organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-Cyclo­propyl-4-(4-fluoro­phenyl)quinolin-3-yl]methanol

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, and bDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

(Received 26 September 2010; accepted 26 October 2010; online 31 October 2010)

The title compound, C19H16FNO, crystallizes with two independent mol­ecules in the asymmetric unit. In the two mol­ecules, the dihedral angles between the benzene and quinoline rings are 72.6 (5) and 76.2 (5)°, between the cyclo­propane and quinoline rings they are 65.2 (5) and 66.0 (5)°, and between the benzene and cyclo­propane rings they are 25.9 (5) and 33.9 (5)°. There are inter­molecular O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, as well as intra­molecular C—H⋯O hydrogen bonds, which may be effective in stabilizing the crystal structure.

Related literature

For a related structure, see: Prasath et al. (2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16FNO

  • Mr = 293.33

  • Monoclinic, P 21 /c

  • a = 10.069 (2) Å

  • b = 24.683 (5) Å

  • c = 13.275 (3) Å

  • β = 111.97 (3)°

  • V = 3059.7 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: empirical (using intensity measurements) via ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.983

  • 5865 measured reflections

  • 5536 independent reflections

  • 3098 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.166

  • S = 1.00

  • 5536 reflections

  • 398 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.85 2.04 2.849 (3) 159
O2—H2B⋯O1ii 0.82 2.10 2.909 (3) 170
C30—H30A⋯O1i 0.93 2.57 3.307 (3) 136
C37—H37B⋯O1i 0.97 2.59 3.372 (4) 138
C36—H36A⋯O2 0.98 2.49 3.117 (4) 121
C17—H17A⋯O1 0.98 2.55 3.168 (4) 121
C12—H12A⋯O2iii 0.93 2.42 3.318 (5) 161
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x-1, y, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of quinoline are important chemical materials. We report here the crystal structure of the title compound which has been prepared in our laboratory.

The title compound crystallizes with two independent but closely similar molecules per asymmetric unit (Fig. 1 and Fig. 2). In the two molecules, the dihedral angles between benzene and quinoline rings are 72.6 (5) and 76.2 (5)°, between cyclopropane and quinoline rings are 65.2 (5) and 66.0 (5)° and between benzene and cyclopropane rings are 25.9 (5) and 33.9 (5)°. The molecular packing (Fig. 3) is stabilized by intermolecular O—H···O, O—H···N and C—H···O hydrogen bonds (Table 1). In addition, intramolecular C—H···O hydrogen bonds are also present in the crystal structure.

The crystal structure of a closely related compound has been reported (Prasath et al., 2010).

Related literature top

For a related structure, see: Prasath et al. (2010).

Experimental top

A dry, 250-ml three-neck flask was charged with 100 ml of THF, 3.27 g (57.47 mmol) of KBH4, and 5.46 g (57.47 mmol) of MgCl2. The reaction mixture was heated under reflux for 2 h, then 10.0 g (57.47 mmol) of methyl 2-cyclopropyl-4-(4-fluorophenyl)quinoline-3-carboxylate was added dropwise over 5 min and refluxed for an additional 40 min. After cooling, methanol (15 ml) was carefully added dropwise to quench the reaction and the white inorganic solid was filtered and washed with 80 ml of THF/MeOH (10:1). The combined filtrate was concentrated to dryness, MeOH (40 ml) was added to the residue and concentrated to dryness again. The resulting residue was dissolved in 300 ml of ethyl acetate and washed with brine, dried over MgSO4 and concentrated to dryness to provide 7.58 g (yield 90.3%) of the title compound as colourless crystals.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93 or 0.97 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq(C/O) of the carrier atom.

Structure description top

Derivatives of quinoline are important chemical materials. We report here the crystal structure of the title compound which has been prepared in our laboratory.

The title compound crystallizes with two independent but closely similar molecules per asymmetric unit (Fig. 1 and Fig. 2). In the two molecules, the dihedral angles between benzene and quinoline rings are 72.6 (5) and 76.2 (5)°, between cyclopropane and quinoline rings are 65.2 (5) and 66.0 (5)° and between benzene and cyclopropane rings are 25.9 (5) and 33.9 (5)°. The molecular packing (Fig. 3) is stabilized by intermolecular O—H···O, O—H···N and C—H···O hydrogen bonds (Table 1). In addition, intramolecular C—H···O hydrogen bonds are also present in the crystal structure.

The crystal structure of a closely related compound has been reported (Prasath et al., 2010).

For a related structure, see: Prasath et al. (2010).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: CAD-4 EXPRESS (Enraf–Nonius, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The presentation of a molecule of (I), showing the atom-numbering scheme; displacement ellipsoids have been plotted at the 50% probability level.
[Figure 2] Fig. 2. The presentation of the second molecule of (I), showing the atom-numbering scheme; displacement ellipsoids have been plotted at the 50% probability level.
[Figure 3] Fig. 3. The crystal packing of (I) viewed down the a axis.
[2-Cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl]methanol top
Crystal data top
C19H16FNOF(000) = 1232
Mr = 293.33Dx = 1.274 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.069 (2) Åθ = 10–13°
b = 24.683 (5) ŵ = 0.09 mm1
c = 13.275 (3) ÅT = 293 K
β = 111.97 (3)°Block, colourless
V = 3059.7 (13) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
3098 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 012
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 029
Tmin = 0.974, Tmax = 0.983l = 1514
5865 measured reflections3 standard reflections every 200 reflections
5536 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.070P)2 + 1.0P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5536 reflectionsΔρmax = 0.20 e Å3
398 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0222 (15)
Crystal data top
C19H16FNOV = 3059.7 (13) Å3
Mr = 293.33Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.069 (2) ŵ = 0.09 mm1
b = 24.683 (5) ÅT = 293 K
c = 13.275 (3) Å0.30 × 0.20 × 0.20 mm
β = 111.97 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3098 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.031
Tmin = 0.974, Tmax = 0.9833 standard reflections every 200 reflections
5865 measured reflections intensity decay: 1%
5536 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
5536 reflectionsΔρmin = 0.18 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2535 (3)0.75467 (12)1.27963 (19)0.1195 (10)
O10.1866 (2)0.57598 (8)0.91629 (15)0.0484 (5)
H1A0.25350.55660.95960.058*
N10.2147 (3)0.62400 (12)0.6641 (2)0.0629 (8)
C10.1723 (5)0.73584 (16)1.1794 (3)0.0755 (11)
C20.2351 (4)0.72914 (15)1.1055 (3)0.0669 (10)
H2A0.33080.73821.12270.080*
C30.1544 (3)0.70875 (13)1.0056 (3)0.0555 (8)
H3A0.19630.70360.95470.067*
C40.0109 (3)0.69557 (12)0.9784 (2)0.0481 (8)
C50.0491 (4)0.70487 (14)1.0557 (3)0.0662 (10)
H5A0.14560.69741.03860.079*
C60.0312 (5)0.72479 (15)1.1564 (3)0.0795 (12)
H6A0.00940.73061.20790.095*
C70.0722 (3)0.67043 (13)0.8715 (2)0.0484 (8)
C80.0453 (3)0.61787 (12)0.8492 (2)0.0458 (7)
C90.1199 (3)0.59642 (13)0.7432 (2)0.0517 (8)
C100.2455 (3)0.67573 (14)0.6860 (3)0.0586 (9)
C110.3457 (4)0.70551 (17)0.6010 (3)0.0779 (12)
H11A0.38820.68970.53280.093*
C120.3812 (4)0.7570 (2)0.6169 (4)0.0897 (14)
H12A0.44920.77580.56030.108*
C130.3157 (4)0.78179 (17)0.7183 (4)0.0858 (13)
H13A0.33990.81720.72830.103*
C140.2163 (4)0.75455 (15)0.8030 (3)0.0696 (10)
H14A0.17380.77140.87020.083*
C150.1780 (3)0.70061 (13)0.7883 (3)0.0544 (9)
C160.0571 (3)0.58239 (12)0.9353 (2)0.0442 (7)
H16A0.07800.59861.00620.053*
H16B0.01380.54720.93460.053*
C170.0908 (4)0.54001 (14)0.7175 (3)0.0656 (10)
H17A0.01180.52170.77450.079*
C180.1149 (4)0.52291 (16)0.6044 (3)0.0720 (11)
H18A0.14880.55010.54760.086*
H18B0.04950.49650.59450.086*
C190.2152 (4)0.50415 (16)0.6537 (3)0.0748 (11)
H19A0.21100.46630.67450.090*
H19B0.31030.52000.62770.090*
F20.9501 (3)0.66225 (11)0.39541 (17)0.1052 (8)
O20.5786 (2)0.65058 (9)0.94408 (17)0.0597 (6)
H2B0.64230.62780.93020.090*
N20.3504 (2)0.50285 (10)0.93101 (18)0.0451 (6)
C200.8499 (4)0.63914 (14)0.4840 (3)0.0646 (10)
C210.8889 (4)0.62502 (15)0.5687 (3)0.0680 (10)
H21A0.98080.63180.56640.082*
C220.7874 (3)0.60039 (14)0.6577 (3)0.0584 (9)
H22A0.81150.59040.71620.070*
C230.6507 (3)0.59032 (12)0.6613 (2)0.0432 (7)
C240.6163 (4)0.60645 (14)0.5742 (3)0.0620 (9)
H24A0.52420.60060.57600.074*
C250.7164 (4)0.63104 (15)0.4851 (3)0.0719 (11)
H25A0.69280.64190.42680.086*
C260.5441 (3)0.56122 (12)0.7552 (2)0.0415 (7)
C270.4757 (3)0.58558 (11)0.8541 (2)0.0417 (7)
C280.3783 (3)0.55476 (12)0.9413 (2)0.0439 (7)
C290.4175 (3)0.47784 (12)0.8325 (2)0.0419 (7)
C300.3911 (3)0.42248 (12)0.8223 (2)0.0517 (8)
H30A0.32770.40380.88170.062*
C310.4569 (3)0.39590 (14)0.7268 (3)0.0565 (9)
H31A0.43730.35940.72120.068*
C320.5536 (4)0.42303 (14)0.6370 (3)0.0567 (9)
H32A0.59860.40460.57190.068*
C330.5820 (3)0.47647 (13)0.6448 (2)0.0505 (8)
H33A0.64700.49420.58470.061*
C340.5145 (3)0.50553 (12)0.7426 (2)0.0423 (7)
C350.5051 (3)0.64418 (12)0.8719 (2)0.0501 (8)
H35A0.41490.66360.90080.060*
H35B0.56190.66030.80250.060*
C360.3029 (3)0.58073 (13)1.0480 (2)0.0537 (8)
H36A0.33220.61811.05350.064*
C370.2562 (3)0.54946 (14)1.1518 (2)0.0580 (9)
H37A0.26210.56731.21510.070*
H37B0.27580.51091.14740.070*
C380.1478 (3)0.56916 (14)1.1108 (2)0.0567 (9)
H38A0.10120.54271.08120.068*
H38B0.08740.59911.14900.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.144 (2)0.140 (2)0.0805 (16)0.0509 (19)0.0496 (16)0.0475 (16)
O10.0440 (12)0.0567 (13)0.0429 (11)0.0092 (10)0.0144 (9)0.0049 (10)
N10.0524 (17)0.062 (2)0.0595 (18)0.0048 (14)0.0040 (14)0.0106 (15)
C10.098 (3)0.073 (3)0.064 (2)0.026 (2)0.040 (2)0.029 (2)
C20.060 (2)0.073 (3)0.072 (2)0.0147 (19)0.031 (2)0.014 (2)
C30.055 (2)0.058 (2)0.063 (2)0.0011 (16)0.0326 (17)0.0075 (17)
C40.0514 (19)0.0403 (18)0.060 (2)0.0043 (14)0.0295 (16)0.0006 (15)
C50.068 (2)0.062 (2)0.089 (3)0.0053 (18)0.052 (2)0.014 (2)
C60.108 (3)0.072 (3)0.088 (3)0.018 (2)0.070 (3)0.021 (2)
C70.0404 (17)0.051 (2)0.060 (2)0.0002 (14)0.0256 (15)0.0013 (16)
C80.0389 (16)0.0490 (19)0.0485 (18)0.0029 (14)0.0152 (14)0.0045 (14)
C90.0457 (18)0.053 (2)0.0508 (19)0.0004 (15)0.0113 (16)0.0023 (16)
C100.0417 (18)0.059 (2)0.069 (2)0.0016 (16)0.0141 (17)0.0213 (19)
C110.054 (2)0.078 (3)0.089 (3)0.008 (2)0.012 (2)0.035 (2)
C120.054 (2)0.087 (3)0.121 (4)0.018 (2)0.026 (3)0.051 (3)
C130.067 (3)0.058 (3)0.146 (4)0.021 (2)0.056 (3)0.035 (3)
C140.056 (2)0.058 (2)0.105 (3)0.0092 (18)0.043 (2)0.015 (2)
C150.0419 (18)0.048 (2)0.079 (2)0.0056 (15)0.0291 (18)0.0154 (18)
C160.0470 (17)0.0441 (17)0.0434 (17)0.0027 (14)0.0191 (14)0.0004 (13)
C170.067 (2)0.063 (2)0.050 (2)0.0063 (18)0.0021 (17)0.0069 (17)
C180.067 (2)0.081 (3)0.062 (2)0.010 (2)0.017 (2)0.017 (2)
C190.081 (3)0.069 (3)0.078 (3)0.021 (2)0.034 (2)0.015 (2)
F20.0998 (17)0.123 (2)0.0704 (14)0.0350 (15)0.0064 (13)0.0357 (14)
O20.0593 (14)0.0563 (14)0.0670 (15)0.0020 (11)0.0276 (12)0.0159 (11)
N20.0472 (15)0.0458 (16)0.0392 (14)0.0044 (12)0.0125 (12)0.0029 (11)
C200.068 (2)0.066 (2)0.047 (2)0.0149 (19)0.0073 (18)0.0145 (17)
C210.048 (2)0.081 (3)0.071 (2)0.0075 (18)0.0169 (19)0.012 (2)
C220.050 (2)0.077 (2)0.0510 (19)0.0047 (17)0.0220 (16)0.0131 (17)
C230.0434 (17)0.0450 (18)0.0416 (16)0.0009 (13)0.0163 (14)0.0029 (13)
C240.059 (2)0.078 (2)0.057 (2)0.0089 (19)0.0308 (18)0.0174 (18)
C250.087 (3)0.082 (3)0.054 (2)0.020 (2)0.034 (2)0.0263 (19)
C260.0392 (16)0.0477 (19)0.0396 (16)0.0013 (14)0.0169 (14)0.0042 (14)
C270.0385 (16)0.0423 (18)0.0429 (17)0.0030 (13)0.0135 (13)0.0006 (14)
C280.0407 (17)0.0497 (19)0.0393 (17)0.0026 (14)0.0128 (14)0.0032 (14)
C290.0427 (16)0.0439 (18)0.0387 (16)0.0007 (14)0.0148 (14)0.0018 (14)
C300.059 (2)0.0469 (19)0.0448 (18)0.0053 (15)0.0151 (15)0.0016 (15)
C310.066 (2)0.050 (2)0.054 (2)0.0016 (17)0.0229 (17)0.0078 (16)
C320.067 (2)0.059 (2)0.0449 (19)0.0063 (17)0.0213 (17)0.0134 (16)
C330.0538 (19)0.057 (2)0.0369 (17)0.0002 (16)0.0123 (14)0.0000 (15)
C340.0414 (16)0.0485 (19)0.0402 (16)0.0036 (14)0.0188 (14)0.0002 (14)
C350.0491 (18)0.0456 (19)0.0523 (19)0.0007 (14)0.0152 (15)0.0012 (15)
C360.056 (2)0.0458 (19)0.0482 (19)0.0075 (15)0.0068 (16)0.0076 (15)
C370.067 (2)0.066 (2)0.0423 (18)0.0015 (18)0.0225 (17)0.0071 (16)
C380.052 (2)0.062 (2)0.0498 (19)0.0089 (16)0.0122 (16)0.0033 (16)
Geometric parameters (Å, º) top
F1—C11.357 (4)F2—C201.356 (4)
O1—C161.426 (3)O2—C351.421 (3)
O1—H1A0.8501O2—H2B0.8200
N1—C91.315 (4)N2—C281.330 (4)
N1—C101.370 (4)N2—C291.373 (3)
C1—C21.361 (5)C20—C251.354 (5)
C1—C61.365 (5)C20—C211.367 (5)
C2—C31.366 (4)C21—C221.381 (4)
C2—H2A0.9300C21—H21A0.9300
C3—C41.391 (4)C22—C231.381 (4)
C3—H3A0.9300C22—H22A0.9300
C4—C51.390 (4)C23—C241.384 (4)
C4—C71.487 (4)C23—C261.490 (4)
C5—C61.370 (5)C24—C251.375 (4)
C5—H5A0.9300C24—H24A0.9300
C6—H6A0.9300C25—H25A0.9300
C7—C81.380 (4)C26—C271.373 (4)
C7—C151.424 (4)C26—C341.429 (4)
C8—C91.425 (4)C27—C281.425 (4)
C8—C161.502 (4)C27—C351.513 (4)
C9—C171.488 (4)C28—C361.479 (4)
C10—C111.407 (4)C29—C341.405 (4)
C10—C151.413 (5)C29—C301.408 (4)
C11—C121.359 (6)C30—C311.360 (4)
C11—H11A0.9300C30—H30A0.9300
C12—C131.399 (6)C31—C321.396 (4)
C12—H12A0.9300C31—H31A0.9300
C13—C141.370 (5)C32—C331.362 (4)
C13—H13A0.9300C32—H32A0.9300
C14—C151.420 (5)C33—C341.416 (4)
C14—H14A0.9300C33—H33A0.9300
C16—H16A0.9700C35—H35A0.9700
C16—H16B0.9700C35—H35B0.9700
C17—C181.490 (4)C36—C371.493 (4)
C17—C191.508 (5)C36—C381.498 (4)
C17—H17A0.9800C36—H36A0.9800
C18—C191.469 (5)C37—C381.472 (4)
C18—H18A0.9700C37—H37A0.9700
C18—H18B0.9700C37—H37B0.9700
C19—H19A0.9700C38—H38A0.9700
C19—H19B0.9700C38—H38B0.9700
C16—O1—H1A119.2C35—O2—H2B109.5
C9—N1—C10117.9 (3)C28—N2—C29118.9 (2)
F1—C1—C2118.4 (4)C25—C20—F2119.1 (3)
F1—C1—C6118.8 (4)C25—C20—C21122.8 (3)
C2—C1—C6122.7 (4)F2—C20—C21118.1 (3)
C1—C2—C3118.4 (3)C20—C21—C22117.9 (3)
C1—C2—H2A120.8C20—C21—H21A121.1
C3—C2—H2A120.8C22—C21—H21A121.1
C2—C3—C4121.5 (3)C21—C22—C23121.2 (3)
C2—C3—H3A119.3C21—C22—H22A119.4
C4—C3—H3A119.3C23—C22—H22A119.4
C5—C4—C3117.7 (3)C22—C23—C24118.5 (3)
C5—C4—C7121.9 (3)C22—C23—C26120.8 (3)
C3—C4—C7120.3 (3)C24—C23—C26120.7 (3)
C6—C5—C4121.3 (3)C25—C24—C23120.9 (3)
C6—C5—H5A119.4C25—C24—H24A119.5
C4—C5—H5A119.4C23—C24—H24A119.5
C1—C6—C5118.3 (3)C20—C25—C24118.7 (3)
C1—C6—H6A120.8C20—C25—H25A120.7
C5—C6—H6A120.8C24—C25—H25A120.7
C8—C7—C15118.4 (3)C27—C26—C34118.7 (3)
C8—C7—C4120.8 (3)C27—C26—C23122.4 (3)
C15—C7—C4120.8 (3)C34—C26—C23118.9 (3)
C7—C8—C9119.2 (3)C26—C27—C28119.3 (3)
C7—C8—C16121.2 (3)C26—C27—C35120.7 (3)
C9—C8—C16119.5 (3)C28—C27—C35119.9 (3)
N1—C9—C8123.6 (3)N2—C28—C27122.6 (3)
N1—C9—C17116.6 (3)N2—C28—C36117.6 (3)
C8—C9—C17119.9 (3)C27—C28—C36119.8 (3)
N1—C10—C11117.9 (4)N2—C29—C34121.9 (3)
N1—C10—C15122.9 (3)N2—C29—C30119.0 (3)
C11—C10—C15119.1 (4)C34—C29—C30119.1 (3)
C12—C11—C10121.0 (4)C31—C30—C29121.0 (3)
C12—C11—H11A119.5C31—C30—H30A119.5
C10—C11—H11A119.5C29—C30—H30A119.5
C11—C12—C13120.1 (4)C30—C31—C32120.4 (3)
C11—C12—H12A119.9C30—C31—H31A119.8
C13—C12—H12A119.9C32—C31—H31A119.8
C14—C13—C12120.8 (4)C33—C32—C31119.9 (3)
C14—C13—H13A119.6C33—C32—H32A120.0
C12—C13—H13A119.6C31—C32—H32A120.0
C13—C14—C15120.0 (4)C32—C33—C34121.2 (3)
C13—C14—H14A120.0C32—C33—H33A119.4
C15—C14—H14A120.0C34—C33—H33A119.4
C10—C15—C14118.8 (3)C29—C34—C33118.4 (3)
C10—C15—C7118.0 (3)C29—C34—C26118.6 (3)
C14—C15—C7123.2 (3)C33—C34—C26123.0 (3)
O1—C16—C8110.1 (2)O2—C35—C27113.1 (2)
O1—C16—H16A109.7O2—C35—H35A109.0
C8—C16—H16A109.7C27—C35—H35A109.0
O1—C16—H16B109.7O2—C35—H35B109.0
C8—C16—H16B109.7C27—C35—H35B109.0
H16A—C16—H16B108.2H35A—C35—H35B107.8
C9—C17—C18121.6 (3)C28—C36—C37122.1 (3)
C9—C17—C19119.0 (3)C28—C36—C38120.3 (3)
C18—C17—C1958.7 (2)C37—C36—C3859.0 (2)
C9—C17—H17A115.3C28—C36—H36A114.7
C18—C17—H17A115.3C37—C36—H36A114.7
C19—C17—H17A115.3C38—C36—H36A114.7
C19—C18—C1761.3 (2)C38—C37—C3660.7 (2)
C19—C18—H18A117.6C38—C37—H37A117.7
C17—C18—H18A117.6C36—C37—H37A117.7
C19—C18—H18B117.6C38—C37—H37B117.7
C17—C18—H18B117.6C36—C37—H37B117.7
H18A—C18—H18B114.7H37A—C37—H37B114.8
C18—C19—C1760.0 (2)C37—C38—C3660.4 (2)
C18—C19—H19A117.8C37—C38—H38A117.7
C17—C19—H19A117.8C36—C38—H38A117.7
C18—C19—H19B117.8C37—C38—H38B117.7
C17—C19—H19B117.8C36—C38—H38B117.7
H19A—C19—H19B114.9H38A—C38—H38B114.9
F1—C1—C2—C3178.2 (3)C25—C20—C21—C221.5 (6)
C6—C1—C2—C32.3 (6)F2—C20—C21—C22178.6 (3)
C1—C2—C3—C40.7 (5)C20—C21—C22—C230.0 (5)
C2—C3—C4—C51.3 (5)C21—C22—C23—C241.2 (5)
C2—C3—C4—C7176.4 (3)C21—C22—C23—C26176.9 (3)
C3—C4—C5—C61.9 (5)C22—C23—C24—C251.2 (5)
C7—C4—C5—C6175.7 (3)C26—C23—C24—C25176.9 (3)
F1—C1—C6—C5178.8 (4)F2—C20—C25—C24178.5 (3)
C2—C1—C6—C51.7 (6)C21—C20—C25—C241.5 (6)
C4—C5—C6—C10.5 (6)C23—C24—C25—C200.1 (6)
C5—C4—C7—C8107.4 (4)C22—C23—C26—C2775.3 (4)
C3—C4—C7—C870.2 (4)C24—C23—C26—C27106.6 (4)
C5—C4—C7—C1574.9 (4)C22—C23—C26—C34103.1 (3)
C3—C4—C7—C15107.6 (3)C24—C23—C26—C3475.0 (4)
C15—C7—C8—C92.3 (4)C34—C26—C27—C280.4 (4)
C4—C7—C8—C9175.5 (3)C23—C26—C27—C28178.0 (3)
C15—C7—C8—C16175.6 (3)C34—C26—C27—C35179.1 (3)
C4—C7—C8—C166.6 (4)C23—C26—C27—C350.7 (4)
C10—N1—C9—C81.6 (5)C29—N2—C28—C270.1 (4)
C10—N1—C9—C17178.9 (3)C29—N2—C28—C36179.3 (3)
C7—C8—C9—N10.2 (5)C26—C27—C28—N20.0 (4)
C16—C8—C9—N1177.7 (3)C35—C27—C28—N2178.7 (3)
C7—C8—C9—C17179.3 (3)C26—C27—C28—C36179.4 (3)
C16—C8—C9—C172.7 (4)C35—C27—C28—C361.9 (4)
C9—N1—C10—C11179.2 (3)C28—N2—C29—C340.1 (4)
C9—N1—C10—C151.3 (5)C28—N2—C29—C30178.3 (3)
N1—C10—C11—C12180.0 (3)N2—C29—C30—C31179.0 (3)
C15—C10—C11—C122.0 (5)C34—C29—C30—C310.6 (5)
C10—C11—C12—C131.5 (6)C29—C30—C31—C320.7 (5)
C11—C12—C13—C140.7 (6)C30—C31—C32—C330.2 (5)
C12—C13—C14—C150.3 (5)C31—C32—C33—C340.3 (5)
N1—C10—C15—C14179.5 (3)N2—C29—C34—C33178.4 (3)
C11—C10—C15—C141.6 (5)C30—C29—C34—C330.1 (4)
N1—C10—C15—C70.8 (5)N2—C29—C34—C260.4 (4)
C11—C10—C15—C7177.2 (3)C30—C29—C34—C26177.9 (3)
C13—C14—C15—C100.8 (5)C32—C33—C34—C290.4 (4)
C13—C14—C15—C7177.9 (3)C32—C33—C34—C26178.3 (3)
C8—C7—C15—C102.5 (4)C27—C26—C34—C290.6 (4)
C4—C7—C15—C10175.3 (3)C23—C26—C34—C29177.9 (2)
C8—C7—C15—C14178.8 (3)C27—C26—C34—C33178.5 (3)
C4—C7—C15—C143.4 (4)C23—C26—C34—C330.0 (4)
C7—C8—C16—O1106.7 (3)C26—C27—C35—O2111.6 (3)
C9—C8—C16—O175.4 (3)C28—C27—C35—O267.0 (3)
N1—C9—C17—C1825.2 (5)N2—C28—C36—C3729.2 (4)
C8—C9—C17—C18154.4 (3)C27—C28—C36—C37151.3 (3)
N1—C9—C17—C1943.9 (5)N2—C28—C36—C3841.0 (4)
C8—C9—C17—C19136.5 (3)C27—C28—C36—C38138.4 (3)
C9—C17—C18—C19107.0 (4)C28—C36—C37—C38108.6 (3)
C9—C17—C19—C18111.4 (4)C28—C36—C38—C37111.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.852.042.849 (3)159
O2—H2B···O1ii0.822.102.909 (3)170
C30—H30A···O1i0.932.573.307 (3)136
C37—H37B···O1i0.972.593.372 (4)138
C36—H36A···O20.982.493.117 (4)121
C17—H17A···O10.982.553.168 (4)121
C12—H12A···O2iii0.932.423.318 (5)161
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H16FNO
Mr293.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.069 (2), 24.683 (5), 13.275 (3)
β (°) 111.97 (3)
V3)3059.7 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5865, 5536, 3098
Rint0.031
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.166, 1.00
No. of reflections5536
No. of parameters398
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.852.03902.849 (3)159
O2—H2B···O1ii0.822.09902.909 (3)170
C30—H30A···O1i0.932.57003.307 (3)136
C37—H37B···O1i0.972.58603.372 (4)138
C36—H36A···O20.982.49203.117 (4)121
C17—H17A···O10.982.55203.168 (4)121
C12—H12A···O2iii0.932.4233.318 (5)161
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPrasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds