6), 8.9853 (6)
α, β, γ (°)92.760 (1), 91.653 (1), 106.066 (1)
V3)675.61 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.797, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
6435, 3089, 2822
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.100, 1.10
No. of reflections3089
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C3–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cg1i0.952.893.6179 (19)134
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@gmail.com.

Acknowledgements

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863–934. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-Q., Wang, Q. & Xiao, L.-J. (2007). Acta Cryst. E63, o4865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271–o272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds