metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}methanol-μ-nitrato-dinitratocopper(II)europium(III)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli_2000@163.com

(Received 15 July 2010; accepted 30 September 2010; online 9 October 2010)

In the title dinuclear salen-type complex, [CuEu(C22H24N2O4)(NO3)3(CH3OH)], the CuII ion is five-coordinated to two imine N atoms and two phenolate O atoms and one O from the bridging nitrate group. The EuIII ion is ligated to three nitrate groups, four O atoms from the salen-type ligand and one methanol mol­ecule, leading to a distorted tenfold coordination for the rare earth cation. One of the three nitrate anions is disordered over two positions in a 0.66 (5):0.34 (5) ratio.

Related literature

For the synthesis of the ligand, see: Aslantaş et al. (2007[Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644-o645.]); Mohamed et al. (2003[Mohamed, E. M., Muralidharan, S., Panchanatheswaran, K., Ramesh, R., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, o367-o369.]). For similar copper lanthanide complexes with a similar salen-like ligand, see: Costes et al. (2000[Costes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165-168.], 2008[Costes, J. P., Donnadieu, B., Gheorghe, R. & Tuchagues, J. P. (2008). Eur. J. Inorg. Chem. pp. 5235-5244.]); Koner et al. (2005[Koner, R., Lee, G. H., Wang, Y., Wei, H. H. & Mohanta, S. (2005). Eur. J. Inorg. Chem. pp. 1500-1505.]); Sun et al. (2009[Sun, W.-B., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m780-m781.]).

[Scheme 1]

Experimental

Crystal data
  • [CuEu(C22H24N2O4)(NO3)3(CH4O)]

  • Mr = 814.02

  • Monoclinic, C 2/c

  • a = 29.305 (6) Å

  • b = 14.233 (3) Å

  • c = 14.141 (3) Å

  • β = 103.36 (3)°

  • V = 5739 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 295 K

  • 0.14 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.677, Tmax = 0.727

  • 27154 measured reflections

  • 6537 independent reflections

  • 4621 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.091

  • S = 1.07

  • 6537 reflections

  • 420 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −1.11 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of salen-type lanthanide complexes (Aslantaş et al., 2007, Mohamed et al., 2003, Sun et al., 2009), we present here the crystal structure of the title compound. The EuIII center is ligated to two bidentate nitrate groups and four oxygen atoms from the ligand, one oxygen, from the bridging nitrate group and one methanol molecule (Fig. 1). It is similar to the previously reported structures (Costes et al., 2000, 2008; Koner et al., 2005). The decacoordinated EuIII ion presents a narrow spread in Eu–O bond distances 2.338 (18)-2.786 (4)Å. The Cu(II) ion is five-coordinated by two imine nitrogen atoms, two phenol oxygen atoms from the imine-phenolate ligand and one oxygen atom from the bridgin nitrate group.

Related literature top

For the synthesis of the ligand, see: Aslantaş et al. (2007); Mohamed et al. (2003). For similar copper lanthanide complexes with the similar salen-like ligand, see: Costes et al. (2000, 2008); Koner et al. (2005); Sun et al. (2009).

Experimental top

To a 2:3 MeOH/MeCN solution (35 ml) of [(H2L)Eu(NO3)3] (0.2253 g, 0.3 mmol) was added an aqueous solution (10 ml) of Cu(OAc)2˙H2O (0.0597 g, 0.3 mmol) at ambient temperature. After stirring for 5 hrs, the solution was filtered to remove the suspended particles. Red single crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into the filtrate in one week. For CuEu(C22H24N2O4)(NO3)3CH3OH elemental anal. - Calc.: for C23H28N5O14EuCu: C, 33.93; H, 3.47; N, 8.60 wt%, Found: C, 33.85; H, 3.55; N, 8.58 wt%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C–H = 0.93Å (aromatic C), C–H = 0.97Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C–H = 0.96Å (methly C) and with Uiso(H) = 1.5Ueq(C). H atom bound to O atom was found from the Fourier difference map, the O–H distance was fixed, Uiso value is refined isotropically.

Structure description top

In continuation of our studies of salen-type lanthanide complexes (Aslantaş et al., 2007, Mohamed et al., 2003, Sun et al., 2009), we present here the crystal structure of the title compound. The EuIII center is ligated to two bidentate nitrate groups and four oxygen atoms from the ligand, one oxygen, from the bridging nitrate group and one methanol molecule (Fig. 1). It is similar to the previously reported structures (Costes et al., 2000, 2008; Koner et al., 2005). The decacoordinated EuIII ion presents a narrow spread in Eu–O bond distances 2.338 (18)-2.786 (4)Å. The Cu(II) ion is five-coordinated by two imine nitrogen atoms, two phenol oxygen atoms from the imine-phenolate ligand and one oxygen atom from the bridgin nitrate group.

For the synthesis of the ligand, see: Aslantaş et al. (2007); Mohamed et al. (2003). For similar copper lanthanide complexes with the similar salen-like ligand, see: Costes et al. (2000, 2008); Koner et al. (2005); Sun et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Only minor fragment is presented.
{µ-6,6'-Dimethoxy-2,2'-[cyclohexane-1,2-diylbis(nitrilomethylidyne)]diphenolato}methanol-µ-nitrato-dinitratocopper(II)europium(III) top
Crystal data top
[CuEu(C22H24N2O4)(NO3)3(CH4O)]F(000) = 3240
Mr = 814.02Dx = 1.884 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5035 reflections
a = 29.305 (6) Åθ = 3.2–27.5°
b = 14.233 (3) ŵ = 2.99 mm1
c = 14.141 (3) ÅT = 295 K
β = 103.36 (3)°Block, red
V = 5739 (2) Å30.14 × 0.12 × 0.11 mm
Z = 8
Data collection top
Bruker SMART1000 CCD
diffractometer
6537 independent reflections
Radiation source: fine-focus sealed tube4621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 3737
Tmin = 0.677, Tmax = 0.727k = 1818
27154 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0119P)2 + 37.7609P]
where P = (Fo2 + 2Fc2)/3
6537 reflections(Δ/σ)max = 0.001
420 parametersΔρmax = 0.80 e Å3
13 restraintsΔρmin = 1.11 e Å3
Crystal data top
[CuEu(C22H24N2O4)(NO3)3(CH4O)]V = 5739 (2) Å3
Mr = 814.02Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.305 (6) ŵ = 2.99 mm1
b = 14.233 (3) ÅT = 295 K
c = 14.141 (3) Å0.14 × 0.12 × 0.11 mm
β = 103.36 (3)°
Data collection top
Bruker SMART1000 CCD
diffractometer
6537 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4621 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.727Rint = 0.061
27154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04913 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0119P)2 + 37.7609P]
where P = (Fo2 + 2Fc2)/3
6537 reflectionsΔρmax = 0.80 e Å3
420 parametersΔρmin = 1.11 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3809 (2)0.1512 (4)1.0213 (4)0.0473 (14)
C20.3876 (2)0.1293 (4)1.1185 (4)0.0547 (16)
H20.41760.12851.15840.066*
C30.3492 (2)0.1086 (4)1.1562 (4)0.0584 (16)
H30.35370.09391.22180.070*
C40.3048 (2)0.1093 (4)1.0985 (4)0.0532 (15)
H40.27950.09541.12530.064*
C50.2970 (2)0.1309 (4)0.9987 (4)0.0441 (13)
C60.33567 (19)0.1511 (4)0.9591 (4)0.0436 (13)
C70.2496 (2)0.1251 (4)0.9423 (4)0.0537 (15)
H70.22650.11180.97590.064*
C80.1873 (2)0.1153 (7)0.7934 (5)0.083 (2)
H80.18800.05020.77130.099*
C90.1494 (2)0.1200 (6)0.8445 (5)0.082 (2)
H9B0.14880.18190.87280.099*
H9A0.15490.07420.89670.099*
C100.1024 (3)0.1002 (7)0.7742 (6)0.107 (3)
H10B0.10150.03480.75450.128*
H10A0.07740.10980.80790.128*
C110.0934 (3)0.1604 (7)0.6856 (6)0.101 (3)
H11B0.06430.14110.64190.121*
H11A0.08980.22520.70400.121*
C120.1320 (2)0.1540 (6)0.6347 (5)0.080 (2)
H12B0.12630.19800.58080.096*
H12A0.13270.09120.60840.096*
C130.1794 (2)0.1757 (6)0.7026 (5)0.0666 (19)
H130.17870.24140.72300.080*
C140.21981 (19)0.1500 (4)0.5736 (4)0.0474 (14)
H140.19050.14880.53080.057*
C150.26093 (18)0.1363 (3)0.5334 (4)0.0385 (12)
C160.25278 (19)0.1125 (4)0.4346 (4)0.0460 (13)
H160.22220.10860.39760.055*
C170.2893 (2)0.0952 (4)0.3927 (4)0.0509 (15)
H170.28320.07950.32710.061*
C180.3357 (2)0.1004 (4)0.4462 (4)0.0490 (14)
H180.36040.08660.41750.059*
C190.34390 (18)0.1265 (4)0.5425 (4)0.0403 (12)
C200.30715 (18)0.1460 (4)0.5875 (4)0.0386 (12)
C210.4269 (2)0.1079 (5)0.5650 (4)0.0580 (16)
H21C0.42240.04460.54110.087*
H21B0.45520.11130.61510.087*
H21A0.42920.14930.51280.087*
C220.4637 (2)0.1721 (6)1.0336 (5)0.078 (2)
H22C0.46700.21541.08680.117*
H22B0.48490.18910.99400.117*
H22A0.47070.10971.05840.117*
Cu10.27684 (2)0.16473 (5)0.76583 (5)0.04484 (17)
Eu10.391175 (10)0.21945 (2)0.78342 (2)0.04713 (10)
N10.23598 (16)0.1366 (4)0.8502 (3)0.0517 (12)
N20.22134 (15)0.1633 (3)0.6631 (3)0.0479 (11)
N30.4412 (2)0.0431 (4)0.8185 (4)0.0630 (14)
N40.4195 (2)0.3467 (4)0.6366 (4)0.0655 (15)
N50.3249 (2)0.3768 (4)0.8509 (4)0.0585 (14)
O10.41630 (13)0.1752 (3)0.9760 (3)0.0545 (10)
O20.33298 (13)0.1674 (3)0.8659 (3)0.0512 (10)
O30.31885 (12)0.1711 (3)0.6814 (2)0.0460 (9)
O40.38772 (12)0.1352 (3)0.6041 (3)0.0486 (9)
O50.39729 (16)0.0448 (3)0.8079 (3)0.0659 (12)
O60.4629 (2)0.0297 (4)0.8364 (4)0.1043 (19)
O70.46107 (14)0.1212 (3)0.8105 (3)0.0603 (11)
O80.44971 (15)0.2885 (3)0.6778 (3)0.0654 (11)
O90.4283 (2)0.4068 (4)0.5823 (4)0.109 (2)
O100.37998 (17)0.3414 (3)0.6562 (3)0.0713 (13)
O11'0.3692 (5)0.3500 (9)0.882 (2)0.087 (5)0.66 (5)
O110.3575 (9)0.3580 (12)0.823 (3)0.052 (8)0.34 (5)
O120.31496 (19)0.4366 (4)0.9023 (4)0.0886 (17)
O13'0.3033 (13)0.3411 (8)0.7776 (11)0.102 (9)0.66 (5)
O130.2839 (6)0.3421 (16)0.806 (2)0.056 (6)0.34 (5)
O140.45773 (15)0.3208 (3)0.8693 (3)0.0666 (12)
H14O0.48210.30550.84860.08 (2)*
C230.4620 (4)0.4001 (7)0.9424 (8)0.145 (4)
H23C0.46390.45900.91040.218*
H23B0.48980.39130.99300.218*
H23A0.43500.40030.97000.218*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.053 (3)0.038 (3)0.008 (3)0.004 (3)0.005 (3)
C20.060 (4)0.060 (4)0.036 (3)0.017 (3)0.006 (3)0.004 (3)
C30.075 (5)0.065 (4)0.034 (3)0.017 (3)0.011 (3)0.004 (3)
C40.063 (4)0.058 (4)0.040 (3)0.005 (3)0.015 (3)0.002 (3)
C50.048 (3)0.049 (3)0.034 (3)0.005 (3)0.008 (2)0.001 (2)
C60.047 (3)0.048 (3)0.033 (3)0.007 (3)0.003 (2)0.001 (2)
C70.051 (4)0.068 (4)0.047 (4)0.008 (3)0.020 (3)0.013 (3)
C80.035 (4)0.154 (8)0.055 (4)0.007 (4)0.005 (3)0.027 (5)
C90.064 (5)0.111 (6)0.071 (5)0.007 (4)0.013 (4)0.019 (4)
C100.055 (5)0.157 (9)0.104 (7)0.025 (5)0.011 (5)0.050 (6)
C110.056 (5)0.154 (9)0.090 (6)0.005 (5)0.011 (4)0.014 (6)
C120.033 (3)0.139 (7)0.066 (5)0.015 (4)0.004 (3)0.013 (4)
C130.035 (3)0.109 (6)0.056 (4)0.005 (3)0.010 (3)0.017 (4)
C140.035 (3)0.058 (4)0.044 (3)0.002 (3)0.004 (2)0.003 (3)
C150.037 (3)0.040 (3)0.035 (3)0.001 (2)0.003 (2)0.005 (2)
C160.041 (3)0.053 (3)0.037 (3)0.004 (3)0.006 (2)0.002 (2)
C170.060 (4)0.060 (4)0.031 (3)0.002 (3)0.007 (3)0.000 (3)
C180.050 (3)0.059 (4)0.040 (3)0.001 (3)0.014 (3)0.002 (3)
C190.039 (3)0.049 (3)0.033 (3)0.003 (2)0.010 (2)0.002 (2)
C200.040 (3)0.043 (3)0.031 (3)0.001 (2)0.005 (2)0.006 (2)
C210.042 (3)0.079 (5)0.055 (4)0.008 (3)0.016 (3)0.002 (3)
C220.045 (4)0.108 (6)0.067 (5)0.008 (4)0.014 (3)0.003 (4)
Cu10.0323 (3)0.0680 (5)0.0333 (4)0.0023 (3)0.0059 (3)0.0017 (3)
Eu10.03248 (14)0.06129 (19)0.04366 (16)0.00211 (15)0.00070 (11)0.00113 (15)
N10.037 (3)0.077 (4)0.041 (3)0.005 (2)0.009 (2)0.014 (2)
N20.030 (2)0.069 (3)0.042 (3)0.001 (2)0.003 (2)0.003 (2)
N30.066 (4)0.070 (4)0.047 (3)0.017 (3)0.000 (3)0.001 (3)
N40.074 (4)0.074 (4)0.045 (3)0.010 (3)0.005 (3)0.004 (3)
N50.077 (4)0.053 (3)0.053 (4)0.003 (3)0.028 (3)0.004 (3)
O10.037 (2)0.081 (3)0.040 (2)0.007 (2)0.0019 (18)0.0002 (19)
O20.039 (2)0.078 (3)0.034 (2)0.003 (2)0.0021 (17)0.0062 (19)
O30.034 (2)0.070 (3)0.033 (2)0.0068 (18)0.0078 (16)0.0075 (18)
O40.032 (2)0.073 (3)0.040 (2)0.0018 (18)0.0079 (17)0.0034 (19)
O50.052 (3)0.072 (3)0.068 (3)0.008 (2)0.004 (2)0.003 (2)
O60.098 (4)0.082 (4)0.121 (5)0.035 (3)0.000 (4)0.017 (3)
O70.040 (2)0.077 (3)0.060 (3)0.002 (2)0.005 (2)0.004 (2)
O80.052 (3)0.078 (3)0.062 (3)0.000 (2)0.003 (2)0.004 (2)
O90.117 (5)0.120 (5)0.090 (4)0.014 (4)0.025 (4)0.041 (4)
O100.057 (3)0.077 (3)0.078 (3)0.001 (2)0.011 (3)0.011 (3)
O11'0.059 (6)0.086 (7)0.114 (16)0.011 (5)0.019 (8)0.003 (7)
O110.038 (11)0.047 (8)0.082 (18)0.001 (6)0.034 (11)0.008 (9)
O120.111 (4)0.077 (3)0.098 (4)0.006 (3)0.065 (4)0.024 (3)
O13'0.19 (2)0.064 (6)0.036 (6)0.013 (8)0.014 (9)0.001 (4)
O130.045 (10)0.091 (11)0.034 (11)0.017 (7)0.011 (6)0.005 (8)
O140.049 (3)0.083 (3)0.067 (3)0.015 (2)0.013 (2)0.022 (2)
C230.121 (9)0.118 (8)0.174 (11)0.018 (7)0.012 (8)0.056 (8)
Geometric parameters (Å, º) top
C1—C21.378 (8)C20—O31.340 (6)
C1—O11.383 (7)C21—O41.437 (6)
C1—C61.411 (7)C21—H21C0.9600
C2—C31.383 (8)C21—H21B0.9600
C2—H20.9300C21—H21A0.9600
C3—C41.366 (8)C22—O11.439 (7)
C3—H30.9300C22—H22C0.9600
C4—C51.411 (7)C22—H22B0.9600
C4—H40.9300C22—H22A0.9600
C5—C61.404 (7)Cu1—O31.905 (3)
C5—C71.436 (8)Cu1—O21.906 (4)
C6—O21.323 (6)Cu1—N21.914 (4)
C7—N11.282 (7)Cu1—N11.917 (5)
C7—H70.9300Cu1—Eu13.3927 (10)
C8—C91.458 (9)Eu1—O112.330 (17)
C8—N11.497 (8)Eu1—O32.374 (3)
C8—C131.518 (9)Eu1—O22.395 (4)
C8—H80.9800Eu1—O72.436 (4)
C9—C101.528 (10)Eu1—O102.467 (5)
C9—H9B0.9700Eu1—O11'2.494 (18)
C9—H9A0.9700Eu1—O142.503 (4)
C10—C111.490 (10)Eu1—O52.511 (5)
C10—H10B0.9700Eu1—O82.706 (4)
C10—H10A0.9700Eu1—O12.725 (4)
C11—C121.478 (10)Eu1—O42.785 (4)
C11—H11B0.9700Eu1—N32.891 (6)
C11—H11A0.9700N3—O61.212 (7)
C12—C131.525 (8)N3—O51.261 (6)
C12—H12B0.9700N3—O71.271 (7)
C12—H12A0.9700N4—O91.215 (7)
C13—N21.475 (7)N4—O81.254 (7)
C13—H130.9800N4—O101.254 (7)
C14—N21.270 (7)N5—O111.146 (16)
C14—C151.459 (7)N5—O13'1.196 (12)
C14—H140.9300N5—O121.199 (7)
C15—C201.400 (7)N5—O131.32 (2)
C15—C161.403 (7)N5—O11'1.324 (16)
C16—C171.360 (8)O11'—O110.829 (18)
C16—H160.9300O11—O13'1.59 (2)
C17—C181.396 (8)O13'—O130.77 (2)
C17—H170.9300O14—C231.516 (10)
C18—C191.379 (7)O14—H14O0.8608
C18—H180.9300C23—H23C0.9600
C19—O41.381 (6)C23—H23B0.9600
C19—C201.399 (7)C23—H23A0.9600
C2—C1—O1124.7 (5)O7—Eu1—O1473.87 (16)
C2—C1—C6121.2 (6)O10—Eu1—O1484.60 (16)
O1—C1—C6114.1 (5)O11'—Eu1—O1464.7 (3)
C1—C2—C3119.4 (6)O11—Eu1—O5145.6 (6)
C1—C2—H2120.3O3—Eu1—O579.76 (14)
C3—C2—H2120.3O2—Eu1—O570.27 (14)
C4—C3—C2121.0 (6)O7—Eu1—O551.62 (14)
C4—C3—H3119.5O10—Eu1—O5142.23 (15)
C2—C3—H3119.5O11'—Eu1—O5132.8 (6)
C3—C4—C5120.8 (6)O14—Eu1—O5118.75 (15)
C3—C4—H4119.6O11—Eu1—O8100.6 (5)
C5—C4—H4119.6O3—Eu1—O8111.12 (12)
C6—C5—C4118.9 (5)O2—Eu1—O8174.02 (13)
C6—C5—C7123.9 (5)O7—Eu1—O871.23 (15)
C4—C5—C7117.1 (5)O10—Eu1—O848.42 (14)
O2—C6—C5124.4 (5)O11'—Eu1—O8108.4 (4)
O2—C6—C1116.9 (5)O14—Eu1—O862.38 (14)
C5—C6—C1118.7 (5)O5—Eu1—O8113.67 (15)
N1—C7—C5126.2 (5)O11—Eu1—O189.2 (10)
N1—C7—H7116.9O3—Eu1—O1122.53 (12)
C5—C7—H7116.9O2—Eu1—O160.03 (12)
C9—C8—N1117.7 (6)O7—Eu1—O171.76 (13)
C9—C8—C13114.0 (6)O10—Eu1—O1148.33 (15)
N1—C8—C13106.2 (5)O11'—Eu1—O170.1 (7)
C9—C8—H8106.0O14—Eu1—O169.39 (14)
N1—C8—H8106.0O5—Eu1—O168.86 (13)
C13—C8—H8106.0O8—Eu1—O1125.17 (12)
C8—C9—C10110.2 (7)O11—Eu1—O4130.9 (11)
C8—C9—H9B109.6O3—Eu1—O458.82 (11)
C10—C9—H9B109.6O2—Eu1—O4115.45 (12)
C8—C9—H9A109.6O7—Eu1—O475.43 (13)
C10—C9—H9A109.6O10—Eu1—O470.60 (14)
H9B—C9—H9A108.1O11'—Eu1—O4150.3 (7)
C11—C10—C9113.5 (7)O14—Eu1—O4123.37 (13)
C11—C10—H10B108.9O5—Eu1—O471.69 (13)
C9—C10—H10B108.9O8—Eu1—O463.13 (12)
C11—C10—H10A108.9O1—Eu1—O4139.01 (12)
C9—C10—H10A108.9O11—Eu1—N3156.8 (10)
H10B—C10—H10A107.7O3—Eu1—N3101.48 (15)
C12—C11—C10111.5 (7)O2—Eu1—N392.16 (16)
C12—C11—H11B109.3O7—Eu1—N325.85 (14)
C10—C11—H11B109.3O10—Eu1—N3135.45 (16)
C12—C11—H11A109.3O11'—Eu1—N3137.5 (7)
C10—C11—H11A109.3O14—Eu1—N396.30 (17)
H11B—C11—H11A108.0O5—Eu1—N325.78 (14)
C11—C12—C13111.6 (6)O8—Eu1—N392.80 (16)
C11—C12—H12B109.3O1—Eu1—N367.59 (13)
C13—C12—H12B109.3O4—Eu1—N372.12 (13)
C11—C12—H12A109.3C7—N1—C8123.6 (5)
C13—C12—H12A109.3C7—N1—Cu1124.5 (4)
H12B—C12—H12A108.0C8—N1—Cu1111.3 (4)
N2—C13—C8105.9 (5)C14—N2—C13123.7 (5)
N2—C13—C12117.0 (6)C14—N2—Cu1125.9 (4)
C8—C13—C12110.9 (6)C13—N2—Cu1110.4 (4)
N2—C13—H13107.5O6—N3—O5120.8 (7)
C8—C13—H13107.5O6—N3—O7122.5 (6)
C12—C13—H13107.5O5—N3—O7116.7 (5)
N2—C14—C15124.5 (5)O6—N3—Eu1177.7 (5)
N2—C14—H14117.8O5—N3—Eu160.0 (3)
C15—C14—H14117.8O7—N3—Eu156.7 (3)
C20—C15—C16119.2 (5)O9—N4—O8122.0 (7)
C20—C15—C14123.8 (5)O9—N4—O10121.5 (7)
C16—C15—C14117.0 (5)O8—N4—O10116.5 (6)
C17—C16—C15120.5 (5)O9—N4—Eu1172.0 (6)
C17—C16—H16119.7O8—N4—Eu163.9 (3)
C15—C16—H16119.7O10—N4—Eu152.8 (3)
C16—C17—C18121.3 (5)O11—N5—O13'85.5 (11)
C16—C17—H17119.4O11—N5—O12135.6 (13)
C18—C17—H17119.4O13'—N5—O12132.2 (17)
C19—C18—C17118.4 (5)O11—N5—O13119.4 (13)
C19—C18—H18120.8O13'—N5—O1335.4 (10)
C17—C18—H18120.8O12—N5—O13103.4 (12)
C18—C19—O4124.9 (5)O11—N5—O11'38.4 (11)
C18—C19—C20121.7 (5)O13'—N5—O11'116.5 (11)
O4—C19—C20113.4 (4)O12—N5—O11'111.2 (12)
O3—C20—C19117.1 (5)O13—N5—O11'139.9 (11)
O3—C20—C15124.1 (5)C1—O1—C22117.3 (5)
C19—C20—C15118.8 (5)C1—O1—Eu1117.5 (3)
O4—C21—H21C109.5C22—O1—Eu1125.1 (4)
O4—C21—H21B109.5C6—O2—Cu1125.4 (3)
H21C—C21—H21B109.5C6—O2—Eu1130.9 (3)
O4—C21—H21A109.5Cu1—O2—Eu1103.56 (16)
H21C—C21—H21A109.5C20—O3—Cu1123.6 (3)
H21B—C21—H21A109.5C20—O3—Eu1131.9 (3)
O1—C22—H22C109.5Cu1—O3—Eu1104.37 (15)
O1—C22—H22B109.5C19—O4—C21116.2 (4)
H22C—C22—H22B109.5C19—O4—Eu1116.5 (3)
O1—C22—H22A109.5C21—O4—Eu1127.0 (3)
H22C—C22—H22A109.5N3—O5—Eu194.2 (4)
H22B—C22—H22A109.5N3—O7—Eu197.5 (3)
O3—Cu1—O283.82 (15)N4—O8—Eu191.6 (4)
O3—Cu1—N294.78 (18)N4—O10—Eu1103.3 (4)
O2—Cu1—N2178.52 (19)O11—O11'—N559.1 (16)
O3—Cu1—N1170.7 (2)O11—O11'—Eu169 (2)
O2—Cu1—N195.66 (18)N5—O11'—Eu1113.0 (14)
N2—Cu1—N185.8 (2)O11'—O11—N583 (2)
O3—Cu1—Eu142.67 (10)O11'—O11—O13'122 (2)
O2—Cu1—Eu143.33 (11)N5—O11—O13'48.6 (8)
N2—Cu1—Eu1135.19 (14)O11'—O11—Eu192 (2)
N1—Cu1—Eu1138.63 (15)N5—O11—Eu1135.5 (12)
O11—Eu1—O391.4 (8)O13'—O11—Eu1102.4 (15)
O11—Eu1—O275.9 (5)O13—O13'—N581 (2)
O3—Eu1—O264.54 (12)O13—O13'—O11125 (2)
O11—Eu1—O7146.6 (9)N5—O13'—O1145.9 (8)
O3—Eu1—O7121.96 (14)O13—O13'—Eu1135 (2)
O2—Eu1—O7114.39 (14)N5—O13'—Eu186.7 (16)
O11—Eu1—O1065.7 (9)O11—O13'—Eu147.4 (11)
O3—Eu1—O1079.09 (14)O13'—O13—N564 (2)
O2—Eu1—O10125.68 (14)C23—O14—Eu1133.8 (5)
O7—Eu1—O10118.94 (16)C23—O14—H14O118.5
O11—Eu1—O11'19.4 (5)Eu1—O14—H14O107.7
O3—Eu1—O11'104.2 (4)O14—C23—H23C109.5
O2—Eu1—O11'69.7 (4)O14—C23—H23B109.5
O7—Eu1—O11'131.0 (6)H23C—C23—H23B109.5
O10—Eu1—O11'82.8 (7)O14—C23—H23A109.5
O11—Eu1—O1473.8 (7)H23C—C23—H23A109.5
O3—Eu1—O14161.47 (15)H23B—C23—H23A109.5
O2—Eu1—O14120.33 (14)

Experimental details

Crystal data
Chemical formula[CuEu(C22H24N2O4)(NO3)3(CH4O)]
Mr814.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)29.305 (6), 14.233 (3), 14.141 (3)
β (°) 103.36 (3)
V3)5739 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.14 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.677, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
27154, 6537, 4621
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.091, 1.07
No. of reflections6537
No. of parameters420
No. of restraints13
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0119P)2 + 37.7609P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.80, 1.11

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 20872030 and 20972043), Heilongjiang Province (grant Nos. 2009RFXXG201, GC09A402 and 2010td03) and Heilongjiang University.

References

First citationAslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644–o645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165–168.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCostes, J. P., Donnadieu, B., Gheorghe, R. & Tuchagues, J. P. (2008). Eur. J. Inorg. Chem. pp. 5235–5244.  Web of Science CSD CrossRef Google Scholar
First citationKoner, R., Lee, G. H., Wang, Y., Wei, H. H. & Mohanta, S. (2005). Eur. J. Inorg. Chem. pp. 1500–1505.  Web of Science CSD CrossRef Google Scholar
First citationMohamed, E. M., Muralidharan, S., Panchanatheswaran, K., Ramesh, R., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, o367–o369.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W.-B., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m780–m781.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds