organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­anilino)-N-(4-fluoro­phen­yl)-3-nitro­benzamide

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China, and bAgronomy Department, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400 Jiangsu, People's Republic of China
*Correspondence e-mail: yutaitang@hotmail.com

(Received 16 September 2010; accepted 11 October 2010; online 23 October 2010)

In the title compound, C19H13F2N3O3, the anilinobenzamide unit is essentially planar, with a maximum deviation of 0.036 (3) Å. The nitro group and the benzene ring form dihedral angles of 9.6 (5)and 62.20 (8)°, respectively, with the anilinobenzamide unit. An intra­molecular N—H⋯O inter­action occurs. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O, N—H⋯O and C—H⋯F hydrogen bonds, which stabilize the structure.

Related literature

For comparison of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthetic procedure, see: Schelz & Inst (1978[Schelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452-2462.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13F2N3O3

  • Mr = 369.32

  • Triclinic, [P \overline 1]

  • a = 7.8510 (16) Å

  • b = 8.2720 (17) Å

  • c = 13.835 (3) Å

  • α = 74.75 (3)°

  • β = 85.67 (3)°

  • γ = 70.76 (3)°

  • V = 818.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.965, Tmax = 0.988

  • 3198 measured reflections

  • 2962 independent reflections

  • 1559 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.155

  • S = 1.00

  • 2962 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.37 3.185 (4) 158
N2—H2A⋯O2 0.86 1.98 2.636 (4) 132
C2—H2B⋯O3i 0.93 2.40 3.240 (5) 151
C10—H10A⋯F1ii 0.93 2.53 3.205 (4) 130
C15—H15A⋯O1iii 0.93 2.55 3.454 (4) 164
C16—H16A⋯F2iv 0.93 2.39 3.272 (5) 158
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y-1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1994)[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 Software[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title compound, (I), is presented in this article. In the title molecule (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The phenylaminobenzamide moiety (C1–C13/N1/O1) is essentially planar with maximum deviation of any atom being 0.036 (3) Å for C11 with F2 lying 0.109 (4) Å out of its plane, nitro group (N3/O2/O3) titlted at an angle 9.6 (5)° from its plane and the phenyl ring (C14–C19) inclined at 62.20 (8)° with its plane. In the crystal structure, weak intermolecular C—H···O, N—H···O and C—H···F hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in stabilizing the structure.

Related literature top

For comparison of bond lengths, see: Allen et al. (1987). For the synthetic procedure, see: Schelz & Inst (1978).

Experimental top

4-Chloro-3-nitrobenzamide (4.0 g, 0.02 mol) was heated in 4-fluorobenzenamine (10 ml) for 18 h at 403 K. On completion of the reaction (TLC control) was added ethanol (50 ml), at room temperature. The red precipitate thus formed was filtered, washed with cold ethanol (2 × 15 ml), dried over sodium sulfate to provide 5.8 g (79%) of (I) (Schelz & Inst, 1978). The compound (I) was purified by crystallizing from methanol. The crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 and C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C/N).

Structure description top

The crystal structure of the title compound, (I), is presented in this article. In the title molecule (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The phenylaminobenzamide moiety (C1–C13/N1/O1) is essentially planar with maximum deviation of any atom being 0.036 (3) Å for C11 with F2 lying 0.109 (4) Å out of its plane, nitro group (N3/O2/O3) titlted at an angle 9.6 (5)° from its plane and the phenyl ring (C14–C19) inclined at 62.20 (8)° with its plane. In the crystal structure, weak intermolecular C—H···O, N—H···O and C—H···F hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in stabilizing the structure.

For comparison of bond lengths, see: Allen et al. (1987). For the synthetic procedure, see: Schelz & Inst (1978).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1994); cell refinement: CAD-4 Software (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). The intermolecular hydrogen bonds are shown as dashed lines.
4-(4-Fluoroanilino)-N-(4-fluorophenyl)-3-nitrobenzamide top
Crystal data top
C19H13F2N3O3Z = 2
Mr = 369.32F(000) = 380
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8510 (16) ÅCell parameters from 25 reflections
b = 8.2720 (17) Åθ = 9–12°
c = 13.835 (3) ŵ = 0.12 mm1
α = 74.75 (3)°T = 293 K
β = 85.67 (3)°Block, colourless
γ = 70.76 (3)°0.30 × 0.20 × 0.10 mm
V = 818.4 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1559 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω and 2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.965, Tmax = 0.988l = 1616
3198 measured reflections3 standard reflections every 200 reflections
2962 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2962 reflectionsΔρmax = 0.16 e Å3
245 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (4)
Crystal data top
C19H13F2N3O3γ = 70.76 (3)°
Mr = 369.32V = 818.4 (3) Å3
Triclinic, P1Z = 2
a = 7.8510 (16) ÅMo Kα radiation
b = 8.2720 (17) ŵ = 0.12 mm1
c = 13.835 (3) ÅT = 293 K
α = 74.75 (3)°0.30 × 0.20 × 0.10 mm
β = 85.67 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1559 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.965, Tmax = 0.9883 standard reflections every 200 reflections
3198 measured reflections intensity decay: 1%
2962 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
2962 reflectionsΔρmin = 0.18 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.7511 (3)0.0655 (3)0.12706 (14)0.0823 (8)
N10.1978 (4)0.2157 (3)0.58538 (17)0.0468 (7)
H1A0.23830.26520.53720.056*
F20.0468 (3)0.6359 (3)0.90592 (15)0.0839 (8)
C10.0848 (6)0.5958 (5)0.7467 (3)0.0687 (12)
H1C0.08880.70830.74430.082*
N20.4401 (4)0.3033 (3)0.20096 (18)0.0511 (8)
H2A0.42320.41410.19340.061*
O10.1462 (4)0.0382 (3)0.63333 (16)0.0645 (8)
C20.1458 (5)0.4877 (4)0.6679 (3)0.0618 (11)
H2B0.19320.52900.61200.074*
O20.3708 (4)0.5620 (3)0.29073 (19)0.0787 (9)
C30.1378 (4)0.3197 (4)0.6703 (2)0.0424 (8)
N30.3373 (4)0.4670 (4)0.3685 (2)0.0579 (9)
C40.0683 (5)0.2610 (5)0.7541 (2)0.0515 (9)
H4A0.06120.14780.75690.062*
O30.3066 (5)0.5176 (4)0.4448 (2)0.1081 (13)
C50.0093 (5)0.3689 (5)0.8339 (2)0.0573 (10)
H5A0.03600.33010.89090.069*
C60.0189 (5)0.5329 (5)0.8276 (3)0.0577 (10)
C70.1996 (4)0.0465 (4)0.5702 (2)0.0413 (8)
C80.2697 (4)0.0325 (4)0.4724 (2)0.0367 (7)
C90.3296 (4)0.0471 (4)0.3930 (2)0.0458 (9)
H9A0.32880.16160.39960.055*
C100.3893 (4)0.0400 (4)0.3058 (2)0.0463 (9)
H10A0.42920.01780.25500.056*
C110.3924 (4)0.2150 (4)0.2904 (2)0.0408 (8)
C120.3347 (4)0.2909 (4)0.3723 (2)0.0411 (8)
C130.2751 (4)0.2014 (4)0.4597 (2)0.0417 (8)
H13A0.23760.25680.51160.050*
C140.5150 (5)0.2322 (4)0.1184 (2)0.0422 (8)
C150.6711 (5)0.0901 (5)0.1283 (2)0.0518 (9)
H15A0.72340.03180.19140.062*
C160.7504 (5)0.0333 (5)0.0459 (3)0.0574 (10)
H16A0.85630.06230.05240.069*
C170.6702 (6)0.1204 (5)0.0458 (3)0.0554 (10)
C180.5142 (5)0.2600 (5)0.0589 (2)0.0566 (10)
H18A0.46170.31550.12210.068*
C190.4358 (5)0.3171 (4)0.0244 (2)0.0495 (9)
H19A0.32980.41260.01730.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.114 (2)0.0861 (17)0.0570 (13)0.0353 (15)0.0258 (13)0.0374 (12)
N10.065 (2)0.0442 (16)0.0382 (15)0.0275 (15)0.0133 (13)0.0135 (12)
F20.108 (2)0.0535 (14)0.0715 (14)0.0251 (13)0.0345 (13)0.0043 (11)
C10.094 (3)0.038 (2)0.068 (3)0.020 (2)0.017 (2)0.0092 (19)
N20.078 (2)0.0423 (16)0.0389 (16)0.0291 (16)0.0172 (15)0.0130 (13)
O10.104 (2)0.0492 (15)0.0487 (14)0.0345 (15)0.0227 (14)0.0192 (12)
C20.090 (3)0.044 (2)0.050 (2)0.024 (2)0.020 (2)0.0121 (17)
O20.136 (3)0.0554 (16)0.0587 (16)0.0535 (17)0.0343 (16)0.0184 (13)
C30.052 (2)0.042 (2)0.0342 (18)0.0201 (17)0.0066 (16)0.0069 (15)
N30.089 (3)0.0494 (18)0.0465 (18)0.0370 (18)0.0176 (17)0.0165 (16)
C40.063 (3)0.055 (2)0.044 (2)0.031 (2)0.0094 (18)0.0129 (17)
O30.225 (4)0.072 (2)0.0626 (18)0.087 (2)0.050 (2)0.0403 (16)
C50.068 (3)0.064 (3)0.043 (2)0.028 (2)0.0144 (18)0.0145 (18)
C60.062 (3)0.046 (2)0.049 (2)0.0125 (19)0.0141 (18)0.0043 (17)
C70.045 (2)0.0400 (19)0.0396 (18)0.0162 (17)0.0017 (16)0.0091 (16)
C80.040 (2)0.0355 (18)0.0351 (17)0.0139 (15)0.0003 (14)0.0072 (14)
C90.061 (2)0.043 (2)0.0426 (19)0.0269 (18)0.0063 (17)0.0134 (15)
C100.060 (2)0.046 (2)0.0427 (19)0.0260 (18)0.0105 (17)0.0201 (16)
C110.044 (2)0.0385 (19)0.0412 (19)0.0149 (16)0.0005 (15)0.0106 (15)
C120.053 (2)0.0365 (18)0.0384 (18)0.0195 (17)0.0029 (16)0.0110 (15)
C130.053 (2)0.0418 (19)0.0339 (17)0.0186 (17)0.0030 (15)0.0116 (14)
C140.060 (2)0.0416 (19)0.0353 (18)0.0296 (19)0.0097 (16)0.0125 (15)
C150.062 (3)0.050 (2)0.043 (2)0.020 (2)0.0041 (18)0.0094 (16)
C160.064 (3)0.049 (2)0.060 (2)0.0173 (19)0.014 (2)0.0197 (19)
C170.082 (3)0.060 (2)0.041 (2)0.040 (2)0.022 (2)0.0237 (18)
C180.073 (3)0.065 (3)0.039 (2)0.036 (2)0.0023 (19)0.0083 (18)
C190.050 (2)0.046 (2)0.049 (2)0.0173 (18)0.0048 (18)0.0066 (17)
Geometric parameters (Å, º) top
F1—C171.358 (3)C5—H5A0.9300
N1—C71.365 (4)C7—C81.490 (4)
N1—C31.413 (3)C8—C131.376 (4)
N1—H1A0.8600C8—C91.400 (4)
F2—C61.373 (4)C9—C101.369 (4)
C1—C61.354 (5)C9—H9A0.9300
C1—C21.382 (4)C10—C111.415 (4)
C1—H1C0.9300C10—H10A0.9300
N2—C111.357 (4)C11—C121.412 (4)
N2—C141.421 (4)C12—C131.378 (4)
N2—H2A0.8600C13—H13A0.9300
O1—C71.225 (3)C14—C151.376 (4)
C2—C31.379 (4)C14—C191.388 (4)
C2—H2B0.9300C15—C161.375 (4)
O2—N31.222 (3)C15—H15A0.9300
C3—C41.380 (4)C16—C171.366 (5)
N3—O31.214 (3)C16—H16A0.9300
N3—C121.451 (4)C17—C181.363 (5)
C4—C51.381 (4)C18—C191.384 (4)
C4—H4A0.9300C18—H18A0.9300
C5—C61.360 (5)C19—H19A0.9300
C7—N1—C3128.1 (3)C10—C9—C8121.5 (3)
C7—N1—H1A115.9C10—C9—H9A119.3
C3—N1—H1A115.9C8—C9—H9A119.3
C6—C1—C2117.9 (4)C9—C10—C11122.1 (3)
C6—C1—H1C121.0C9—C10—H10A118.9
C2—C1—H1C121.0C11—C10—H10A118.9
C11—N2—C14126.9 (3)N2—C11—C12123.5 (3)
C11—N2—H2A116.6N2—C11—C10121.2 (3)
C14—N2—H2A116.6C12—C11—C10115.2 (3)
C3—C2—C1121.4 (3)C13—C12—C11121.9 (3)
C3—C2—H2B119.3C13—C12—N3116.8 (3)
C1—C2—H2B119.3C11—C12—N3121.2 (3)
C2—C3—C4118.6 (3)C8—C13—C12121.9 (3)
C2—C3—N1117.8 (3)C8—C13—H13A119.0
C4—C3—N1123.6 (3)C12—C13—H13A119.0
O3—N3—O2120.7 (3)C15—C14—C19119.5 (3)
O3—N3—C12118.4 (3)C15—C14—N2121.5 (3)
O2—N3—C12120.9 (3)C19—C14—N2118.8 (3)
C3—C4—C5120.5 (3)C16—C15—C14120.6 (3)
C3—C4—H4A119.7C16—C15—H15A119.7
C5—C4—H4A119.7C14—C15—H15A119.7
C6—C5—C4118.7 (3)C17—C16—C15118.5 (4)
C6—C5—H5A120.7C17—C16—H16A120.7
C4—C5—H5A120.7C15—C16—H16A120.7
C1—C6—C5122.9 (3)F1—C17—C18119.1 (3)
C1—C6—F2119.1 (3)F1—C17—C16118.1 (4)
C5—C6—F2117.9 (3)C18—C17—C16122.8 (3)
O1—C7—N1122.2 (3)C17—C18—C19118.3 (3)
O1—C7—C8120.9 (3)C17—C18—H18A120.8
N1—C7—C8116.9 (3)C19—C18—H18A120.8
C13—C8—C9117.3 (3)C18—C19—C14120.2 (3)
C13—C8—C7115.9 (3)C18—C19—H19A119.9
C9—C8—C7126.8 (3)C14—C19—H19A119.9
C6—C1—C2—C30.9 (6)N2—C11—C12—C13175.3 (3)
C1—C2—C3—C40.5 (6)C10—C11—C12—C131.7 (5)
C1—C2—C3—N1178.1 (3)N2—C11—C12—N35.3 (5)
C7—N1—C3—C2178.7 (3)C10—C11—C12—N3177.6 (3)
C7—N1—C3—C40.2 (5)O3—N3—C12—C137.8 (5)
C2—C3—C4—C50.4 (5)O2—N3—C12—C13172.6 (3)
N1—C3—C4—C5178.9 (3)O3—N3—C12—C11171.5 (4)
C3—C4—C5—C60.9 (5)O2—N3—C12—C118.1 (5)
C2—C1—C6—C50.5 (6)C9—C8—C13—C120.8 (5)
C2—C1—C6—F2178.4 (3)C7—C8—C13—C12179.1 (3)
C4—C5—C6—C10.4 (6)C11—C12—C13—C80.4 (5)
C4—C5—C6—F2177.5 (3)N3—C12—C13—C8178.9 (3)
C3—N1—C7—O10.3 (5)C11—N2—C14—C1556.2 (5)
C3—N1—C7—C8179.6 (3)C11—N2—C14—C19128.7 (3)
O1—C7—C8—C131.9 (5)C19—C14—C15—C161.0 (5)
N1—C7—C8—C13178.2 (3)N2—C14—C15—C16174.0 (3)
O1—C7—C8—C9178.0 (3)C14—C15—C16—C170.4 (5)
N1—C7—C8—C91.9 (5)C15—C16—C17—F1178.9 (3)
C13—C8—C9—C100.7 (5)C15—C16—C17—C180.6 (5)
C7—C8—C9—C10179.2 (3)F1—C17—C18—C19178.4 (3)
C8—C9—C10—C110.6 (5)C16—C17—C18—C191.0 (5)
C14—N2—C11—C12173.7 (3)C17—C18—C19—C140.4 (5)
C14—N2—C11—C109.4 (5)C15—C14—C19—C180.5 (5)
C9—C10—C11—N2175.3 (3)N2—C14—C19—C18174.6 (3)
C9—C10—C11—C121.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.373.185 (4)158
N2—H2A···O20.861.982.636 (4)132
N2—H2A···N30.862.582.917 (4)105
C2—H2B···O3i0.932.403.240 (5)151
C4—H4A···O10.932.202.821 (4)123
C10—H10A···F1ii0.932.533.205 (4)130
C13—H13A···O10.932.392.728 (4)102
C13—H13A···O30.932.332.661 (5)100
C15—H15A···O1iii0.932.553.454 (4)164
C16—H16A···F2iv0.932.393.272 (5)158
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC19H13F2N3O3
Mr369.32
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8510 (16), 8.2720 (17), 13.835 (3)
α, β, γ (°)74.75 (3), 85.67 (3), 70.76 (3)
V3)818.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.965, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3198, 2962, 1559
Rint0.026
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.155, 1.00
No. of reflections2962
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.862.373.185 (4)158
N2—H2A···O20.861.982.636 (4)132
C2—H2B···O3i0.932.403.240 (5)151
C10—H10A···F1ii0.932.533.205 (4)130
C15—H15A···O1iii0.932.553.454 (4)164
C16—H16A···F2iv0.932.393.272 (5)158
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y1, z+1.
 

Acknowledgements

The authors thank Dr Shan Liu of Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452–2462.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds