metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­(μ3-3-aminobenzoato-κ4N:O:O,O′)bis­(μ2-3-aminobenzoato-κ3O,O′:O)dilead(II)]

aDepartment of Biotechnology, Yuanpei University, HsinChu, 30015 Taiwan, and bDepartment of General Education Center, Yuanpei University, No. 306 Yuanpei St, HsinChu, 30015 Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

(Received 14 August 2010; accepted 14 October 2010; online 23 October 2010)

The PbII atom in the title compound, {[Pb2(C7H6NO2)4]}n, is chelated by two 3-aminobenzoato ligands in a distorted pentagonal-bipyramidal coordination geometry with five oxygen donors in the equatorial positions, one nitro­gen donor and one oxygen donor in the axial positions. Two mol­ecules are linked through a centre of inversion, forming a dinuclear entity. These entities are linked in a μ3-bridging mode through the amino N atom and two carboxyl­ate O atoms into a chain along the b axis. Classical inter­molecular N—H⋯O hydrogen bonding is observed in the structure. The supra­molecular structure is consolidated by ππ stacking inter­actions with centroid–centroid distances between benzene rings of 3.837 (8) Å.

Related literature

For related structures, see: Tan et al. (2006[Tan, A. Z., Wei, Y. H., Chen, Z. L., Ling, F. P. & Hu, R. X. (2006). Chin. J. Struct. Chem. 25, 417-423.]); Wang et al. (2004[Wang, R. H., Hong, M. C., Luo, J., Jiang, F., Lei, H., Lin, Z. & Cao, R. (2004). Inorg. Chim. Acta, 357, 103-114.], 2006[Wang, R. H., Yuan, D. Q., Jiang, F. L., Lei, H., Gao, S. & Hong, M. C. (2006). Eur. J. Inorg. Chem. pp. 1649-1656.]); Wei et al. (2006[Wei, Y. H., Tan, A. Z., Chen, Z. L., Liang, F. P. & Hu, R. X. (2006). Chin. J. Struct. Chem. 25, 343-347.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C7H6NO2)4]

  • Mr = 958.92

  • Triclinic, [P \overline 1]

  • a = 6.8610 (3) Å

  • b = 7.8943 (3) Å

  • c = 13.9022 (8) Å

  • α = 76.030 (2)°

  • β = 88.103 (2)°

  • γ = 70.154 (2)°

  • V = 686.33 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 12.31 mm−1

  • T = 295 K

  • 0.18 × 0.16 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.215, Tmax = 0.791

  • 5451 measured reflections

  • 2470 independent reflections

  • 2218 reflections with I > 2σ(I)

  • Rint = 0.103

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.169

  • S = 1.05

  • 2470 reflections

  • 190 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 3.23 e Å−3

  • Δρmin = −5.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.86 2.52 3.037 (12) 119
N2—H2B⋯O1i 0.86 2.32 2.936 (12) 129
Symmetry code: (i) -x+2, -y-1, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In the last few years, much research on metal–organic framework has mostly focused on coordination polymer with rigid organic ligands containing either N– or O–atom donors, such as 3–aminobenzoic acid. Up to now, only few examples of coordination polymer with 3–aminobenzoic acid have been reported (Wang et al., 2004, 2006; Tan et al., 2006; Wei et al., 2006.), and the polymeric complexes of non–transition metal with 3–aminobenzoic acid have not yet been found.

Herein we report the syntheses and crystal structure of Pb(II) coordination polymer with µ3–bridged 3–aminobenzoic acid (Fig.1). The title compound is a one–dimensional coordination polymer based on infinite µ3–bridging chains along b axial direction. The Pb···Pb distances are 4.118 (3)Å and 4.491 (3)Å. The PbII ion is a pentagonal–bipyramidal coordination environment and is coordinated by five carboxyl oxygen atoms comprise the equatorial plane, one nitrogen and one oxygen atom occupies the axial positions. The classic N—H···O hydrogen–bondings are observed in the structure (full details and symmetry codes shown as Table 1).

The supramolecular structure is also consolidated by ππ stacking interaction. The distance between Cg1 (C2–C7)···Cg2ii (C9–C14) is 3.842 (8)Å and dihedral angle between two benzene rings is 4.6 (7)°. Symmetry code: (ii) 1-x, -y, -y.

Related literature top

For related structures, see: Tan et al. (2006); Wang et al. (2004, 2006); Wei et al. (2006).

Experimental top

A solution of 3-aminobenzoic acid (0.0683 g, 0.50 mmol) in 5 ml deionized water was slowly added to a stirring solution of Pb(NO3)2.6H2O (0.1670 g, 0.50 mmol) and 1,2–bis(4–pyridyl)ethane (0.0926 g, 0.50 mmol) in 5 ml deionized water. The mixture solution was seal in 25 ml stainless steel reactor with a teflon liner, heat to 423 K for 24 hr, and then slowly cooled to room temperature. The pink single crystals of the title compound were obtained in 56.45% yield. (Based on Pb).

Refinement top

H atoms were positioned geometrically N—H = 0.86Å and C—H = 0.93Å (aromatic), and were refined using a riding model with Uiso(H) = 1.2Ueq(C,N).

Structure description top

In the last few years, much research on metal–organic framework has mostly focused on coordination polymer with rigid organic ligands containing either N– or O–atom donors, such as 3–aminobenzoic acid. Up to now, only few examples of coordination polymer with 3–aminobenzoic acid have been reported (Wang et al., 2004, 2006; Tan et al., 2006; Wei et al., 2006.), and the polymeric complexes of non–transition metal with 3–aminobenzoic acid have not yet been found.

Herein we report the syntheses and crystal structure of Pb(II) coordination polymer with µ3–bridged 3–aminobenzoic acid (Fig.1). The title compound is a one–dimensional coordination polymer based on infinite µ3–bridging chains along b axial direction. The Pb···Pb distances are 4.118 (3)Å and 4.491 (3)Å. The PbII ion is a pentagonal–bipyramidal coordination environment and is coordinated by five carboxyl oxygen atoms comprise the equatorial plane, one nitrogen and one oxygen atom occupies the axial positions. The classic N—H···O hydrogen–bondings are observed in the structure (full details and symmetry codes shown as Table 1).

The supramolecular structure is also consolidated by ππ stacking interaction. The distance between Cg1 (C2–C7)···Cg2ii (C9–C14) is 3.842 (8)Å and dihedral angle between two benzene rings is 4.6 (7)°. Symmetry code: (ii) 1-x, -y, -y.

For related structures, see: Tan et al. (2006); Wang et al. (2004, 2006); Wei et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
catena-Poly[bis(µ3-3-aminobenzoato- κ4N:O:O,O')bis(µ2-3-aminobenzoato- κ3O,O':O)dilead(II)] top
Crystal data top
[Pb2(C7H6NO2)4]Z = 1
Mr = 958.92F(000) = 448
Triclinic, P1Dx = 2.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8610 (3) ÅCell parameters from 12232 reflections
b = 7.8943 (3) Åθ = 2.0–25.4°
c = 13.9022 (8) ŵ = 12.31 mm1
α = 76.030 (2)°T = 295 K
β = 88.103 (2)°Prism, pink
γ = 70.154 (2)°0.18 × 0.16 × 0.02 mm
V = 686.33 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
2470 independent reflections
Radiation source: fine–focus sealed tube2218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
Detector resolution: 9 pixels mm-1θmax = 25.3°, θmin = 2.8°
CCD rotation images, thick slices scansh = 78
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 79
Tmin = 0.215, Tmax = 0.791l = 1616
5451 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1239P)2 + 1.1995P]
where P = (Fo2 + 2Fc2)/3
2470 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 3.23 e Å3
12 restraintsΔρmin = 5.12 e Å3
Crystal data top
[Pb2(C7H6NO2)4]γ = 70.154 (2)°
Mr = 958.92V = 686.33 (6) Å3
Triclinic, P1Z = 1
a = 6.8610 (3) ÅMo Kα radiation
b = 7.8943 (3) ŵ = 12.31 mm1
c = 13.9022 (8) ÅT = 295 K
α = 76.030 (2)°0.18 × 0.16 × 0.02 mm
β = 88.103 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2470 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
2218 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.791Rint = 0.103
5451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06512 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.05Δρmax = 3.23 e Å3
2470 reflectionsΔρmin = 5.12 e Å3
190 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

The residual peaks show two relatively high peaks of 3.19 eÅ-3 at 0.405, 0.645, 0.123 and 3.13 eÅ-3 at 0.566, 0.080, 0.038, and the distances to the nearest Pb atoms are 1.26Å and 1.50Å, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.57722 (5)0.23064 (4)0.04961 (3)0.0375 (1)
O10.7342 (13)0.0825 (10)0.1159 (6)0.051 (3)
O20.6749 (13)0.3823 (11)0.0817 (6)0.051 (3)
O30.6695 (17)0.0912 (11)0.2133 (6)0.058 (3)
O40.7229 (12)0.0859 (9)0.0620 (5)0.040 (2)
N10.655 (3)0.555 (2)0.4054 (11)0.092 (6)
N20.9270 (14)0.7459 (12)0.0976 (7)0.038 (3)
C10.7141 (15)0.2286 (15)0.1435 (8)0.037 (3)
C20.7253 (16)0.2209 (16)0.2521 (9)0.043 (3)
C30.6951 (19)0.3817 (19)0.2811 (9)0.054 (4)
C40.696 (2)0.383 (2)0.3805 (10)0.065 (4)
C50.733 (2)0.212 (3)0.4500 (10)0.076 (5)
C60.768 (3)0.050 (3)0.4203 (11)0.079 (5)
C70.766 (2)0.056 (2)0.3199 (10)0.057 (4)
C80.7220 (17)0.0662 (14)0.1556 (8)0.039 (3)
C90.7796 (14)0.2349 (13)0.1927 (8)0.035 (3)
C100.8350 (14)0.4092 (14)0.1314 (8)0.035 (3)
C110.8749 (15)0.5654 (13)0.1674 (7)0.029 (3)
C120.8668 (17)0.5505 (15)0.2690 (8)0.037 (3)
C130.8113 (19)0.3757 (16)0.3344 (8)0.043 (3)
C140.7646 (16)0.2166 (14)0.2971 (8)0.040 (3)
H1A0.631100.654900.359200.1100*
H1B0.655000.558600.466600.1100*
H2A0.932700.754400.034900.0460*
H2B0.952200.844300.119100.0460*
H30.673700.492000.233100.0660*
H50.732700.208600.517400.0920*
H60.793900.062000.467300.0940*
H70.792500.053000.299100.0690*
H100.846100.423100.063200.0420*
H120.898300.656400.293100.0450*
H130.805000.364000.402500.0510*
H140.724000.099400.340500.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0414 (2)0.0231 (2)0.0487 (3)0.0120 (2)0.0023 (2)0.0088 (2)
O10.056 (5)0.034 (4)0.065 (5)0.015 (4)0.007 (4)0.019 (4)
O20.061 (5)0.035 (4)0.059 (5)0.020 (4)0.004 (4)0.010 (4)
O30.094 (6)0.034 (4)0.051 (5)0.028 (4)0.010 (4)0.013 (4)
O40.058 (5)0.023 (3)0.043 (4)0.013 (3)0.007 (3)0.015 (3)
N10.113 (11)0.118 (11)0.067 (7)0.049 (10)0.027 (7)0.054 (8)
N20.046 (5)0.026 (4)0.048 (5)0.016 (4)0.005 (4)0.014 (4)
C10.027 (4)0.038 (5)0.046 (5)0.009 (4)0.010 (4)0.014 (4)
C20.029 (5)0.046 (6)0.051 (6)0.009 (4)0.004 (4)0.015 (4)
C30.050 (6)0.063 (7)0.055 (6)0.022 (6)0.003 (5)0.019 (6)
C40.044 (7)0.091 (8)0.066 (7)0.015 (7)0.012 (6)0.041 (6)
C50.065 (8)0.123 (11)0.044 (6)0.032 (9)0.013 (6)0.027 (6)
C60.081 (10)0.080 (9)0.053 (7)0.010 (9)0.003 (7)0.001 (7)
C70.048 (7)0.053 (7)0.059 (7)0.008 (6)0.008 (6)0.006 (6)
C80.046 (5)0.023 (5)0.053 (6)0.018 (4)0.006 (5)0.012 (4)
C90.025 (4)0.022 (4)0.056 (6)0.011 (4)0.007 (4)0.000 (4)
C100.021 (4)0.030 (5)0.049 (5)0.003 (4)0.002 (4)0.018 (4)
C110.027 (4)0.024 (4)0.042 (5)0.013 (4)0.007 (4)0.013 (4)
C120.048 (6)0.036 (5)0.041 (5)0.024 (4)0.012 (4)0.021 (4)
C130.058 (6)0.040 (6)0.038 (5)0.024 (5)0.005 (5)0.014 (4)
C140.044 (5)0.029 (5)0.050 (6)0.016 (4)0.003 (5)0.010 (4)
Geometric parameters (Å, º) top
Pb1—O12.415 (8)C3—C41.385 (18)
Pb1—O22.626 (8)C4—C51.41 (2)
Pb1—O32.726 (8)C5—C61.38 (3)
Pb1—O42.403 (7)C6—C71.39 (2)
Pb1—N2i2.525 (10)C8—C91.469 (15)
Pb1—O4ii2.913 (8)C9—C101.365 (15)
Pb1—O2iii2.887 (8)C9—C141.427 (15)
O1—C11.264 (14)C10—C111.380 (15)
O2—C11.254 (14)C11—C121.390 (14)
O3—C81.246 (14)C12—C131.392 (16)
O4—C81.273 (13)C13—C141.407 (16)
N1—C41.42 (2)C3—H30.9300
N2—C111.452 (13)C5—H50.9300
N1—H1B0.8600C6—H60.9300
N1—H1A0.8600C7—H70.9300
N2—H2B0.8600C10—H100.9300
N2—H2A0.8600C12—H120.9300
C1—C21.500 (16)C13—H130.9300
C2—C71.356 (19)C14—H140.9300
C2—C31.371 (19)
Pb1···C3iii3.870 (13)C3···C13ii3.542 (19)
Pb1···C10ii3.854 (11)C3···C14vi3.482 (18)
Pb1···H3iii3.0500C4···C13vi3.40 (2)
Pb1···H10ii3.3300C4···C13ii3.58 (2)
O1···O22.193 (11)C7···C14ii3.422 (19)
O1···O43.092 (11)C8···Pb1ii3.698 (11)
O1···C22.394 (15)C9···C1ii3.419 (15)
O1···N2iv2.936 (12)C9···C1vi3.582 (15)
O1···C8ii3.200 (15)C9···C2vi3.501 (16)
O1···O4ii3.238 (13)C9···C2ii3.547 (16)
O2···N2i3.158 (13)C10···O2v3.369 (14)
O2···C22.378 (15)C10···Pb1ii3.854 (11)
O2···O12.193 (11)C10···C1ii3.540 (15)
O2···O2iii3.109 (12)C13···C3ii3.542 (19)
O2···C10i3.369 (14)C13···C3vi3.473 (19)
O3···C92.370 (13)C13···C4vi3.40 (2)
O3···O42.190 (11)C13···C4ii3.58 (2)
O3···N2i3.177 (14)C14···C3vi3.482 (18)
O4···O13.092 (11)C14···C2vi3.563 (17)
O4···C92.348 (12)C14···C2ii3.409 (17)
O4···O1ii3.238 (13)C14···C7ii3.422 (19)
O4···N2iv3.037 (12)C1···H2Ai2.8500
O4···O32.190 (11)C5···H1Bvii3.0400
O1···H72.5000C8···H2Bi2.8600
O1···H2Biv2.3200H1A···H32.3700
O1···H2Ai2.7600H1A···O3iii2.8100
O2···H10i2.7200H1B···H52.5500
O2···H2Ai2.5100H1B···H13viii2.4100
O2···H32.4600H1B···C5vii3.0400
O3···H2Bi2.6300H2A···H102.4100
O3···H1Aiii2.8100H2A···O4iv2.5200
O3···H142.5300H2B···H122.4800
O4···H102.5100H2B···O1iv2.3200
O4···H2Bi2.8200H3···O22.4600
O4···H2Aiv2.5200H3···H1A2.3700
N2···O2v3.158 (13)H3···Pb1iii3.0500
N2···O3v3.177 (14)H5···H1B2.5500
N2···O1iv2.936 (12)H7···O12.5000
N2···O4iv3.037 (12)H7···H12iv2.5600
C1···C10ii3.540 (15)H10···O2v2.7200
C1···C9ii3.419 (15)H10···O42.5100
C1···C9vi3.582 (15)H10···H2A2.4100
C2···C14vi3.563 (17)H10···Pb1ii3.3300
C2···C9ii3.547 (16)H10···H10iv2.5500
C2···C9vi3.501 (16)H12···H2B2.4800
C2···C14ii3.409 (17)H12···H7iv2.5600
C3···C13vi3.473 (19)H13···H1Bix2.4100
C3···Pb1iii3.870 (13)H14···O32.5300
O1—Pb1—O251.4 (3)H2A—N2—H2B120.00
O1—Pb1—O3126.6 (3)Pb1v—N2—H2B88.00
O1—Pb1—O479.9 (2)Pb1—C1—O156.6 (6)
O1—Pb1—C125.9 (3)O1—C1—O2121.1 (10)
O1—Pb1—C8103.8 (3)Pb1—C1—O266.2 (6)
O1—Pb1—N2i86.3 (3)Pb1—C1—C2163.1 (8)
O1—Pb1—O4ii74.2 (3)O1—C1—C2119.7 (10)
O1—Pb1—O2iii115.3 (2)O2—C1—C2119.1 (10)
O2—Pb1—O3149.9 (3)C3—C2—C7121.1 (12)
O2—Pb1—O4128.1 (3)C1—C2—C3119.1 (11)
O2—Pb1—C125.9 (3)C1—C2—C7119.8 (11)
O2—Pb1—C8145.9 (3)C2—C3—C4121.3 (13)
O2—Pb1—N2i75.6 (3)N1—C4—C5124.5 (14)
O2—Pb1—O4ii98.7 (2)C3—C4—C5117.1 (14)
O2—Pb1—O2iii68.5 (3)N1—C4—C3118.4 (13)
O3—Pb1—O450.1 (2)C4—C5—C6121.4 (13)
O3—Pb1—C1147.2 (3)C5—C6—C7119.4 (16)
O3—Pb1—C825.0 (3)C2—C7—C6119.8 (15)
O3—Pb1—N2i74.3 (3)Pb1—C8—O367.9 (6)
O3—Pb1—O4ii109.5 (3)Pb1—C8—O453.2 (5)
O2iii—Pb1—O3117.1 (2)Pb1—C8—C9169.2 (8)
O4—Pb1—C1105.3 (3)O3—C8—O4120.9 (10)
O4—Pb1—C825.1 (3)O3—C8—C9121.5 (10)
O4—Pb1—N2i85.9 (3)O4—C8—C9117.7 (9)
O4—Pb1—O4ii81.3 (2)C8—C9—C10122.9 (10)
O2iii—Pb1—O4163.4 (2)C8—C9—C14118.9 (9)
C1—Pb1—C8128.2 (3)C10—C9—C14118.1 (9)
N2i—Pb1—C183.5 (3)C9—C10—C11122.1 (10)
O4ii—Pb1—C183.0 (3)N2—C11—C12120.4 (9)
O2iii—Pb1—C190.5 (3)C10—C11—C12120.5 (10)
N2i—Pb1—C880.2 (3)N2—C11—C10119.0 (9)
O4ii—Pb1—C894.8 (3)C11—C12—C13119.4 (10)
O2iii—Pb1—C8140.9 (3)C12—C13—C14119.8 (10)
O4ii—Pb1—N2i158.2 (3)C9—C14—C13120.1 (10)
O2iii—Pb1—N2i101.2 (3)C2—C3—H3119.00
O2iii—Pb1—O4ii96.0 (2)C4—C3—H3119.00
Pb1—O1—C197.5 (7)C4—C5—H5119.00
Pb1—O2—C187.9 (7)C6—C5—H5120.00
Pb1—O2—Pb1iii111.5 (3)C5—C6—H6120.00
Pb1iii—O2—C1142.0 (7)C7—C6—H6120.00
Pb1—O3—C887.1 (6)C2—C7—H7120.00
Pb1—O4—C8101.8 (6)C6—C7—H7120.00
Pb1—O4—Pb1ii98.7 (3)C9—C10—H10119.00
Pb1ii—O4—C8118.8 (7)C11—C10—H10119.00
Pb1v—N2—C11103.4 (7)C11—C12—H12120.00
H1A—N1—H1B120.00C13—C12—H12120.00
C4—N1—H1A120.00C12—C13—H13120.00
C4—N1—H1B120.00C14—C13—H13120.00
Pb1v—N2—H2A78.00C9—C14—H14120.00
C11—N2—H2A120.00C13—C14—H14120.00
C11—N2—H2B120.00
O2—Pb1—O1—C18.3 (6)O2—Pb1—N2i—C11i90.7 (6)
O3—Pb1—O1—C1150.1 (7)O3—Pb1—N2i—C11i88.7 (6)
O4—Pb1—O1—C1169.3 (7)O4—Pb1—N2i—C11i138.3 (6)
C8—Pb1—O1—C1161.8 (7)C1—Pb1—N2i—C11i115.8 (6)
N2i—Pb1—O1—C182.8 (7)C8—Pb1—N2i—C11i113.6 (6)
O4ii—Pb1—O1—C1107.0 (7)O1—Pb1—O4ii—Pb1ii81.9 (3)
O2iii—Pb1—O1—C117.8 (8)O1—Pb1—O4ii—C8ii26.8 (7)
O1—Pb1—O2—C18.3 (6)O2—Pb1—O4ii—Pb1ii127.4 (3)
O1—Pb1—O2—Pb1iii154.7 (5)O2—Pb1—O4ii—C8ii18.8 (8)
O3—Pb1—O2—C1106.4 (8)O3—Pb1—O4ii—Pb1ii42.0 (3)
O3—Pb1—O2—Pb1iii107.2 (5)O3—Pb1—O4ii—C8ii150.6 (7)
O4—Pb1—O2—C132.3 (8)O4—Pb1—O4ii—Pb1ii0.0 (2)
O4—Pb1—O2—Pb1iii178.7 (3)O4—Pb1—O4ii—C8ii108.6 (7)
C1—Pb1—O2—Pb1iii146.4 (8)C1—Pb1—O4ii—Pb1ii106.8 (3)
C8—Pb1—O2—C158.8 (9)C1—Pb1—O4ii—C8ii1.9 (7)
C8—Pb1—O2—Pb1iii154.7 (4)C8—Pb1—O4ii—Pb1ii21.2 (3)
N2i—Pb1—O2—C1105.1 (7)C8—Pb1—O4ii—C8ii129.8 (7)
N2i—Pb1—O2—Pb1iii108.5 (4)O1—Pb1—O2iii—Pb1iii21.7 (4)
O4ii—Pb1—O2—C153.4 (7)O1—Pb1—O2iii—C1iii137.8 (12)
O4ii—Pb1—O2—Pb1iii93.1 (3)O2—Pb1—O2iii—Pb1iii0.0 (3)
O2iii—Pb1—O2—C1146.4 (7)O2—Pb1—O2iii—C1iii116.1 (13)
O2iii—Pb1—O2—Pb1iii0.0 (3)O3—Pb1—O2iii—Pb1iii147.5 (3)
O1—Pb1—O3—C827.6 (9)O3—Pb1—O2iii—C1iii31.4 (13)
O2—Pb1—O3—C8101.9 (9)C1—Pb1—O2iii—Pb1iii14.0 (4)
O4—Pb1—O3—C82.7 (7)C1—Pb1—O2iii—C1iii130.1 (12)
C1—Pb1—O3—C851.3 (11)C8—Pb1—O2iii—Pb1iii157.7 (4)
N2i—Pb1—O3—C8100.6 (8)C8—Pb1—O2iii—C1iii41.6 (14)
O4ii—Pb1—O3—C856.9 (8)Pb1—O1—C1—O216.0 (12)
O2iii—Pb1—O3—C8164.6 (7)Pb1—O1—C1—C2160.6 (9)
O1—Pb1—O4—C8162.6 (8)Pb1—O2—C1—O114.5 (11)
O1—Pb1—O4—Pb1ii75.4 (3)Pb1—O2—C1—C2162.0 (9)
O2—Pb1—O4—C8143.8 (7)Pb1iii—O2—C1—Pb1123.3 (11)
O2—Pb1—O4—Pb1ii94.2 (3)Pb1iii—O2—C1—O1137.8 (10)
O3—Pb1—O4—C82.7 (7)Pb1iii—O2—C1—C238.8 (18)
O3—Pb1—O4—Pb1ii124.7 (5)Pb1—O3—C8—O44.6 (12)
C1—Pb1—O4—C8157.8 (7)Pb1—O3—C8—C9173.8 (11)
C1—Pb1—O4—Pb1ii80.2 (3)Pb1—O4—C8—O35.3 (14)
C8—Pb1—O4—Pb1ii122.0 (8)Pb1—O4—C8—C9173.1 (8)
N2i—Pb1—O4—C875.7 (7)Pb1ii—O4—C8—Pb1106.9 (6)
N2i—Pb1—O4—Pb1ii162.3 (3)Pb1ii—O4—C8—O3112.2 (12)
O4ii—Pb1—O4—C8122.0 (7)Pb1ii—O4—C8—C966.2 (12)
O4ii—Pb1—O4—Pb1ii0.0 (2)Pb1v—N2—C11—C1296.2 (10)
O1—Pb1—C1—O2165.1 (11)Pb1v—N2—C11—C1084.2 (10)
O2—Pb1—C1—O1165.1 (11)O1—C1—C2—C72.9 (17)
O3—Pb1—C1—O147.5 (10)O1—C1—C2—C3177.5 (12)
O3—Pb1—C1—O2117.6 (7)O2—C1—C2—C7179.5 (12)
O4—Pb1—C1—O111.0 (7)O2—C1—C2—C30.9 (17)
O4—Pb1—C1—O2154.1 (6)C7—C2—C3—C43 (2)
C8—Pb1—C1—O122.7 (8)C1—C2—C3—C4177.5 (12)
C8—Pb1—C1—O2142.4 (6)C1—C2—C7—C6177.4 (15)
N2i—Pb1—C1—O194.8 (7)C3—C2—C7—C63 (2)
N2i—Pb1—C1—O270.3 (7)C2—C3—C4—N1177.3 (15)
O4ii—Pb1—C1—O168.0 (7)C2—C3—C4—C51 (2)
O4ii—Pb1—C1—O2126.9 (7)N1—C4—C5—C6178.7 (18)
O2iii—Pb1—C1—O1163.9 (7)C3—C4—C5—C60 (2)
O2iii—Pb1—C1—O231.0 (7)C4—C5—C6—C70 (3)
O1—Pb1—C8—O3157.5 (8)C5—C6—C7—C22 (3)
O1—Pb1—C8—O417.6 (8)O4—C8—C9—C100.6 (17)
O2—Pb1—C8—O3119.1 (8)O3—C8—C9—C10179.1 (12)
O2—Pb1—C8—O456.0 (10)O3—C8—C9—C143.2 (17)
O3—Pb1—C8—O4175.1 (13)O4—C8—C9—C14175.2 (10)
O4—Pb1—C8—O3175.1 (13)C14—C9—C10—C110.4 (16)
C1—Pb1—C8—O3147.5 (8)C8—C9—C14—C13177.6 (11)
C1—Pb1—C8—O427.6 (9)C8—C9—C10—C11175.5 (10)
N2i—Pb1—C8—O373.8 (8)C10—C9—C14—C131.6 (16)
N2i—Pb1—C8—O4101.3 (7)C9—C10—C11—C122.3 (17)
O4ii—Pb1—C8—O3127.6 (8)C9—C10—C11—N2178.2 (10)
O4ii—Pb1—C8—O457.3 (7)N2—C11—C12—C13178.4 (11)
O2iii—Pb1—C8—O322.0 (10)C10—C11—C12—C132.1 (18)
O2iii—Pb1—C8—O4162.9 (6)C11—C12—C13—C140.1 (19)
O1—Pb1—N2i—C11i141.7 (6)C12—C13—C14—C91.7 (18)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+2, y1, z; (v) x, y1, z; (vi) x+2, y, z; (vii) x+1, y+1, z+1; (viii) x, y+1, z+1; (ix) x, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4iv0.862.523.037 (12)119
N2—H2B···O1iv0.862.322.936 (12)129
Symmetry code: (iv) x+2, y1, z.

Experimental details

Crystal data
Chemical formula[Pb2(C7H6NO2)4]
Mr958.92
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.8610 (3), 7.8943 (3), 13.9022 (8)
α, β, γ (°)76.030 (2), 88.103 (2), 70.154 (2)
V3)686.33 (6)
Z1
Radiation typeMo Kα
µ (mm1)12.31
Crystal size (mm)0.18 × 0.16 × 0.02
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.215, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
5451, 2470, 2218
Rint0.103
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.169, 1.05
No. of reflections2470
No. of parameters190
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.23, 5.12

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.523.037 (12)119
N2—H2B···O1i0.862.322.936 (12)129
Symmetry code: (i) x+2, y1, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, A. Z., Wei, Y. H., Chen, Z. L., Ling, F. P. & Hu, R. X. (2006). Chin. J. Struct. Chem. 25, 417–423.  CAS Google Scholar
First citationWang, R. H., Hong, M. C., Luo, J., Jiang, F., Lei, H., Lin, Z. & Cao, R. (2004). Inorg. Chim. Acta, 357, 103–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, R. H., Yuan, D. Q., Jiang, F. L., Lei, H., Gao, S. & Hong, M. C. (2006). Eur. J. Inorg. Chem. pp. 1649–1656.  Web of Science CSD CrossRef Google Scholar
First citationWei, Y. H., Tan, A. Z., Chen, Z. L., Liang, F. P. & Hu, R. X. (2006). Chin. J. Struct. Chem. 25, 343–347.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds