organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Bis(di­phenyl­phosphanyl)cyclo­propyl­amine

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: EngelbrechtI@ufs.ac.za

(Received 11 October 2010; accepted 15 October 2010; online 23 October 2010)

In the title compound, C27H25NP2, the diphenyl­phosphino groups are staggered relative to the PNP backbone. The dihedral angles between the phenyl rings bonded to each P atom are 51.74 (5) and 68.23 (4)°. The coordination around the N atom deviates from trigonal-pyrimidal geometry towards an almost planar arrangement between the N atom and the adjacent P and C atoms; the distance between the N atom and the plane formed by the adjacent C/P/P atoms is 0.098 (2) Å.

Related literature

For similar non-coordinated diphosphineamine ligands with distorted trigonal-pyramidal geometries see: Fei et al. (2003[Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772-2779.]); Keat et al. (1981[Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192-2198.]); Cotton et al. (1996[Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251-256.]); Cloete et al. (2008[Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480.], 2009[Cloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081.], 2010[Cloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51-m52.]).

[Scheme 1]

Experimental

Crystal data
  • C27H25NP2

  • Mr = 425.42

  • Monoclinic, P 21 /c

  • a = 14.460 (4) Å

  • b = 10.486 (5) Å

  • c = 17.053 (5) Å

  • β = 119.358 (5)°

  • V = 2253.6 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.33 × 0.18 × 0.16 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.968

  • 33310 measured reflections

  • 5581 independent reflections

  • 4477 reflections with I > 2.0σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.06

  • 5581 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This structure forms part of ongoing research on ethylene tetramerization. In the title compound, all bond distances and angles are normal and fall within the range for similar complexes (Keat et al., 1981; Cotton et al., 1996; Cloete et al., 2008; 2009; 2010). The distance of N1 from the P1—P2—C1 plane is 0.098 (2) Å showing that the N atom adapts a planar geometry with these atoms in order to accomodate the steric bulk of the phenyl groups. Dihedral angles were calculated based on planes defined by each phenyl ring and the neighboring P atom. The dihedral angles between the various phenyl rings within the molecule are: C1/C2 = 51.74 (5) ° and C3/C4 = 68.23 (4) °. TThe distorted tetrahedral angles of the P atoms range between 100.43 (7) and 105.26 (7) ° which is in good comparison with those in literature. There are no classical intermolecular hydrogen interactions. The title compound is a Cs conformer in the solid state (Keat et al., 1981) in which the phosphorous lone pairs are trans with respect to the N–C bond.

Related literature top

For similar non-coordinated diphosphineamine ligands with distorted trigonal-pyramidal geometries see: Keat et al. (1981); Cotton et al. (1996); Cloete et al. (2008, 2009, 2010). For [please specify], see: Fei et al. (2003).

Experimental top

Cyclopropylamine (0.010 mol, 693 µl) was dissolved in dichloromethane (30 ml) after which the solution was placed on an ice bath. Triethylamine (0.030 mol, 4.21 ml) was added to the solution while stirring. Chlorodiphenylphosphine (0.020 mol, 3.70 ml) was slowly added to the reaction mixture. The ice bath was removed after 1 h and the reaction mixture was allowed to stir at room temperature for a further 13 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. Single colourless crystals suitable for X-ray crystallography were obtained from recrystallization from methanol. (yield: 1.807 g, 43%)

Refinement top

The methine, methylene and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00, 0.99 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.71 Å from C43 and the deepest hole is situated 0.53 Å from P1.

Structure description top

This structure forms part of ongoing research on ethylene tetramerization. In the title compound, all bond distances and angles are normal and fall within the range for similar complexes (Keat et al., 1981; Cotton et al., 1996; Cloete et al., 2008; 2009; 2010). The distance of N1 from the P1—P2—C1 plane is 0.098 (2) Å showing that the N atom adapts a planar geometry with these atoms in order to accomodate the steric bulk of the phenyl groups. Dihedral angles were calculated based on planes defined by each phenyl ring and the neighboring P atom. The dihedral angles between the various phenyl rings within the molecule are: C1/C2 = 51.74 (5) ° and C3/C4 = 68.23 (4) °. TThe distorted tetrahedral angles of the P atoms range between 100.43 (7) and 105.26 (7) ° which is in good comparison with those in literature. There are no classical intermolecular hydrogen interactions. The title compound is a Cs conformer in the solid state (Keat et al., 1981) in which the phosphorous lone pairs are trans with respect to the N–C bond.

For similar non-coordinated diphosphineamine ligands with distorted trigonal-pyramidal geometries see: Keat et al. (1981); Cotton et al. (1996); Cloete et al. (2008, 2009, 2010). For [please specify], see: Fei et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
N,N-Bis(diphenylphosphanyl)cyclopropylamine top
Crystal data top
C27H25NP2F(000) = 896
Mr = 425.42Dx = 1.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 8432 reflections
a = 14.460 (4) Åθ = 2.5–27.5°
b = 10.486 (5) ŵ = 0.21 mm1
c = 17.053 (5) ÅT = 100 K
β = 119.358 (5)°Cuboid, colourless
V = 2253.6 (15) Å30.33 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5581 independent reflections
Radiation source: fine-focus sealed tube4477 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.041
ω and φ scansθmax = 28.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1819
Tmin = 0.935, Tmax = 0.968k = 1013
33310 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0466P)2 + 1.0215P]
where P = (Fo2 + 2Fc2)/3
5581 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C27H25NP2V = 2253.6 (15) Å3
Mr = 425.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.460 (4) ŵ = 0.21 mm1
b = 10.486 (5) ÅT = 100 K
c = 17.053 (5) Å0.33 × 0.18 × 0.16 mm
β = 119.358 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4477 reflections with I > 2.0σ(I)
Tmin = 0.935, Tmax = 0.968Rint = 0.041
33310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
5581 reflectionsΔρmin = 0.36 e Å3
271 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1407 frames were collected with a frame width of 0.5° covering up to θ = 28.36° with 99.3% completeness accomplished. Spectroscopy data: 1H NMR (300 MHz, CD2Cl2): δ = 0.3 to 0.7 (m, 4H, 2 x CH2), 2.6 (m, 1H, CH), 7.3 to 7.5 (m, 20H, Ar); 31P NMR (121 MHz, CD2Cl2): δ = 63.4 (s).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59558 (12)0.25225 (15)0.55966 (10)0.0209 (3)
H10.54730.19950.57290.025*
C20.54277 (14)0.32353 (16)0.47190 (11)0.0267 (4)
H2A0.46540.31210.43270.032*
H2B0.58330.33540.43960.032*
C30.58012 (14)0.39375 (16)0.55920 (11)0.0274 (4)
H3A0.64360.44880.58040.033*
H3B0.52560.42550.57350.033*
C110.71357 (12)0.07960 (14)0.74371 (10)0.0184 (3)
C120.63529 (12)0.00544 (14)0.68578 (11)0.0211 (3)
H120.61510.00620.62370.025*
C130.58661 (13)0.08882 (16)0.71768 (11)0.0248 (3)
H130.53270.1450.67730.03*
C140.61675 (14)0.08999 (16)0.80836 (12)0.0258 (4)
H140.58340.14670.83030.031*
C150.69601 (13)0.00792 (15)0.86719 (11)0.0245 (3)
H150.71730.00930.92950.029*
C160.74413 (13)0.07601 (15)0.83527 (11)0.0213 (3)
H160.79840.13160.8760.026*
C210.77084 (12)0.33887 (14)0.75153 (10)0.0180 (3)
C220.68675 (13)0.37085 (15)0.76614 (10)0.0205 (3)
H220.6350.30840.75760.025*
C230.67822 (14)0.49346 (15)0.79308 (11)0.0251 (3)
H230.62030.51450.80220.03*
C240.75390 (14)0.58542 (16)0.80678 (11)0.0258 (4)
H240.74710.66940.82420.031*
C250.83918 (14)0.55410 (15)0.79498 (11)0.0241 (3)
H250.89210.6160.80570.029*
C260.84747 (13)0.43169 (15)0.76732 (10)0.0207 (3)
H260.90610.41090.75910.025*
C310.76517 (12)0.03248 (14)0.55113 (10)0.0182 (3)
C320.68867 (13)0.12527 (15)0.50250 (11)0.0222 (3)
H320.62340.10060.45190.027*
C330.70678 (14)0.25267 (15)0.52714 (11)0.0262 (4)
H330.6540.31470.49380.031*
C340.80162 (14)0.28923 (15)0.60026 (12)0.0272 (4)
H340.81420.37660.61680.033*
C350.87866 (14)0.19906 (15)0.64963 (12)0.0269 (4)
H350.94360.22450.70020.032*
C360.86059 (13)0.07105 (15)0.62481 (11)0.0223 (3)
H360.91370.00950.65830.027*
C410.85308 (12)0.20398 (14)0.53650 (10)0.0173 (3)
C420.91036 (12)0.14796 (15)0.49881 (10)0.0201 (3)
H420.88890.06750.46990.024*
C430.99796 (13)0.20875 (16)0.50336 (11)0.0239 (3)
H431.03580.16990.47720.029*
C441.03073 (13)0.32609 (16)0.54587 (12)0.0267 (4)
H441.09110.36720.54920.032*
C450.97516 (14)0.38290 (15)0.58346 (12)0.0266 (4)
H450.99780.46280.61310.032*
C460.88620 (13)0.32314 (14)0.57785 (11)0.0222 (3)
H460.84740.36380.60240.027*
N10.70166 (10)0.20116 (11)0.59277 (8)0.0171 (3)
P10.78650 (3)0.18492 (4)0.70717 (3)0.01690 (10)
P20.72688 (3)0.13260 (4)0.51349 (3)0.01718 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (7)0.0222 (8)0.0204 (8)0.0035 (6)0.0094 (6)0.0003 (6)
C20.0286 (9)0.0274 (8)0.0215 (8)0.0078 (7)0.0101 (7)0.0011 (7)
C30.0304 (9)0.0247 (8)0.0227 (8)0.0083 (7)0.0097 (7)0.0006 (7)
C110.0196 (7)0.0158 (7)0.0213 (8)0.0023 (6)0.0112 (6)0.0005 (6)
C120.0254 (8)0.0202 (7)0.0193 (8)0.0002 (6)0.0124 (7)0.0017 (6)
C130.0272 (9)0.0216 (8)0.0261 (9)0.0058 (6)0.0135 (7)0.0045 (7)
C140.0304 (9)0.0222 (8)0.0306 (9)0.0029 (7)0.0194 (8)0.0013 (7)
C150.0301 (9)0.0257 (8)0.0203 (8)0.0007 (7)0.0142 (7)0.0019 (6)
C160.0227 (8)0.0202 (7)0.0196 (8)0.0014 (6)0.0092 (6)0.0003 (6)
C210.0208 (8)0.0186 (7)0.0134 (7)0.0010 (6)0.0073 (6)0.0002 (6)
C220.0220 (8)0.0209 (7)0.0187 (8)0.0005 (6)0.0102 (6)0.0007 (6)
C230.0283 (9)0.0251 (8)0.0244 (8)0.0051 (7)0.0148 (7)0.0007 (7)
C240.0362 (9)0.0186 (7)0.0209 (8)0.0025 (7)0.0127 (7)0.0009 (6)
C250.0315 (9)0.0206 (8)0.0186 (8)0.0048 (7)0.0112 (7)0.0011 (6)
C260.0227 (8)0.0229 (8)0.0165 (7)0.0022 (6)0.0097 (6)0.0011 (6)
C310.0225 (8)0.0173 (7)0.0216 (8)0.0009 (6)0.0161 (7)0.0015 (6)
C320.0253 (8)0.0222 (8)0.0232 (8)0.0029 (6)0.0150 (7)0.0034 (6)
C330.0365 (10)0.0211 (8)0.0279 (9)0.0086 (7)0.0210 (8)0.0066 (7)
C340.0413 (10)0.0162 (7)0.0311 (9)0.0017 (7)0.0233 (8)0.0003 (7)
C350.0289 (9)0.0238 (8)0.0286 (9)0.0024 (7)0.0146 (7)0.0052 (7)
C360.0226 (8)0.0192 (7)0.0270 (8)0.0018 (6)0.0136 (7)0.0008 (6)
C410.0200 (7)0.0178 (7)0.0147 (7)0.0011 (6)0.0088 (6)0.0038 (6)
C420.0241 (8)0.0178 (7)0.0198 (8)0.0027 (6)0.0118 (7)0.0018 (6)
C430.0246 (8)0.0263 (8)0.0264 (8)0.0054 (6)0.0169 (7)0.0078 (7)
C440.0248 (8)0.0280 (8)0.0291 (9)0.0039 (7)0.0147 (7)0.0077 (7)
C450.0343 (9)0.0196 (8)0.0255 (9)0.0068 (7)0.0143 (8)0.0001 (6)
C460.0308 (9)0.0178 (7)0.0224 (8)0.0005 (6)0.0164 (7)0.0010 (6)
N10.0179 (6)0.0186 (6)0.0155 (6)0.0020 (5)0.0088 (5)0.0004 (5)
P10.0173 (2)0.01718 (19)0.0168 (2)0.00046 (14)0.00886 (16)0.00058 (14)
P20.0189 (2)0.01685 (19)0.0170 (2)0.00047 (14)0.00976 (16)0.00097 (14)
Geometric parameters (Å, º) top
C1—N11.452 (2)C25—C261.393 (2)
C1—C31.500 (2)C25—H250.95
C1—C21.504 (2)C26—H260.95
C1—H11C31—C361.395 (2)
C2—C31.504 (2)C31—C321.399 (2)
C2—H2A0.99C31—P21.8349 (17)
C2—H2B0.99C32—C331.386 (2)
C3—H3A0.99C32—H320.95
C3—H3B0.99C33—C341.380 (3)
C11—C121.399 (2)C33—H330.95
C11—C161.399 (2)C34—C351.387 (2)
C11—P11.8342 (16)C34—H340.95
C12—C131.390 (2)C35—C361.393 (2)
C12—H120.95C35—H350.95
C13—C141.386 (2)C36—H360.95
C13—H130.95C41—C461.399 (2)
C14—C151.390 (2)C41—C421.402 (2)
C14—H140.95C41—P21.8282 (16)
C15—C161.388 (2)C42—C431.386 (2)
C15—H150.95C42—H420.95
C16—H160.95C43—C441.388 (2)
C21—C221.396 (2)C43—H430.95
C21—C261.398 (2)C44—C451.384 (2)
C21—P11.8433 (17)C44—H440.95
C22—C231.391 (2)C45—C461.391 (2)
C22—H220.95C45—H450.95
C23—C241.390 (2)C46—H460.95
C23—H230.95N1—P21.7208 (13)
C24—C251.383 (2)N1—P11.7301 (14)
C24—H240.95
N1—C1—C3119.55 (14)C26—C25—H25120
N1—C1—C2119.64 (14)C25—C26—C21121.00 (15)
C3—C1—C260.09 (11)C25—C26—H26119.5
N1—C1—H1115.5C21—C26—H26119.5
C3—C1—H1115.5C36—C31—C32118.53 (14)
C2—C1—H1115.5C36—C31—P2125.74 (12)
C1—C2—C359.83 (11)C32—C31—P2115.68 (12)
C1—C2—H2A117.8C33—C32—C31120.89 (16)
C3—C2—H2A117.8C33—C32—H32119.6
C1—C2—H2B117.8C31—C32—H32119.6
C3—C2—H2B117.8C34—C33—C32119.85 (15)
H2A—C2—H2B114.9C34—C33—H33120.1
C1—C3—C260.07 (11)C32—C33—H33120.1
C1—C3—H3A117.8C33—C34—C35120.37 (15)
C2—C3—H3A117.8C33—C34—H34119.8
C1—C3—H3B117.8C35—C34—H34119.8
C2—C3—H3B117.8C34—C35—C36119.81 (16)
H3A—C3—H3B114.9C34—C35—H35120.1
C12—C11—C16118.33 (14)C36—C35—H35120.1
C12—C11—P1123.02 (12)C35—C36—C31120.55 (15)
C16—C11—P1118.40 (12)C35—C36—H36119.7
C13—C12—C11120.96 (15)C31—C36—H36119.7
C13—C12—H12119.5C46—C41—C42118.17 (14)
C11—C12—H12119.5C46—C41—P2122.20 (12)
C14—C13—C12119.98 (15)C42—C41—P2118.81 (12)
C14—C13—H13120C43—C42—C41120.72 (15)
C12—C13—H13120C43—C42—H42119.6
C13—C14—C15119.78 (15)C41—C42—H42119.6
C13—C14—H14120.1C42—C43—C44120.36 (15)
C15—C14—H14120.1C42—C43—H43119.8
C16—C15—C14120.26 (15)C44—C43—H43119.8
C16—C15—H15119.9C45—C44—C43119.75 (15)
C14—C15—H15119.9C45—C44—H44120.1
C15—C16—C11120.65 (15)C43—C44—H44120.1
C15—C16—H16119.7C44—C45—C46120.09 (15)
C11—C16—H16119.7C44—C45—H45120
C22—C21—C26118.40 (14)C46—C45—H45120
C22—C21—P1125.20 (12)C45—C46—C41120.89 (15)
C26—C21—P1116.33 (12)C45—C46—H46119.6
C23—C22—C21120.45 (15)C41—C46—H46119.6
C23—C22—H22119.8C1—N1—P2116.03 (10)
C21—C22—H22119.8C1—N1—P1120.30 (10)
C24—C23—C22120.45 (16)P2—N1—P1122.58 (8)
C24—C23—H23119.8N1—P1—C11103.56 (7)
C22—C23—H23119.8N1—P1—C21102.40 (7)
C25—C24—C23119.71 (15)C11—P1—C21100.43 (7)
C25—C24—H24120.1N1—P2—C41103.54 (7)
C23—C24—H24120.1N1—P2—C31105.26 (7)
C24—C25—C26119.94 (15)C41—P2—C31102.29 (7)
C24—C25—H25120
N1—C1—C2—C3109.10 (16)C44—C45—C46—C411.6 (2)
N1—C1—C3—C2109.25 (16)C42—C41—C46—C451.6 (2)
C16—C11—C12—C132.0 (2)P2—C41—C46—C45171.14 (12)
P1—C11—C12—C13176.10 (12)C3—C1—N1—P2111.08 (14)
C11—C12—C13—C141.1 (2)C2—C1—N1—P240.77 (18)
C12—C13—C14—C150.3 (3)C3—C1—N1—P180.49 (16)
C13—C14—C15—C160.7 (3)C2—C1—N1—P1150.80 (12)
C14—C15—C16—C110.2 (2)C1—N1—P1—C1158.57 (13)
C12—C11—C16—C151.5 (2)P2—N1—P1—C11109.08 (9)
P1—C11—C16—C15175.91 (12)C1—N1—P1—C2145.54 (13)
C26—C21—C22—C231.9 (2)P2—N1—P1—C21146.81 (9)
P1—C21—C22—C23174.81 (12)C12—C11—P1—N124.39 (14)
C21—C22—C23—C240.7 (2)C16—C11—P1—N1161.48 (12)
C22—C23—C24—C251.1 (2)C12—C11—P1—C21129.99 (13)
C23—C24—C25—C261.6 (2)C16—C11—P1—C2155.87 (13)
C24—C25—C26—C210.3 (2)C22—C21—P1—N179.58 (14)
C22—C21—C26—C251.4 (2)C26—C21—P1—N197.23 (12)
P1—C21—C26—C25175.60 (12)C22—C21—P1—C1126.95 (15)
C36—C31—C32—C330.4 (2)C26—C21—P1—C11156.23 (12)
P2—C31—C32—C33177.16 (12)C1—N1—P2—C41131.82 (11)
C31—C32—C33—C340.4 (2)P1—N1—P2—C4160.04 (10)
C32—C33—C34—C350.5 (3)C1—N1—P2—C31121.16 (11)
C33—C34—C35—C360.6 (3)P1—N1—P2—C3146.98 (10)
C34—C35—C36—C310.6 (2)C46—C41—P2—N125.59 (14)
C32—C31—C36—C350.5 (2)C42—C41—P2—N1164.95 (12)
P2—C31—C36—C35176.77 (12)C46—C41—P2—C31134.83 (13)
C46—C41—C42—C430.6 (2)C42—C41—P2—C3155.71 (13)
P2—C41—C42—C43170.51 (12)C36—C31—P2—N171.90 (15)
C41—C42—C43—C440.4 (2)C32—C31—P2—N1105.44 (12)
C42—C43—C44—C450.4 (2)C36—C31—P2—C4136.03 (15)
C43—C44—C45—C460.6 (3)C32—C31—P2—C41146.64 (12)

Experimental details

Crystal data
Chemical formulaC27H25NP2
Mr425.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.460 (4), 10.486 (5), 17.053 (5)
β (°) 119.358 (5)
V3)2253.6 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.33 × 0.18 × 0.16
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.935, 0.968
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
33310, 5581, 4477
Rint0.041
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.06
No. of reflections5581
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (NRF), as well as the DST–NRF centre of excellence (c*change) and the University of the Free State are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51–m52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.  Web of Science CSD CrossRef Google Scholar
First citationKeat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds