metal-organic compounds
Poly[hexa-μ-acetato-bis(dimethyl sulfoxide)trimanganese(II)]
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bChina Clean Coal Technology, China Coal Research Institute, Beijing 100013, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn
In the title complex, [Mn3(CH3CO2)6(C2H6SO)2]n, the MnII ions exhibit similar MnO6 octahedral coordination geometries but with different coordination environments. One type of MnII ion is surrounded by five acetate groups and a terminal dimethyl sulfoxide group, while the other lies on a twofold axis and is coordinated by six O atoms from three symmetry-related acetate ions. The acetate anions exhibit three independent bridging modes, which flexibly bridge the MnII ions along the c-axis direction, forming an infinite chain structure; the chains are further interconnected through weak C—H⋯O and C—H⋯S hydrogen-bonding interactions.
Related literature
For metal complexes of DMSO, see: Calligaris et al. (2004). For the structure of a related complex, see: Wang et al. (2000).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810042558/pv2332sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810042558/pv2332Isup2.hkl
Mn(CH3CO2)2.4H2O (25 mg, 0.1 mmol) was dissolved in 3 ml deionized water with stirring at room temperature. After half an hour, 1 ml dimethyl sulfoxide was added to the solution. The mixed solution was stirred for another half hour, and then filtered. The clear solution obtained was left to stand in the air to let the solvent to evaporate. The colorless crystals were deposited after one week (12.60 mg, yield 56%).
An
was determined using the Flack (1983) method. The hydrogen atoms were placed in idealized positions and allowed to ride on the parent carbon atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).The coordination chemistry of dimethyl sulfoxid (DMSO) has been widely studied. Herein, we report the preparation and crystal strcuture of a new manganese(II) complex with dimethyl sulfoxide (DMSO). In the title complex, the two independent MnII ions (Mn1 and Mn2) exhibit a similar O6-octahedral coordination geometry with different coordination environments (Fig. 1). The Mn1 ion is surrounded by five acetates and one η1-bonding DMSO, while the Mn2 lies on a two-fold axis and is coordinated by six oxygen atoms of three symmetry related acetate ions. The acetate anions exhibit three independent bridging modes, syn, syn η1:η1:µ2-mode (C2-symmetric O3-containing acetate and O5-, O6-containing acetate), the syn, syn, ant η1:η2:µ3-mode (O1-, O2-containing acetate) and the syn, ant, syn, ant η2:η2:µ3-mode (C2-symmetric O7-containing acetate). The Mn1 and Mn2 ions are flexibly bridged by these anions and assemble into an infinite chain along the c direction (Fig. 2). The parallel arrays interconnect through C—H···O and C—H···S type H-bonding interactions (Table 1). In the termianl dimethyl sulfoxide, the S1═O4 of 1.501 (2)Å bond is slightly longer than that of the neat DMSO, which can be ascribed to the reduced bond order as that found in the protonated and η1-coordinated alkyl (Calligaris et al., 2004). The Mn1—O4 bond length of 2.153 (2)Å is comparable to 2.158 (2)Å found in catena-(tetrakis(µ2-thiocyanato-N,S)-bis(dimethyl sulfoxide-O)- manganese(II)-mercury(II) (Wang et al., 2000), in which the dimethyl sulfoxide shows a similar terminal η1-coordinated bonding to the MnII.
For metal complexes of DMSO, see: Calligaris et al. (2004). For the structure of a related complex, see: Wang et al. (2000). Scheme - Mn atoms should not be lablelled Mn2, Mn2
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Mn3(C2H3O2)6(C2H6OS)2] | Z = 2 |
Mr = 675.34 | F(000) = 690 |
Monoclinic, C2 | Dx = 1.622 Mg m−3 |
Hall symbol: C 2y | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8475 (16) Å | θ = 2.4–25.1° |
b = 12.5439 (16) Å | µ = 1.56 mm−1 |
c = 8.6095 (11) Å | T = 293 K |
β = 94.906 (2)° | Block, colorless |
V = 1382.4 (3) Å3 | 0.41 × 0.36 × 0.29 mm |
Bruker SMART CCD area-detector diffractometer | 1953 independent reflections |
Radiation source: fine-focus sealed tube | 1919 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 25.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −15→15 |
Tmin = 0.883, Tmax = 1.000 | k = −12→14 |
3821 measured reflections | l = −10→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.033P)2 + 0.3155P] P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1953 reflections | Δρmax = 0.39 e Å−3 |
161 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 653 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.034 (17) |
[Mn3(C2H3O2)6(C2H6OS)2] | V = 1382.4 (3) Å3 |
Mr = 675.34 | Z = 2 |
Monoclinic, C2 | Mo Kα radiation |
a = 12.8475 (16) Å | µ = 1.56 mm−1 |
b = 12.5439 (16) Å | T = 293 K |
c = 8.6095 (11) Å | 0.41 × 0.36 × 0.29 mm |
β = 94.906 (2)° |
Bruker SMART CCD area-detector diffractometer | 1953 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1919 reflections with I > 2σ(I) |
Tmin = 0.883, Tmax = 1.000 | Rint = 0.020 |
3821 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.056 | Δρmax = 0.39 e Å−3 |
S = 1.05 | Δρmin = −0.16 e Å−3 |
1953 reflections | Absolute structure: Flack (1983), 653 Friedel pairs |
161 parameters | Absolute structure parameter: 0.034 (17) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An absolute structure was established with the Flack parameter of 0.034 (17). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.91731 (2) | 0.56819 (3) | 0.13931 (4) | 0.02995 (11) | |
Mn2 | 1.0000 | 0.43103 (4) | 0.5000 | 0.03045 (14) | |
S1 | 0.70961 (5) | 0.67013 (7) | 0.27681 (10) | 0.0504 (2) | |
O1 | 0.91650 (12) | 0.53278 (16) | 0.88461 (19) | 0.0352 (4) | |
O2 | 0.87911 (14) | 0.44946 (19) | 0.6590 (2) | 0.0447 (5) | |
O3 | 0.94917 (16) | 0.73193 (16) | 0.0982 (2) | 0.0446 (5) | |
O4 | 0.75455 (15) | 0.6046 (2) | 0.1528 (2) | 0.0526 (6) | |
O5 | 0.87347 (19) | 0.4057 (2) | 0.1696 (3) | 0.0641 (6) | |
O6 | 0.89783 (16) | 0.3166 (2) | 0.3901 (2) | 0.0517 (5) | |
O7 | 1.05675 (14) | 0.59438 (15) | 0.60213 (19) | 0.0379 (4) | |
C1 | 0.85462 (19) | 0.4827 (2) | 0.7865 (3) | 0.0318 (5) | |
C2 | 0.7442 (2) | 0.4630 (3) | 0.8279 (4) | 0.0454 (7) | |
H2A | 0.7355 | 0.4928 | 0.9287 | 0.068* | |
H2B | 0.7312 | 0.3877 | 0.8299 | 0.068* | |
H2C | 0.6958 | 0.4961 | 0.7515 | 0.068* | |
C3 | 1.0000 | 0.7770 (3) | 0.0000 | 0.0376 (8) | |
C4 | 1.0000 | 0.8965 (4) | 0.0000 | 0.0634 (14) | |
H4A | 1.0425 | 0.9220 | −0.0786 | 0.095* | 0.50 |
H4B | 1.0277 | 0.9220 | 0.1003 | 0.095* | 0.50 |
H4C | 0.9298 | 0.9220 | −0.0217 | 0.095* | 0.50 |
C5 | 0.7587 (3) | 0.2664 (4) | 0.2103 (5) | 0.0792 (13) | |
H5A | 0.7291 | 0.2898 | 0.1099 | 0.119* | |
H5B | 0.7069 | 0.2712 | 0.2841 | 0.119* | |
H5C | 0.7814 | 0.1937 | 0.2033 | 0.119* | |
C6 | 0.8501 (2) | 0.3355 (2) | 0.2627 (3) | 0.0386 (6) | |
C7 | 0.6698 (3) | 0.5766 (5) | 0.4144 (5) | 0.0873 (14) | |
H7A | 0.7303 | 0.5483 | 0.4736 | 0.131* | |
H7B | 0.6320 | 0.5197 | 0.3607 | 0.131* | |
H7C | 0.6257 | 0.6113 | 0.4834 | 0.131* | |
C8 | 0.5846 (3) | 0.7060 (4) | 0.1907 (5) | 0.0799 (13) | |
H8A | 0.5918 | 0.7598 | 0.1130 | 0.120* | |
H8B | 0.5432 | 0.7333 | 0.2694 | 0.120* | |
H8C | 0.5511 | 0.6444 | 0.1429 | 0.120* | |
C9 | 1.0000 | 0.7628 (4) | 0.5000 | 0.0727 (16) | |
H9A | 0.9531 | 0.7883 | 0.4154 | 0.109* | 0.50 |
H9B | 1.0693 | 0.7883 | 0.4878 | 0.109* | 0.50 |
H9C | 0.9776 | 0.7883 | 0.5969 | 0.109* | 0.50 |
C10 | 1.0000 | 0.6450 (4) | 0.5000 | 0.0383 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.02796 (17) | 0.0394 (2) | 0.02291 (18) | 0.00325 (16) | 0.00453 (12) | 0.00263 (16) |
Mn2 | 0.0318 (3) | 0.0360 (3) | 0.0238 (3) | 0.000 | 0.00371 (19) | 0.000 |
S1 | 0.0378 (4) | 0.0585 (5) | 0.0547 (5) | 0.0060 (3) | 0.0025 (3) | −0.0202 (4) |
O1 | 0.0278 (8) | 0.0502 (11) | 0.0278 (9) | −0.0062 (8) | 0.0037 (7) | −0.0038 (8) |
O2 | 0.0401 (9) | 0.0648 (14) | 0.0305 (9) | −0.0086 (9) | 0.0107 (8) | −0.0127 (9) |
O3 | 0.0549 (11) | 0.0398 (11) | 0.0407 (11) | 0.0029 (9) | 0.0141 (9) | 0.0029 (8) |
O4 | 0.0341 (10) | 0.0810 (17) | 0.0428 (11) | 0.0108 (9) | 0.0043 (8) | −0.0150 (11) |
O5 | 0.0691 (15) | 0.0525 (15) | 0.0704 (16) | −0.0129 (12) | 0.0037 (12) | 0.0102 (12) |
O6 | 0.0554 (11) | 0.0611 (14) | 0.0382 (11) | −0.0123 (10) | 0.0010 (9) | −0.0110 (10) |
O7 | 0.0454 (9) | 0.0452 (12) | 0.0229 (8) | −0.0039 (8) | 0.0019 (7) | 0.0009 (8) |
C1 | 0.0285 (12) | 0.0419 (14) | 0.0248 (12) | −0.0027 (10) | 0.0020 (10) | 0.0013 (11) |
C2 | 0.0345 (13) | 0.065 (2) | 0.0369 (15) | −0.0113 (13) | 0.0062 (11) | −0.0079 (13) |
C3 | 0.0337 (17) | 0.039 (2) | 0.040 (2) | 0.000 | −0.0017 (15) | 0.000 |
C4 | 0.061 (3) | 0.041 (2) | 0.092 (4) | 0.000 | 0.031 (3) | 0.000 |
C5 | 0.078 (2) | 0.087 (3) | 0.068 (2) | −0.039 (2) | −0.020 (2) | 0.009 (2) |
C6 | 0.0384 (13) | 0.0347 (14) | 0.0433 (15) | −0.0019 (11) | 0.0079 (11) | −0.0041 (12) |
C7 | 0.076 (2) | 0.134 (4) | 0.054 (2) | −0.005 (3) | 0.0194 (18) | 0.000 (3) |
C8 | 0.0454 (17) | 0.081 (3) | 0.110 (3) | 0.0282 (19) | −0.0133 (19) | −0.029 (3) |
C9 | 0.120 (5) | 0.046 (3) | 0.051 (3) | 0.000 | 0.000 (3) | 0.000 |
C10 | 0.047 (2) | 0.043 (2) | 0.0272 (19) | 0.000 | 0.0116 (17) | 0.000 |
Mn1—O3 | 2.130 (2) | C1—C2 | 1.513 (4) |
Mn1—O5 | 2.136 (2) | C2—H2A | 0.9600 |
Mn1—O4 | 2.1533 (19) | C2—H2B | 0.9600 |
Mn1—O1i | 2.2076 (15) | C2—H2C | 0.9600 |
Mn1—O1ii | 2.2365 (17) | C3—O3iv | 1.247 (3) |
Mn1—O7i | 2.2467 (17) | C3—C4 | 1.498 (6) |
Mn2—O6 | 2.113 (2) | C4—H4A | 0.9600 |
Mn2—O6i | 2.113 (2) | C4—H4B | 0.9600 |
Mn2—O2 | 2.1690 (18) | C4—H4C | 0.9600 |
Mn2—O2i | 2.1690 (18) | C5—C6 | 1.499 (5) |
Mn2—O7 | 2.3224 (19) | C5—H5A | 0.9600 |
Mn2—O7i | 2.3224 (19) | C5—H5B | 0.9600 |
S1—O4 | 1.501 (2) | C5—H5C | 0.9600 |
S1—C8 | 1.768 (3) | C7—H7A | 0.9600 |
S1—C7 | 1.773 (5) | C7—H7B | 0.9600 |
O1—C1 | 1.275 (3) | C7—H7C | 0.9600 |
O1—Mn1i | 2.2076 (15) | C8—H8A | 0.9600 |
O1—Mn1iii | 2.2365 (17) | C8—H8B | 0.9600 |
O2—C1 | 1.239 (3) | C8—H8C | 0.9600 |
O3—C3 | 1.247 (3) | C9—C10 | 1.477 (7) |
O5—C6 | 1.245 (4) | C9—H9A | 0.9600 |
O6—C6 | 1.233 (4) | C9—H9B | 0.9600 |
O7—C10 | 1.264 (3) | C9—H9C | 0.9600 |
O7—Mn1i | 2.2467 (17) | C10—O7i | 1.264 (3) |
O3—Mn1—O5 | 175.34 (9) | O1—C1—C2 | 117.9 (2) |
O3—Mn1—O4 | 90.32 (9) | C1—C2—H2A | 109.5 |
O5—Mn1—O4 | 85.91 (10) | C1—C2—H2B | 109.5 |
O3—Mn1—O1i | 88.70 (8) | H2A—C2—H2B | 109.5 |
O5—Mn1—O1i | 94.97 (9) | C1—C2—H2C | 109.5 |
O4—Mn1—O1i | 177.66 (7) | H2A—C2—H2C | 109.5 |
O3—Mn1—O1ii | 90.78 (7) | H2B—C2—H2C | 109.5 |
O5—Mn1—O1ii | 87.19 (9) | O3iv—C3—O3 | 126.1 (4) |
O4—Mn1—O1ii | 99.89 (7) | O3iv—C3—C4 | 116.97 (19) |
O1i—Mn1—O1ii | 78.00 (7) | O3—C3—C4 | 116.97 (19) |
O3—Mn1—O7i | 90.53 (7) | C3—C4—H4A | 109.5 |
O5—Mn1—O7i | 92.12 (9) | C3—C4—H4B | 109.5 |
O4—Mn1—O7i | 88.74 (7) | H4A—C4—H4B | 109.5 |
O1i—Mn1—O7i | 93.39 (6) | C3—C4—H4C | 109.5 |
O1ii—Mn1—O7i | 171.26 (6) | H4A—C4—H4C | 109.5 |
O6—Mn2—O6i | 94.44 (13) | H4B—C4—H4C | 109.5 |
O6—Mn2—O2 | 84.50 (8) | C6—C5—H5A | 109.5 |
O6i—Mn2—O2 | 103.92 (8) | C6—C5—H5B | 109.5 |
O6—Mn2—O2i | 103.92 (8) | H5A—C5—H5B | 109.5 |
O6i—Mn2—O2i | 84.50 (8) | C6—C5—H5C | 109.5 |
O2—Mn2—O2i | 167.76 (13) | H5A—C5—H5C | 109.5 |
O6—Mn2—O7 | 158.69 (8) | H5B—C5—H5C | 109.5 |
O6i—Mn2—O7 | 105.48 (8) | O6—C6—O5 | 125.5 (3) |
O2—Mn2—O7 | 83.42 (7) | O6—C6—C5 | 118.3 (3) |
O2i—Mn2—O7 | 85.78 (8) | O5—C6—C5 | 116.2 (3) |
O6—Mn2—O7i | 105.48 (8) | S1—C7—H7A | 109.5 |
O6i—Mn2—O7i | 158.69 (8) | S1—C7—H7B | 109.5 |
O2—Mn2—O7i | 85.78 (8) | H7A—C7—H7B | 109.5 |
O2i—Mn2—O7i | 83.42 (7) | S1—C7—H7C | 109.5 |
O7—Mn2—O7i | 56.16 (9) | H7A—C7—H7C | 109.5 |
O4—S1—C8 | 103.40 (16) | H7B—C7—H7C | 109.5 |
O4—S1—C7 | 105.3 (2) | S1—C8—H8A | 109.5 |
C8—S1—C7 | 98.3 (2) | S1—C8—H8B | 109.5 |
C1—O1—Mn1i | 126.19 (15) | H8A—C8—H8B | 109.5 |
C1—O1—Mn1iii | 134.27 (15) | S1—C8—H8C | 109.5 |
Mn1i—O1—Mn1iii | 97.36 (6) | H8A—C8—H8C | 109.5 |
C1—O2—Mn2 | 147.63 (17) | H8B—C8—H8C | 109.5 |
C3—O3—Mn1 | 132.0 (2) | C10—C9—H9A | 109.5 |
S1—O4—Mn1 | 126.07 (12) | C10—C9—H9B | 109.5 |
C6—O5—Mn1 | 146.5 (2) | H9A—C9—H9B | 109.5 |
C6—O6—Mn2 | 120.7 (2) | C10—C9—H9C | 109.5 |
C10—O7—Mn1i | 142.22 (15) | H9A—C9—H9C | 109.5 |
C10—O7—Mn2 | 92.1 (2) | H9B—C9—H9C | 109.5 |
Mn1i—O7—Mn2 | 105.15 (7) | O7i—C10—O7 | 119.7 (4) |
O2—C1—O1 | 124.1 (2) | O7i—C10—C9 | 120.16 (19) |
O2—C1—C2 | 117.9 (2) | O7—C10—C9 | 120.16 (19) |
O6—Mn2—O2—C1 | 163.4 (4) | O6—Mn2—O7—C10 | −33.4 (2) |
O6i—Mn2—O2—C1 | 70.2 (4) | O6i—Mn2—O7—C10 | 168.01 (9) |
O2i—Mn2—O2—C1 | −62.4 (4) | O2—Mn2—O7—C10 | −89.32 (10) |
O7—Mn2—O2—C1 | −34.2 (4) | O2i—Mn2—O7—C10 | 84.91 (9) |
O7i—Mn2—O2—C1 | −90.5 (4) | O7i—Mn2—O7—C10 | 0.0 |
O5—Mn1—O3—C3 | −96.9 (11) | O6—Mn2—O7—Mn1i | 112.59 (19) |
O4—Mn1—O3—C3 | −132.66 (18) | O6i—Mn2—O7—Mn1i | −45.97 (9) |
O1i—Mn1—O3—C3 | 45.22 (18) | O2—Mn2—O7—Mn1i | 56.70 (8) |
O1ii—Mn1—O3—C3 | −32.76 (18) | O2i—Mn2—O7—Mn1i | −129.08 (8) |
O7i—Mn1—O3—C3 | 138.60 (19) | O7i—Mn2—O7—Mn1i | 146.02 (13) |
C8—S1—O4—Mn1 | 161.6 (2) | Mn2—O2—C1—O1 | 2.3 (6) |
C7—S1—O4—Mn1 | −95.7 (2) | Mn2—O2—C1—C2 | −177.9 (3) |
O3—Mn1—O4—S1 | −66.55 (18) | Mn1i—O1—C1—O2 | −2.6 (4) |
O5—Mn1—O4—S1 | 116.18 (19) | Mn1iii—O1—C1—O2 | −161.7 (2) |
O1i—Mn1—O4—S1 | −132 (2) | Mn1i—O1—C1—C2 | 177.7 (2) |
O1ii—Mn1—O4—S1 | −157.39 (17) | Mn1iii—O1—C1—C2 | 18.5 (4) |
O7i—Mn1—O4—S1 | 23.97 (18) | Mn1—O3—C3—O3iv | −3.74 (11) |
O3—Mn1—O5—C6 | −114.0 (11) | Mn1—O3—C3—C4 | 176.26 (11) |
O4—Mn1—O5—C6 | −78.1 (4) | Mn2—O6—C6—O5 | 18.9 (4) |
O1i—Mn1—O5—C6 | 104.1 (4) | Mn2—O6—C6—C5 | −163.8 (3) |
O1ii—Mn1—O5—C6 | −178.2 (4) | Mn1—O5—C6—O6 | −46.7 (6) |
O7i—Mn1—O5—C6 | 10.5 (4) | Mn1—O5—C6—C5 | 135.9 (4) |
O6i—Mn2—O6—C6 | −148.6 (2) | Mn1i—O7—C10—O7i | −118.3 (3) |
O2—Mn2—O6—C6 | 107.8 (2) | Mn2—O7—C10—O7i | 0.0 |
O2i—Mn2—O6—C6 | −63.2 (2) | Mn1i—O7—C10—C9 | 61.7 (3) |
O7—Mn2—O6—C6 | 52.1 (3) | Mn2—O7—C10—C9 | 180.0 |
O7i—Mn2—O6—C6 | 23.7 (2) |
Symmetry codes: (i) −x+2, y, −z+1; (ii) x, y, z−1; (iii) x, y, z+1; (iv) −x+2, y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O6v | 0.96 | 2.45 | 3.367 (4) | 160 |
C2—H2B···S1vi | 0.96 | 2.99 | 3.841 (4) | 147 |
Symmetry codes: (v) x−1/2, y+1/2, z; (vi) −x+3/2, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn3(C2H3O2)6(C2H6OS)2] |
Mr | 675.34 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 293 |
a, b, c (Å) | 12.8475 (16), 12.5439 (16), 8.6095 (11) |
β (°) | 94.906 (2) |
V (Å3) | 1382.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.56 |
Crystal size (mm) | 0.41 × 0.36 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.883, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3821, 1953, 1919 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.056, 1.05 |
No. of reflections | 1953 |
No. of parameters | 161 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.16 |
Absolute structure | Flack (1983), 653 Friedel pairs |
Absolute structure parameter | 0.034 (17) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···O6i | 0.96 | 2.45 | 3.367 (4) | 160.3 |
C2—H2B···S1ii | 0.96 | 2.99 | 3.841 (4) | 147.3 |
Symmetry codes: (i) x−1/2, y+1/2, z; (ii) −x+3/2, y−1/2, −z+1. |
Acknowledgements
The authors are grateful for financial support from the Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR20100718).
References
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calligaris, M. (2004). Coord. Chem. Rev. 248, 351–375. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X. Q., Yu, W. T., Xu, D., Lu, M. K. & Yuan, D. R. (2000). Acta Cryst. C56, 418–420. CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of dimethyl sulfoxid (DMSO) has been widely studied. Herein, we report the preparation and crystal strcuture of a new manganese(II) complex with dimethyl sulfoxide (DMSO). In the title complex, the two independent MnII ions (Mn1 and Mn2) exhibit a similar O6-octahedral coordination geometry with different coordination environments (Fig. 1). The Mn1 ion is surrounded by five acetates and one η1-bonding DMSO, while the Mn2 lies on a two-fold axis and is coordinated by six oxygen atoms of three symmetry related acetate ions. The acetate anions exhibit three independent bridging modes, syn, syn η1:η1:µ2-mode (C2-symmetric O3-containing acetate and O5-, O6-containing acetate), the syn, syn, ant η1:η2:µ3-mode (O1-, O2-containing acetate) and the syn, ant, syn, ant η2:η2:µ3-mode (C2-symmetric O7-containing acetate). The Mn1 and Mn2 ions are flexibly bridged by these anions and assemble into an infinite chain along the c direction (Fig. 2). The parallel arrays interconnect through C—H···O and C—H···S type H-bonding interactions (Table 1). In the termianl dimethyl sulfoxide, the S1═O4 of 1.501 (2)Å bond is slightly longer than that of the neat DMSO, which can be ascribed to the reduced bond order as that found in the protonated and η1-coordinated alkyl sulfoxides (Calligaris et al., 2004). The Mn1—O4 bond length of 2.153 (2)Å is comparable to 2.158 (2)Å found in catena-(tetrakis(µ2-thiocyanato-N,S)-bis(dimethyl sulfoxide-O)- manganese(II)-mercury(II) (Wang et al., 2000), in which the dimethyl sulfoxide shows a similar terminal η1-coordinated bonding to the MnII.