metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[[(6-carb­­oxy­pyridazine-3-carboxyl­ato-κ2N2,O3)lithium]-μ-penta­hydrogen­di­oxy­gen(1+)]

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 3 September 2010; accepted 30 September 2010; online 9 October 2010)

The structure of the title compound, [Li(C6H3N2O4)2(H5O2)], is composed of centrosymmetric monomers in which an LiI ion is chelated by two N,O-bonding groups donated by two ligands. The LiI ion and both ligand mol­ecules are coplanar [r.m.s. deviation 0.0047 (2) Å] and water O atoms are in the axial positions. The second carboxyl group of each ligand remains protonated. An additional H atom, located between adjacent coordinated water mol­ecules and observed on Fourier maps, maintains the charge balance within the monomers and bridges them by short symmetric hydrogen bonds of 2.518 (3) Å to form catenated ribbons. The monomers also inter­act via hydrogen bonds in which water and carboxyl O atoms act as donors.

Related literature

For the crystal structures of 3d metal complexes with pyrid­azine-3,6-dicarboxyl­ate and water ligands, see: El Gueddi et al. (1996[El Gueddi, A., Guesmi, S., Mernari, B., Stoeckli-Evans, A., Ribas, J., Vicente, R. & Lagrenee, M. (1996). Polyhedron, 15, 4283-4288.]); Escuer et al. (1997[Escuer, A., Vicente, R., Mernari, B., El Gueddi, A. & Pierrot, M. (1997). Inorg. Chem. 36, 2511-2516.]); Gryz et al. (2006[Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m3470-m3472.]); Sun et al. (2007[Sun, W. W., Cheng, A. L., Jia, Q. X. & Gao, E. Q. (2007). Inorg. Chem. 46, 5471-5473.], 2008[Sun, W. W., Yue, Q., Cheng, A. L. & Gao, E. Q. (2008). CrystEngComm, 10, 1384-1394.]). For the structures of complexes with MgII, see: Gryz et al. (2004[Gryz, M., Starosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 67, 917-922.]). For the structures of complexes with PbII, see: Sobanska et al. (1999[Sobanska, S., Wignacourt, J.-P., Conflant, P., Drache, M., Lagranee, M. & Holt, E. M. (1999). New J. Chem. 23, 393-396.]). For the structures of both modifications of pyridazine-3,6-dicarb­oxy­lic acid, see: Suecur et al. (1987[Suecur, S., Lagrenee, M., Abraham, K. & Bremard, C. (1987). J. Heterocycl. Chem. A24, 1285-1289.]); Starosta & Leciejewicz (2004[Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, o2219-o2220.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C6H3N2O4)2(H5O2)]

  • Mr = 378.19

  • Monoclinic, P 21 /n

  • a = 4.903 (1) Å

  • b = 24.640 (5) Å

  • c = 6.6020 (13) Å

  • β = 111.60 (3)°

  • V = 741.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 295 K

  • 0.42 × 0.39 × 0.07 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.961, Tmax = 0.999

  • 4355 measured reflections

  • 2181 independent reflections

  • 1207 reflections with I > 2σ(I)

  • Rint = 0.160

  • 3 standard reflections every 200 reflections intensity decay: 0.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.117

  • S = 1.01

  • 2181 reflections

  • 135 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H63⋯O6i 1.26 1.26 2.518 (3) 180
O6—H61⋯O1ii 0.84 (2) 1.82 (2) 2.608 (2) 157 (3)
O3—H31⋯O2iii 0.96 (4) 1.56 (4) 2.525 (2) 176 (2)
O6—H62⋯O3iv 0.82 (2) 2.42 (2) 2.9957 (19) 128 (3)
O6—H62⋯N2iv 0.82 (2) 1.93 (2) 2.712 (2) 159 (3)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x+1, y, z; (iii) x+1, y, z-1; (iv) -x+1, -y, -z+1.

Data collection: KM-4 (Kuma, 1996[Kuma (1996). KM-4. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Studies of 3d metal complexes with pyridazine-3,6-dicarboxylate and water ligands revealed a variety of structures: from a monomeric anion in an ionic complex [Mg{C6H2N2O4)2(H2O)2}]2-(N2H6)2+ (Gryz et al., 2004) and dimeric molecules as in Ni, Co and Zn complexes (Escuer et al., 1997; Gryz et al., 2006; Sun et al., 2008) to coordination polymers as in MnII complexes (El Gueddi et al., 1996; Sun et al., 2007, 2008). The structure of a PbII complex shows also a polymeric pattern (Sobanska et al., 1999). The structure of the title compound is composed of monomers in which a LiI ion located in a centre of symmetry is chelated by two N,O bonding groups donated by two symmetry related ligand molecules and by two symmetry related aqua O atoms in axial positions. The coordination is slightly distorted octahedral. The ligand molecules and a LiI ion are coplanar [r.m.s. 0.0047 (2) Å]. The second carboxylic group of each ligand remains protonated and makes an angle of 5.9 (1)° with the pyridazine plane. Bond lengths and angles within the ligand ring are close to those reported earlier for both structures of the parent acid (Suecur et al., 1987; Starosta & Leciejewicz, 2004). An additional proton in a special position located between coordinated water molecules is clearly observed on Fourier maps. It maintains the charge balance within monomers and bridges them by short symmetric hydrogen bonds of 2.518 (3) Å with O6—H63—O6(ii) angle of 180° to form catenated ribbons. Symmetry code: (ii) -x + 1, -y, -z + 2. The latter are held together via hydrogen bonds in which water and protonated carboxylate O atoms act as donors and carboxylate O atoms and hetero-N atoms in adjacent ribbons as acceptors.

Related literature top

For the crystal structures of 3d metal complexes with pyridazine-3,6-dicarboxylate and water ligands, see: El Gueddi et al. (1996); Escuer et al. (1997); Gryz et al. (2006); Sun et al. (2007, 2008). For the structures of complexes with MgII, see: Gryz et al. (2004). For the structures of complexes with PbII, see: Sobanska et al. (1999). For the structures of both modifications of pyridazine-3,6-dicarboxylic acid, see: Suecur et al. (1987); Starosta & Leciejewicz (2004).

Experimental top

The title compound was synthesized by mixing of boiling aqueous solutions, one containing 1 mmol of pyridazine-3,6-dicarboxylic acid, the other - 1 mmol of lithium hydroxide (Aldrich). The mixture was boiled under reflux for 3 h and after cooling to room temperature, filtered and left to crystallize. Few days later, colourless single crystals in the form of thin plates were found after evaporation to dryness. They were extracted, washed with cold ethanol and dried in the air.

Refinement top

Water H atoms were located in a difference map and were allowed to ride on the parent atom with Uiso(H) = 1.5Ueq(O). H atoms attached to pyridazine-ring C atoms were located at calculated positions and treated as riding on the parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Studies of 3d metal complexes with pyridazine-3,6-dicarboxylate and water ligands revealed a variety of structures: from a monomeric anion in an ionic complex [Mg{C6H2N2O4)2(H2O)2}]2-(N2H6)2+ (Gryz et al., 2004) and dimeric molecules as in Ni, Co and Zn complexes (Escuer et al., 1997; Gryz et al., 2006; Sun et al., 2008) to coordination polymers as in MnII complexes (El Gueddi et al., 1996; Sun et al., 2007, 2008). The structure of a PbII complex shows also a polymeric pattern (Sobanska et al., 1999). The structure of the title compound is composed of monomers in which a LiI ion located in a centre of symmetry is chelated by two N,O bonding groups donated by two symmetry related ligand molecules and by two symmetry related aqua O atoms in axial positions. The coordination is slightly distorted octahedral. The ligand molecules and a LiI ion are coplanar [r.m.s. 0.0047 (2) Å]. The second carboxylic group of each ligand remains protonated and makes an angle of 5.9 (1)° with the pyridazine plane. Bond lengths and angles within the ligand ring are close to those reported earlier for both structures of the parent acid (Suecur et al., 1987; Starosta & Leciejewicz, 2004). An additional proton in a special position located between coordinated water molecules is clearly observed on Fourier maps. It maintains the charge balance within monomers and bridges them by short symmetric hydrogen bonds of 2.518 (3) Å with O6—H63—O6(ii) angle of 180° to form catenated ribbons. Symmetry code: (ii) -x + 1, -y, -z + 2. The latter are held together via hydrogen bonds in which water and protonated carboxylate O atoms act as donors and carboxylate O atoms and hetero-N atoms in adjacent ribbons as acceptors.

For the crystal structures of 3d metal complexes with pyridazine-3,6-dicarboxylate and water ligands, see: El Gueddi et al. (1996); Escuer et al. (1997); Gryz et al. (2006); Sun et al. (2007, 2008). For the structures of complexes with MgII, see: Gryz et al. (2004). For the structures of complexes with PbII, see: Sobanska et al. (1999). For the structures of both modifications of pyridazine-3,6-dicarboxylic acid, see: Suecur et al. (1987); Starosta & Leciejewicz (2004).

Computing details top

Data collection: KM-4 (Kuma, 1996); cell refinement: KM-4 (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of title compound with atom labelling scheme. Displacement ellipsoids are drawn at 50% probability level. Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y, -z + 2.
[Figure 2] Fig. 2. Packing diagram of the structure.
Bis[[(6-carboxypyridazine-3-carboxylato- κ2N2,O3)lithium]-µ-pentahydrogendioxygen(1+)] top
Crystal data top
[Li(C6H3N2O4)2(H5O2)]F(000) = 388
Mr = 378.19Dx = 1.694 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.903 (1) ÅCell parameters from 25 reflections
b = 24.640 (5) Åθ = 6–15°
c = 6.6020 (13) ŵ = 0.15 mm1
β = 111.60 (3)°T = 295 K
V = 741.6 (3) Å3Plate, colourless
Z = 20.42 × 0.39 × 0.07 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
1207 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.160
Graphite monochromatorθmax = 30.1°, θmin = 1.7°
profile data from ω/2θ–scansh = 66
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 034
Tmin = 0.961, Tmax = 0.999l = 99
4355 measured reflections3 standard reflections every 200 reflections
2181 independent reflections intensity decay: 0.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0251P)2 + 0.0008P]
where P = (Fo2 + 2Fc2)/3
2181 reflections(Δ/σ)max < 0.001
135 parametersΔρmax = 0.40 e Å3
3 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Li(C6H3N2O4)2(H5O2)]V = 741.6 (3) Å3
Mr = 378.19Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.903 (1) ŵ = 0.15 mm1
b = 24.640 (5) ÅT = 295 K
c = 6.6020 (13) Å0.42 × 0.39 × 0.07 mm
β = 111.60 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1207 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.160
Tmin = 0.961, Tmax = 0.9993 standard reflections every 200 reflections
4355 measured reflections intensity decay: 0.8%
2181 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
2181 reflectionsΔρmin = 0.31 e Å3
135 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1189 (4)0.08134 (5)0.4137 (2)0.0216 (3)
O10.1491 (4)0.04967 (4)0.6760 (2)0.0308 (3)
O30.5111 (3)0.11620 (5)0.0040 (2)0.0288 (3)
O20.2209 (3)0.13593 (5)0.7509 (2)0.0297 (3)
C50.2683 (4)0.14735 (6)0.2292 (3)0.0208 (4)
N20.2452 (4)0.09550 (5)0.2750 (2)0.0215 (3)
C20.0209 (4)0.11977 (6)0.5110 (2)0.0196 (3)
C70.1279 (4)0.10016 (6)0.6606 (2)0.0208 (4)
C80.4088 (4)0.15946 (6)0.0675 (3)0.0226 (4)
O40.4208 (4)0.20499 (4)0.0057 (2)0.0405 (4)
C40.1727 (5)0.18911 (6)0.3287 (3)0.0264 (4)
H40.19300.22530.29650.032*
C30.0479 (5)0.17513 (6)0.4753 (3)0.0253 (4)
H30.01650.20140.54860.030*
Li10.00000.00000.50000.0588 (19)
O60.4949 (4)0.00562 (5)0.8091 (2)0.0415 (4)
H610.606 (6)0.0181 (8)0.792 (4)0.062*
H620.558 (6)0.0364 (7)0.807 (4)0.062*
H310.617 (7)0.1250 (8)0.089 (4)0.042 (7)*
H630.50000.00001.00000.080 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0282 (8)0.0198 (6)0.0270 (7)0.0007 (5)0.0221 (6)0.0017 (5)
O10.0433 (9)0.0227 (5)0.0420 (7)0.0012 (5)0.0339 (6)0.0023 (5)
O30.0415 (9)0.0237 (5)0.0362 (7)0.0014 (5)0.0319 (6)0.0020 (5)
O20.0401 (9)0.0289 (6)0.0350 (7)0.0004 (5)0.0311 (5)0.0016 (4)
C50.0247 (9)0.0204 (6)0.0235 (7)0.0007 (7)0.0160 (6)0.0004 (5)
N20.0295 (9)0.0200 (5)0.0245 (7)0.0004 (6)0.0211 (6)0.0018 (5)
C20.0234 (9)0.0205 (6)0.0215 (7)0.0009 (6)0.0162 (6)0.0000 (5)
C70.0215 (9)0.0260 (7)0.0221 (7)0.0010 (6)0.0162 (6)0.0000 (5)
C80.0289 (10)0.0216 (7)0.0243 (7)0.0016 (6)0.0182 (7)0.0013 (5)
O40.0689 (11)0.0230 (6)0.0506 (8)0.0029 (7)0.0465 (7)0.0046 (5)
C40.0384 (12)0.0187 (6)0.0308 (9)0.0008 (7)0.0229 (8)0.0013 (6)
C30.0352 (11)0.0195 (7)0.0312 (9)0.0001 (7)0.0239 (7)0.0029 (6)
Li10.108 (6)0.0194 (19)0.095 (4)0.006 (3)0.091 (4)0.001 (2)
O60.0709 (13)0.0209 (6)0.0542 (9)0.0033 (6)0.0484 (8)0.0009 (5)
Geometric parameters (Å, º) top
N1—N21.327 (2)C2—C71.507 (3)
N1—C21.330 (2)C8—O41.2024 (19)
N1—Li12.2194 (14)C4—C31.366 (3)
O1—C71.2558 (18)C4—H40.9300
O1—Li12.0019 (15)C3—H30.9300
O3—C81.311 (2)Li1—O1i2.0020 (15)
O3—H310.96 (4)Li1—N1i2.2195 (14)
O2—C71.241 (2)Li1—O62.535 (2)
C5—N21.3274 (19)Li1—O6i2.535 (2)
C5—C41.392 (2)O6—H610.836 (18)
C5—C81.498 (3)O6—H620.822 (16)
C2—C31.399 (2)O6—H631.2600
N2—N1—C2119.32 (13)C2—C3—H3121.3
N2—N1—Li1130.38 (11)O1—Li1—O1i180.0
C2—N1—Li1110.08 (12)O1—Li1—N177.50 (6)
C7—O1—Li1119.98 (14)O1i—Li1—N1102.50 (6)
C8—O3—H31112.3 (14)O1—Li1—N1i102.50 (6)
N2—C5—C4122.17 (19)O1i—Li1—N1i77.50 (6)
N2—C5—C8117.00 (16)N1—Li1—N1i180.0
C4—C5—C8120.82 (14)O1—Li1—O690.68 (6)
C5—N2—N1120.70 (16)O1i—Li1—O689.32 (6)
N1—C2—C3122.66 (18)N1—Li1—O689.54 (5)
N1—C2—C7115.88 (13)N1i—Li1—O690.46 (5)
C3—C2—C7121.45 (17)O1—Li1—O6i89.32 (6)
O2—C7—O1127.48 (19)O1i—Li1—O6i90.68 (6)
O2—C7—C2116.05 (14)N1—Li1—O6i90.46 (5)
O1—C7—C2116.45 (16)N1i—Li1—O6i89.54 (5)
O4—C8—O3125.3 (2)O6—Li1—O6i180.0
O4—C8—C5121.33 (18)Li1—O6—H61109.5 (17)
O3—C8—C5113.34 (14)Li1—O6—H62106.8 (17)
C3—C4—C5117.69 (15)H61—O6—H62112 (3)
C3—C4—H4121.2Li1—O6—H63117.00
C5—C4—H4121.2H61—O6—H63107.00
C4—C3—C2117.40 (17)H62—O6—H63104.00
C4—C3—H3121.3
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H63···O6ii1.261.262.518 (3)180
O6—H61···O1iii0.84 (2)1.82 (2)2.608 (2)157 (3)
O3—H31···O2iv0.96 (4)1.56 (4)2.525 (2)176 (2)
O6—H62···O3v0.82 (2)2.42 (2)2.9957 (19)128 (3)
O6—H62···N2v0.82 (2)1.93 (2)2.712 (2)159 (3)
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1, y, z; (iv) x+1, y, z1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Li(C6H3N2O4)2(H5O2)]
Mr378.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)4.903 (1), 24.640 (5), 6.6020 (13)
β (°) 111.60 (3)
V3)741.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.42 × 0.39 × 0.07
Data collection
DiffractometerKuma KM-4 four-circle
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.961, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
4355, 2181, 1207
Rint0.160
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.01
No. of reflections2181
No. of parameters135
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.31

Computer programs: KM-4 (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H63···O6i1.26001.26002.518 (3)180.0
O6—H61···O1ii0.836 (18)1.82 (2)2.608 (2)157 (3)
O3—H31···O2iii0.96 (4)1.56 (4)2.525 (2)176 (2)
O6—H62···O3iv0.822 (16)2.42 (2)2.9957 (19)128 (3)
O6—H62···N2iv0.822 (16)1.93 (2)2.712 (2)159 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z; (iii) x+1, y, z1; (iv) x+1, y, z+1.
 

References

First citationEl Gueddi, A., Guesmi, S., Mernari, B., Stoeckli-Evans, A., Ribas, J., Vicente, R. & Lagrenee, M. (1996). Polyhedron, 15, 4283–4288.  CSD CrossRef CAS Web of Science Google Scholar
First citationEscuer, A., Vicente, R., Mernari, B., El Gueddi, A. & Pierrot, M. (1997). Inorg. Chem. 36, 2511–2516.  CSD CrossRef CAS Web of Science Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2004). J. Coord. Chem. 67, 917–922.  Web of Science CSD CrossRef Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m3470–m3472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuma (1996). KM-4. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobanska, S., Wignacourt, J.-P., Conflant, P., Drache, M., Lagranee, M. & Holt, E. M. (1999). New J. Chem. 23, 393–396.  Web of Science CSD CrossRef CAS Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, o2219–o2220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuecur, S., Lagrenee, M., Abraham, K. & Bremard, C. (1987). J. Heterocycl. Chem. A24, 1285–1289.  Google Scholar
First citationSun, W. W., Cheng, A. L., Jia, Q. X. & Gao, E. Q. (2007). Inorg. Chem. 46, 5471–5473.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSun, W. W., Yue, Q., Cheng, A. L. & Gao, E. Q. (2008). CrystEngComm, 10, 1384–1394.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds