organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Dihy­dr­oxy-3,6-dimeth­­oxy-2-(4-meth­­oxy­phen­yl)-4H-chromen-4-one monohydrate

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, and cDepartment of Chemistry, Loughborough University, Leicestershire LE11 3TU, England
*Correspondence e-mail: raza_shahm@yahoo.com

(Received 30 August 2010; accepted 29 September 2010; online 2 October 2010)

The title compound, C18H16O7·H2O, is a flavonoid isolated from Dodonaea viscosa­. The benzopyran ring system of the flavonoid is essentially planar [maximum deviation = 0.025 (2) Å] and inclined at 5.83 (2)° to the attached benzene ring. The water of hydration is involved in extensive hydrogen bonding, assembling the mol­ecules into a supra­molecular network via classical inter­molecular O—H⋯O hydrogen bonding. The crystal structure is further stabilized by ππ stacking inter­actions [centroid–centroid distance between benzene rings = 3.564 (3) Å].

Related literature

For the anti-oxidant activity of flavonoids, see: Pedrielli et al. (2001[Pedrielli, P., Pedulli, G. F. & Skibsted, L. H. (2001). J. Agric. Food Chem. 49, 3034-3040.], for their anti-protozoal activity, see: Calzada et al. (1999[Calzada, F., Meckes, M. & Cedillo-Rivera, R. (1999). Planta Med. 65, 78-80.]) and for their anti-viral activity, see: Lin et al. (1999[Lin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. L., Huffman, J. H. & Kern, E. R. (1999). Planta Med. 65, 120-125.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For related structures, see: Arfan et al. (2010[Arfan, M., Ali, M., Anis, I., Ahmad, H., Choudhary, M. I., Khan, A. & Shah, M. R. (2010). J. Enzyme Inhib. Med. Chem. 25, 296-299.]); Azhar ul et al. (2004[Azhar ul, H., Malik, A., Khan, A., Shah, M. R. & Muhammad, P. (2004). Arch. Pharm. Res. 27, 1216-1219.]); Ferheen et al. (2005[Ferheen, S., Ahmed, E., Afza, N., Malik, A., Shah, M. R., Nawaz, S. A. & Choudhary, M. I. (2005). Chem. Pharm. Bull. 53, 570-572.]); Hussain et al. (2008[Hussain, J., Ullah, F., Hussain, H., Hussain, S. T. & Shah, M. R. (2008). Z. Naturforsch. Teil B, 63, 591-594.], 2009[Hussain, J., Khan, F. U., Rehman, N. U., Ullah, R., Mohmmad, Z., Tasleem, S., Naeem, A. & Shah, M. R. (2009). J. Asian Nat. Prod. Res. 11, 997-1000.]); Jan et al. (2009[Jan, A. K., Shah, M. R., Anis, I. & Marwat, I. K. (2009). J. Enzyme Inhib. Med. Chem. 24, 192-196.]); Khan et al. (2005a[Khan, S. B., Azhar ul, H., Afza, N., Malik, A., Khan, M. T. H., Shah, M. R. & Choudhary, M. I. (2005a). Chem. Pharm. Bull. 53, 86-89.],b[Khan, S. B., Azhar ul, H., Perveen, S., Afza, N., Malik, A., Nawaz, S. A., Shah, M. R. & Choudhary, M. I. (2005b). Arch. Pharm. Res. 28, 172-176.]); Nisar et al. (2010[Nisar, M., Qayum, M., Shah, M. R., Kaleem, W. A., Ali, I. & Zia-ul-Haq, M. (2010). Pak. J. Bot. 42, 523-526]); Riaz et al. (2002[Riaz, N., Anis, I., Khan, P. M., Shah, R. & Malik, A. (2002). Nat. Prod. Lett. 16, 415-418.]); Sharif et al. (2005[Sharif, A., Ahmed, E., Malik, A., Riaz, N., Afza, N., Nawaz, S. A., Arshad, M., Shah, M. R. & Choudhary, M. I. (2005). Arch. Pharm. Res. 28, 761-764.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16O7·H2O

  • Mr = 362.32

  • Monoclinic, C 2/c

  • a = 19.869 (4) Å

  • b = 6.8126 (15) Å

  • c = 24.424 (5) Å

  • β = 91.298 (4)°

  • V = 3305.2 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.19 × 0.18 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.990

  • 14127 measured reflections

  • 3400 independent reflections

  • 2072 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.05

  • 3400 reflections

  • 243 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1Wi 0.84 1.92 2.712 (3) 157
O2—H2A⋯O3 0.84 2.33 2.780 (3) 114
O4—H4A⋯O5 0.84 1.85 2.589 (3) 146
O1W—H1A⋯O5 0.85 (2) 2.05 (2) 2.886 (3) 165 (3)
O1W—H1A⋯O6 0.85 (2) 2.71 (3) 3.288 (3) 126 (3)
O1W—H1B⋯O4ii 0.86 (2) 2.38 (2) 3.135 (3) 148 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our investigation on natural product chemistry (Arfan et al., (2010); Azhar et al., (2004); Ferheen et al., (2005); Hussain et al., (2008, 2009); Jan et al., 2009) is intended to explore the medicinal aspect of indigenous plants (Khan et al., (2005a); Khan et al., (2005b); Nisar et al., (2010); Riaz et al., (2002); Sharif et al., (2005).) of Pakistan. The plant Dodonaea Viscosa has been screened for the presence of biologically active compounds resulting in the isolation of a Flavonoid (Fig.1). The crystal structure and isolation of the title compound are presented below. Flavonoids, comprising a vast family of polyphenolic secondary metabolites, exhibit a wide range of biological activities, such as anti–oxidant (Pedrielli et al., 2001), anti–viral (Lin et al., 1999), anti–protozoal (Calzada, et al., 1999).

The methoxy groups at C4 and C9 of title compound (Fig. 1) are nearly orthogonal to the benzopyranone moiety, as indicated by the torsion angles 97.5 (3)° and 107.6 (3)° respectively. The methoxy group at C15 is nearly coplanar with the phenyl ring with torsion angle (C17–C15–O7–C16) 0.3 (4)°. Rings A and B (the benzopyrone moiety) are fused at C1 and C7 and almost coplanar, the interplanar angle between the two rings is 1.40 (3)°. Ring C (the phenyl moeity) is attached to benzopyranone system at C11 with an interplanar angle of 5.83 (2)° between the two ring systems.

A combination of intermolecular and intramolecular hydrogen bonding, forming R46(12) and R44(16) patterns (Etter et al., 1990), links the molecules into stepped ribbons perpendicular to b axis (Fig. 2 and Table 1). The ribbons are stacked parallel to the b axis by ππ interactions (Fig. 3); the average interplanar distance is 3.378 (3)Å (under symmetry operation 3/2-x, -1/2+y, 3/2-z) and the distance from the centroid of the phenyl group to the centre of the C1–C7 bond is 3.476 (3)Å.

Related literature top

For the anti-oxidant activity of flavonoids, see: Pedrielli et al. (2001, for their anti-protozoal activity, see: Calzada et al. (1999) and for their anti-viral activity, see: Lin et al. (1999). For hydrogen-bond motifs, see: Etter et al. (1990). For related structures, see: Arfan et al. (2010); Azhar ul et al. (2004); Ferheen et al. (2005); Hussain et al. (2008, 2009); Jan et al. (2009); Khan et al. (2005a,b); Nisar et al. (2010); Riaz et al. (2002); Sharif et al. (2005).

Experimental top

The whole plant of Dodonaea viscosa (50 kg) was powdered and extracted with methanol (100 L × 3) at room temperature and the residue (1 kg) was separated under vacuum. The residue was suspended in water and extracted with n–hexane, chloroform, ethyl acetate and n–butanol respectively. The ethyl acetate fraction (250 g) was subjected repeatedly to column chromatography on silica gel using petroleum ether with a gradient of 25% chloroform to yield the title compound (50 mg). Single crystals suitable for X–ray diffraction analysis were obtained from an ether–chloroform mixture (1:2) by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to carbon and the phenol oxygen atoms were placed in geometric positions using a riding model, C—H distances were constrained as 0.95Å, 0.98Å and 0.84Å, for aryl, methyl and phenol groups respectively. Hydrogen atoms on the water molecule were located from difference maps and their coordinates refined under restraints. Thermal parameters were set to Uiso(H) = 1.5Ueq(C, O) for methyl groups and the water molecule and Uiso(H) = 1.2Ueq(C) for all others.

Structure description top

Our investigation on natural product chemistry (Arfan et al., (2010); Azhar et al., (2004); Ferheen et al., (2005); Hussain et al., (2008, 2009); Jan et al., 2009) is intended to explore the medicinal aspect of indigenous plants (Khan et al., (2005a); Khan et al., (2005b); Nisar et al., (2010); Riaz et al., (2002); Sharif et al., (2005).) of Pakistan. The plant Dodonaea Viscosa has been screened for the presence of biologically active compounds resulting in the isolation of a Flavonoid (Fig.1). The crystal structure and isolation of the title compound are presented below. Flavonoids, comprising a vast family of polyphenolic secondary metabolites, exhibit a wide range of biological activities, such as anti–oxidant (Pedrielli et al., 2001), anti–viral (Lin et al., 1999), anti–protozoal (Calzada, et al., 1999).

The methoxy groups at C4 and C9 of title compound (Fig. 1) are nearly orthogonal to the benzopyranone moiety, as indicated by the torsion angles 97.5 (3)° and 107.6 (3)° respectively. The methoxy group at C15 is nearly coplanar with the phenyl ring with torsion angle (C17–C15–O7–C16) 0.3 (4)°. Rings A and B (the benzopyrone moiety) are fused at C1 and C7 and almost coplanar, the interplanar angle between the two rings is 1.40 (3)°. Ring C (the phenyl moeity) is attached to benzopyranone system at C11 with an interplanar angle of 5.83 (2)° between the two ring systems.

A combination of intermolecular and intramolecular hydrogen bonding, forming R46(12) and R44(16) patterns (Etter et al., 1990), links the molecules into stepped ribbons perpendicular to b axis (Fig. 2 and Table 1). The ribbons are stacked parallel to the b axis by ππ interactions (Fig. 3); the average interplanar distance is 3.378 (3)Å (under symmetry operation 3/2-x, -1/2+y, 3/2-z) and the distance from the centroid of the phenyl group to the centre of the C1–C7 bond is 3.476 (3)Å.

For the anti-oxidant activity of flavonoids, see: Pedrielli et al. (2001, for their anti-protozoal activity, see: Calzada et al. (1999) and for their anti-viral activity, see: Lin et al. (1999). For hydrogen-bond motifs, see: Etter et al. (1990). For related structures, see: Arfan et al. (2010); Azhar ul et al. (2004); Ferheen et al. (2005); Hussain et al. (2008, 2009); Jan et al. (2009); Khan et al. (2005a,b); Nisar et al. (2010); Riaz et al. (2002); Sharif et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Several H bonds are drawn by dashed lines.
[Figure 2] Fig. 2. Packing diagram showing the H–bond network (dashed lines).
[Figure 3] Fig. 3. The ππ interactions. Red cirles mark centroids of bonds or rings.
5,7-Dihydroxy-3,6-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one monohydrate top
Crystal data top
C18H16O7·H2OF(000) = 1520
Mr = 362.32Dx = 1.456 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1391 reflections
a = 19.869 (4) Åθ = 2.6–22.0°
b = 6.8126 (15) ŵ = 0.12 mm1
c = 24.424 (5) ÅT = 150 K
β = 91.298 (4)°Block, yellow
V = 3305.2 (12) Å30.19 × 0.18 × 0.09 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3400 independent reflections
Radiation source: fine–focus sealed tube2072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2424
Tmin = 0.978, Tmax = 0.990k = 88
14127 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0597P)2 + 1.2286P]
where P = (Fo2 + 2Fc2)/3
3400 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H16O7·H2OV = 3305.2 (12) Å3
Mr = 362.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.869 (4) ŵ = 0.12 mm1
b = 6.8126 (15) ÅT = 150 K
c = 24.424 (5) Å0.19 × 0.18 × 0.09 mm
β = 91.298 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3400 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2072 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.990Rint = 0.068
14127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0503 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.28 e Å3
3400 reflectionsΔρmin = 0.28 e Å3
243 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69131 (8)0.1125 (2)0.73867 (6)0.0233 (4)
C10.65171 (12)0.1096 (4)0.69190 (10)0.0229 (6)
C20.58358 (12)0.0898 (4)0.69845 (10)0.0258 (6)
H20.56510.08240.73390.031*
C30.54256 (13)0.0807 (4)0.65176 (10)0.0263 (6)
O20.47576 (9)0.0548 (3)0.65803 (8)0.0367 (5)
H2A0.45730.03290.62740.063 (11)*
C40.56984 (13)0.0955 (4)0.59938 (10)0.0268 (6)
O30.52807 (9)0.0810 (2)0.55366 (7)0.0313 (5)
C50.50843 (15)0.2684 (4)0.53157 (11)0.0381 (7)
H5A0.47890.24880.49930.057*
H5B0.54860.34130.52100.057*
H5C0.48440.34290.55930.057*
C60.63836 (13)0.1158 (4)0.59382 (10)0.0248 (6)
O40.66442 (10)0.1283 (3)0.54307 (7)0.0326 (5)
H4A0.70660.12790.54560.079 (13)*
C70.68135 (12)0.1217 (4)0.64058 (9)0.0223 (5)
C80.75264 (12)0.1433 (4)0.63673 (10)0.0236 (6)
O50.78120 (9)0.1632 (3)0.59130 (7)0.0314 (5)
C90.79061 (12)0.1419 (4)0.68777 (10)0.0230 (6)
O60.85888 (8)0.1730 (3)0.68523 (7)0.0308 (5)
C100.89618 (14)0.0038 (5)0.66731 (12)0.0463 (8)
H10A0.94420.03600.66660.069*
H10B0.88050.03410.63050.069*
H10C0.88920.10540.69270.069*
C110.75982 (12)0.1256 (4)0.73687 (10)0.0227 (6)
C120.79011 (12)0.1236 (3)0.79246 (10)0.0216 (5)
C130.85991 (12)0.1219 (4)0.80250 (10)0.0264 (6)
H130.88950.12290.77250.032*
C140.88602 (13)0.1188 (4)0.85496 (10)0.0253 (6)
H140.93340.11530.86090.030*
C150.84399 (12)0.1208 (4)0.89942 (10)0.0225 (5)
O70.87539 (8)0.1210 (3)0.94962 (7)0.0300 (4)
C160.83423 (14)0.1220 (5)0.99661 (10)0.0407 (7)
H16A0.86290.12241.02980.061*
H16B0.80570.00470.99630.061*
H16C0.80580.23960.99600.061*
C170.77463 (12)0.1225 (4)0.89071 (10)0.0252 (6)
H170.74530.12390.92090.030*
C180.74882 (12)0.1220 (4)0.83780 (10)0.0232 (6)
H180.70140.12060.83210.028*
O1W0.88745 (11)0.4465 (4)0.57732 (8)0.0492 (6)
H1A0.8602 (15)0.357 (4)0.5866 (12)0.074*
H1B0.8908 (17)0.435 (5)0.5425 (7)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (9)0.0306 (10)0.0200 (9)0.0011 (7)0.0033 (7)0.0012 (8)
C10.0253 (13)0.0201 (13)0.0230 (13)0.0015 (10)0.0049 (11)0.0001 (11)
C20.0245 (14)0.0287 (15)0.0243 (13)0.0006 (11)0.0005 (11)0.0022 (11)
C30.0240 (14)0.0253 (15)0.0294 (14)0.0005 (11)0.0028 (11)0.0007 (11)
O20.0221 (10)0.0538 (14)0.0340 (11)0.0035 (9)0.0051 (8)0.0030 (9)
C40.0340 (15)0.0214 (14)0.0246 (14)0.0005 (11)0.0076 (11)0.0029 (11)
O30.0352 (11)0.0284 (10)0.0297 (10)0.0006 (8)0.0143 (8)0.0011 (8)
C50.0397 (17)0.0334 (17)0.0405 (17)0.0053 (13)0.0154 (13)0.0020 (13)
C60.0314 (15)0.0206 (13)0.0223 (13)0.0029 (11)0.0003 (11)0.0013 (11)
O40.0339 (12)0.0423 (12)0.0217 (10)0.0024 (9)0.0011 (8)0.0005 (8)
C70.0260 (13)0.0190 (13)0.0219 (13)0.0025 (11)0.0018 (10)0.0010 (10)
C80.0277 (14)0.0206 (13)0.0226 (13)0.0014 (11)0.0029 (11)0.0005 (10)
O50.0288 (10)0.0439 (12)0.0217 (10)0.0000 (9)0.0026 (8)0.0000 (8)
C90.0191 (13)0.0246 (14)0.0253 (13)0.0010 (10)0.0012 (10)0.0005 (11)
O60.0211 (9)0.0428 (12)0.0285 (10)0.0036 (8)0.0024 (8)0.0014 (8)
C100.0263 (16)0.072 (2)0.0404 (17)0.0160 (15)0.0009 (13)0.0118 (16)
C110.0189 (13)0.0216 (13)0.0276 (14)0.0014 (10)0.0004 (11)0.0009 (11)
C120.0229 (13)0.0181 (13)0.0238 (13)0.0001 (10)0.0028 (10)0.0014 (10)
C130.0236 (13)0.0291 (14)0.0267 (14)0.0003 (11)0.0013 (11)0.0012 (12)
C140.0216 (13)0.0264 (14)0.0278 (14)0.0005 (11)0.0027 (11)0.0016 (11)
C150.0245 (13)0.0189 (13)0.0239 (13)0.0004 (10)0.0027 (11)0.0003 (10)
O70.0262 (10)0.0426 (11)0.0211 (9)0.0009 (8)0.0041 (7)0.0002 (8)
C160.0323 (16)0.068 (2)0.0211 (14)0.0006 (15)0.0012 (12)0.0013 (14)
C170.0249 (14)0.0281 (14)0.0228 (13)0.0010 (11)0.0016 (11)0.0008 (11)
C180.0207 (13)0.0242 (13)0.0246 (13)0.0001 (11)0.0005 (10)0.0011 (11)
O1W0.0424 (13)0.0714 (17)0.0334 (12)0.0225 (11)0.0046 (10)0.0037 (11)
Geometric parameters (Å, º) top
O1—C111.366 (3)O6—C101.444 (3)
O1—C11.372 (3)C10—H10A0.9800
C1—C21.373 (3)C10—H10B0.9800
C1—C71.399 (3)C10—H10C0.9800
C2—C31.388 (3)C11—C121.473 (3)
C2—H20.9500C12—C181.393 (3)
C3—O21.351 (3)C12—C131.403 (3)
C3—C41.404 (4)C13—C141.372 (3)
O2—H2A0.8400C13—H130.9500
C4—C61.378 (4)C14—C151.385 (3)
C4—O31.380 (3)C14—H140.9500
O3—C51.436 (3)C15—O71.363 (3)
C5—H5A0.9800C15—C171.390 (3)
C5—H5B0.9800O7—C161.424 (3)
C5—H5C0.9800C16—H16A0.9800
C6—O41.357 (3)C16—H16B0.9800
C6—C71.411 (3)C16—H16C0.9800
O4—H4A0.8400C17—C181.379 (3)
C7—C81.429 (3)C17—H170.9500
C8—O51.265 (3)C18—H180.9500
C8—C91.442 (3)O1W—H1A0.852 (17)
C9—C111.363 (3)O1W—H1B0.859 (17)
C9—O61.376 (3)
C11—O1—C1121.81 (19)O6—C10—H10A109.5
O1—C1—C2116.9 (2)O6—C10—H10B109.5
O1—C1—C7120.0 (2)H10A—C10—H10B109.5
C2—C1—C7123.1 (2)O6—C10—H10C109.5
C1—C2—C3118.1 (2)H10A—C10—H10C109.5
C1—C2—H2121.0H10B—C10—H10C109.5
C3—C2—H2121.0C9—C11—O1120.1 (2)
O2—C3—C2118.2 (2)C9—C11—C12129.0 (2)
O2—C3—C4120.9 (2)O1—C11—C12110.9 (2)
C2—C3—C4120.9 (2)C18—C12—C13117.3 (2)
C3—O2—H2A109.5C18—C12—C11119.8 (2)
C6—C4—O3120.3 (2)C13—C12—C11122.9 (2)
C6—C4—C3120.0 (2)C14—C13—C12121.0 (2)
O3—C4—C3119.7 (2)C14—C13—H13119.5
C4—O3—C5113.20 (19)C12—C13—H13119.5
O3—C5—H5A109.5C13—C14—C15120.7 (2)
O3—C5—H5B109.5C13—C14—H14119.7
H5A—C5—H5B109.5C15—C14—H14119.7
O3—C5—H5C109.5O7—C15—C14115.7 (2)
H5A—C5—H5C109.5O7—C15—C17124.7 (2)
H5B—C5—H5C109.5C14—C15—C17119.6 (2)
O4—C6—C4119.6 (2)C15—O7—C16117.7 (2)
O4—C6—C7120.1 (2)O7—C16—H16A109.5
C4—C6—C7120.3 (2)O7—C16—H16B109.5
C6—O4—H4A109.5H16A—C16—H16B109.5
C1—C7—C6117.6 (2)O7—C16—H16C109.5
C1—C7—C8120.2 (2)H16A—C16—H16C109.5
C6—C7—C8122.2 (2)H16B—C16—H16C109.5
O5—C8—C7122.3 (2)C18—C17—C15119.3 (2)
O5—C8—C9121.5 (2)C18—C17—H17120.3
C7—C8—C9116.2 (2)C15—C17—H17120.3
C11—C9—O6121.0 (2)C17—C18—C12122.1 (2)
C11—C9—C8121.6 (2)C17—C18—H18118.9
O6—C9—C8117.2 (2)C12—C18—H18118.9
C9—O6—C10113.8 (2)H1A—O1W—H1B105 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1Wi0.841.922.712 (3)157
O2—H2A···O30.842.332.780 (3)114
O4—H4A···O50.841.852.589 (3)146
O1W—H1A···O50.85 (2)2.05 (2)2.886 (3)165 (3)
O1W—H1A···O60.85 (2)2.71 (3)3.288 (3)126 (3)
O1W—H1B···O4ii0.86 (2)2.38 (2)3.135 (3)148 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H16O7·H2O
Mr362.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)19.869 (4), 6.8126 (15), 24.424 (5)
β (°) 91.298 (4)
V3)3305.2 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.19 × 0.18 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.978, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
14127, 3400, 2072
Rint0.068
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.05
No. of reflections3400
No. of parameters243
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1Wi0.841.922.712 (3)156.5
O2—H2A···O30.842.332.780 (3)113.8
O4—H4A···O50.841.852.589 (3)146.0
O1W—H1A···O50.852 (17)2.05 (2)2.886 (3)165 (3)
O1W—H1A···O60.852 (17)2.71 (3)3.288 (3)126 (3)
O1W—H1B···O4ii0.859 (17)2.38 (2)3.135 (3)148 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Pakistan Science Foundation for financial support.

References

First citationArfan, M., Ali, M., Anis, I., Ahmad, H., Choudhary, M. I., Khan, A. & Shah, M. R. (2010). J. Enzyme Inhib. Med. Chem. 25, 296–299.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzhar ul, H., Malik, A., Khan, A., Shah, M. R. & Muhammad, P. (2004). Arch. Pharm. Res. 27, 1216–1219.  Web of Science PubMed Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCalzada, F., Meckes, M. & Cedillo-Rivera, R. (1999). Planta Med. 65, 78–80.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerheen, S., Ahmed, E., Afza, N., Malik, A., Shah, M. R., Nawaz, S. A. & Choudhary, M. I. (2005). Chem. Pharm. Bull. 53, 570–572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHussain, J., Khan, F. U., Rehman, N. U., Ullah, R., Mohmmad, Z., Tasleem, S., Naeem, A. & Shah, M. R. (2009). J. Asian Nat. Prod. Res. 11, 997–1000.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHussain, J., Ullah, F., Hussain, H., Hussain, S. T. & Shah, M. R. (2008). Z. Naturforsch. Teil B, 63, 591–594.  CAS Google Scholar
First citationJan, A. K., Shah, M. R., Anis, I. & Marwat, I. K. (2009). J. Enzyme Inhib. Med. Chem. 24, 192–196.  Web of Science CrossRef PubMed Google Scholar
First citationKhan, S. B., Azhar ul, H., Afza, N., Malik, A., Khan, M. T. H., Shah, M. R. & Choudhary, M. I. (2005a). Chem. Pharm. Bull. 53, 86–89.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, S. B., Azhar ul, H., Perveen, S., Afza, N., Malik, A., Nawaz, S. A., Shah, M. R. & Choudhary, M. I. (2005b). Arch. Pharm. Res. 28, 172–176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, Y. M., Flavin, M. T., Schure, R., Chen, F. C., Sidwell, R., Barnard, D. L., Huffman, J. H. & Kern, E. R. (1999). Planta Med. 65, 120–125.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNisar, M., Qayum, M., Shah, M. R., Kaleem, W. A., Ali, I. & Zia-ul-Haq, M. (2010). Pak. J. Bot. 42, 523–526  Google Scholar
First citationPedrielli, P., Pedulli, G. F. & Skibsted, L. H. (2001). J. Agric. Food Chem. 49, 3034–3040.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRiaz, N., Anis, I., Khan, P. M., Shah, R. & Malik, A. (2002). Nat. Prod. Lett. 16, 415–418.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharif, A., Ahmed, E., Malik, A., Riaz, N., Afza, N., Nawaz, S. A., Arshad, M., Shah, M. R. & Choudhary, M. I. (2005). Arch. Pharm. Res. 28, 761–764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds