organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Di­methyl-2-phenyl-1-(p-tol­yl)-1H-imidazole

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 10 September 2010; accepted 9 October 2010; online 20 October 2010)

In the title compound, C18H18N2, the imidazole ring is essentially planar [maximum deviation = 0.004 (1) Å] and makes dihedral angles of 68.91 (8) and 20.43 (9)° with the tolyl and phenyl rings, respectively. The dihedral angle between the latter rings is 73.62 (8)°. The crystal packing is stabilized by inter­molecular C—H⋯N hydrogen bonds.

Related literature

For related structures and applications of imidazole derivatives, see: Gayathri et al. (2010a[Gayathri, P., Jayabharathi, J., Saravanan, K., Thiruvalluvar, A. & Butcher, R. J. (2010a). Acta Cryst. E66, o1791.],b[Gayathri, P., Jayabharathi, J., Srinivasan, N., Thiruvalluvar, A. & Butcher, R. J. (2010b). Acta Cryst. E66, o1703.],c[Gayathri, P., Thiruvalluvar, A., Saravanan, K., Jayabharathi, J. & Butcher, R. J. (2010c). Acta Cryst. E66, o2219.],d[Gayathri, P., Thiruvalluvar, A., Srinivasan, N., Jayabharathi, J. & Butcher, R. J. (2010d). Acta Cryst. E66, o2519.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2

  • Mr = 262.34

  • Monoclinic, P 21 /n

  • a = 9.6971 (3) Å

  • b = 7.5458 (2) Å

  • c = 19.8407 (7) Å

  • β = 96.604 (3)°

  • V = 1442.16 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 123 K

  • 0.49 × 0.43 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.606, Tmax = 1.000

  • 5113 measured reflections

  • 2849 independent reflections

  • 2529 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.11

  • 2849 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N3i 0.95 2.51 3.324 (2) 144
C16—H16⋯N3ii 0.95 2.54 3.465 (2) 164
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our research (Gayathri et al., (2010a, b, c & d)), we have synthesized the title compound, I and report its crystal structure here.

In I (Fig. 1), C18H18N2, the imidazole ring is essentially planar with maximum deviation = 0.004 (1)Å for N3. The imidazole ring makes dihedral angles of 68.91 (8)° and 20.43 (9)° with the benzene (C11-C16) and phenyl (C21-C26) rings respectively. The dihedral angle between the benzene and phenyl rings is 73.62 (8)°. The crystal packing is stabilized by C12–H12···N3i and C16–H16···N3ii intermolecular non-classical hydrogen bonds (Table 1, Fig. 2). Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z.

Related literature top

For related structures and applications of imidazole derivatives, see: Gayathri et al. (2010a,b,c,d).

Experimental top

To pure butane-2,3-dione (1.48 g, 15 mmol) in ethanol (10 ml), p-toluidine (1.6 g, 15 mmol), ammonium acetate (1.15 g, 15 mmol) and benzaldehyde (1.5 g, 15 mmol) was added about 1 h by maintaining the temperature at 333 K. The reaction mixture was refluxed for 7 days and extracted with dichloromethane. The solid separated was purified by column chromatography using hexane: ethyl acetate as the eluent. Yield: 1.93 g (46%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.95 - 0.98Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Structure description top

As part of our research (Gayathri et al., (2010a, b, c & d)), we have synthesized the title compound, I and report its crystal structure here.

In I (Fig. 1), C18H18N2, the imidazole ring is essentially planar with maximum deviation = 0.004 (1)Å for N3. The imidazole ring makes dihedral angles of 68.91 (8)° and 20.43 (9)° with the benzene (C11-C16) and phenyl (C21-C26) rings respectively. The dihedral angle between the benzene and phenyl rings is 73.62 (8)°. The crystal packing is stabilized by C12–H12···N3i and C16–H16···N3ii intermolecular non-classical hydrogen bonds (Table 1, Fig. 2). Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z.

For related structures and applications of imidazole derivatives, see: Gayathri et al. (2010a,b,c,d).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
4,5-Dimethyl-2-phenyl-1-(p-tolyl)-1H-imidazole top
Crystal data top
C18H18N2F(000) = 560
Mr = 262.34Dx = 1.208 Mg m3
Monoclinic, P21/nMelting point: 388 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 9.6971 (3) ÅCell parameters from 3666 reflections
b = 7.5458 (2) Åθ = 4.6–74.1°
c = 19.8407 (7) ŵ = 0.55 mm1
β = 96.604 (3)°T = 123 K
V = 1442.16 (8) Å3Block, colourless
Z = 40.49 × 0.43 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2849 independent reflections
Radiation source: Enhance (Cu) X-ray Source2529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 6.3°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 89
Tmin = 0.606, Tmax = 1.000l = 2423
5113 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.7809P]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H18N2V = 1442.16 (8) Å3
Mr = 262.34Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.6971 (3) ŵ = 0.55 mm1
b = 7.5458 (2) ÅT = 123 K
c = 19.8407 (7) Å0.49 × 0.43 × 0.22 mm
β = 96.604 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2529 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 1.000Rint = 0.024
5113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.11Δρmax = 0.28 e Å3
2849 reflectionsΔρmin = 0.19 e Å3
184 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.96551 (13)0.70974 (17)0.05414 (6)0.0239 (4)
N31.08249 (13)0.78862 (17)0.03075 (7)0.0248 (4)
C20.95773 (16)0.7589 (2)0.01276 (7)0.0229 (4)
C41.17482 (16)0.7599 (2)0.02618 (8)0.0260 (5)
C51.10567 (16)0.7104 (2)0.07911 (8)0.0266 (5)
C110.85639 (16)0.6994 (2)0.09746 (7)0.0235 (4)
C120.83053 (17)0.5406 (2)0.12883 (8)0.0272 (5)
C130.73060 (17)0.5358 (2)0.17385 (8)0.0281 (5)
C140.65519 (16)0.6861 (2)0.18734 (8)0.0276 (5)
C150.68211 (17)0.8429 (2)0.15400 (8)0.0302 (5)
C160.78331 (16)0.8514 (2)0.10983 (8)0.0272 (5)
C170.54875 (18)0.6791 (3)0.23712 (9)0.0367 (6)
C210.83051 (16)0.7676 (2)0.06104 (8)0.0241 (4)
C220.70724 (17)0.6803 (2)0.05163 (8)0.0289 (5)
C230.59439 (18)0.6860 (3)0.10129 (9)0.0337 (5)
C240.60157 (19)0.7807 (3)0.16077 (9)0.0348 (5)
C250.72376 (19)0.8686 (2)0.17049 (8)0.0334 (5)
C260.83700 (17)0.8621 (2)0.12112 (8)0.0281 (5)
C411.32767 (17)0.7884 (3)0.02550 (9)0.0341 (5)
C511.15590 (18)0.6676 (3)0.15102 (8)0.0338 (5)
H120.880310.436520.119710.0327*
H130.713490.427490.195870.0338*
H150.630140.946230.161660.0362*
H160.802060.959960.088430.0326*
H17A0.481460.584940.223810.0550*
H17B0.500450.793130.237190.0550*
H17C0.595250.654600.282670.0550*
H220.700630.616510.010860.0346*
H230.511530.624630.094560.0404*
H240.523770.785310.194510.0417*
H250.729620.933420.211110.0401*
H260.920030.922550.128230.0338*
H41A1.347050.915760.024290.0512*
H41B1.357920.731530.014700.0512*
H41C1.377950.736560.066470.0512*
H51A1.255620.692090.159610.0507*
H51B1.139010.542010.159600.0507*
H51C1.106120.740570.181170.0507*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0248 (7)0.0269 (7)0.0204 (6)0.0011 (5)0.0039 (5)0.0000 (5)
N30.0272 (7)0.0242 (7)0.0238 (7)0.0009 (5)0.0064 (5)0.0016 (5)
C20.0278 (8)0.0214 (7)0.0200 (7)0.0008 (6)0.0056 (6)0.0013 (6)
C40.0262 (8)0.0248 (8)0.0273 (8)0.0020 (6)0.0047 (6)0.0010 (6)
C50.0256 (8)0.0281 (8)0.0260 (8)0.0038 (6)0.0026 (6)0.0012 (6)
C110.0230 (7)0.0294 (8)0.0185 (7)0.0001 (6)0.0036 (6)0.0012 (6)
C120.0309 (8)0.0264 (8)0.0246 (8)0.0023 (7)0.0044 (6)0.0004 (6)
C130.0312 (8)0.0297 (9)0.0238 (8)0.0032 (7)0.0045 (6)0.0025 (6)
C140.0231 (8)0.0374 (9)0.0224 (8)0.0030 (6)0.0031 (6)0.0030 (7)
C150.0294 (8)0.0312 (9)0.0307 (8)0.0054 (7)0.0063 (7)0.0025 (7)
C160.0295 (8)0.0261 (8)0.0263 (8)0.0014 (6)0.0043 (6)0.0014 (6)
C170.0295 (9)0.0477 (11)0.0347 (9)0.0034 (8)0.0114 (7)0.0030 (8)
C210.0280 (8)0.0248 (8)0.0199 (7)0.0018 (6)0.0041 (6)0.0043 (6)
C220.0314 (8)0.0328 (9)0.0233 (8)0.0006 (7)0.0068 (6)0.0024 (7)
C230.0278 (8)0.0420 (10)0.0315 (9)0.0018 (7)0.0045 (7)0.0085 (8)
C240.0324 (9)0.0422 (10)0.0280 (8)0.0063 (8)0.0038 (7)0.0077 (7)
C250.0417 (10)0.0367 (10)0.0216 (8)0.0039 (8)0.0026 (7)0.0000 (7)
C260.0321 (8)0.0296 (8)0.0234 (8)0.0004 (7)0.0063 (6)0.0025 (6)
C410.0263 (8)0.0398 (10)0.0369 (9)0.0004 (7)0.0061 (7)0.0006 (8)
C510.0320 (9)0.0442 (10)0.0245 (8)0.0041 (8)0.0007 (7)0.0020 (7)
Geometric parameters (Å, º) top
N1—C21.3719 (18)C24—C251.391 (3)
N1—C51.392 (2)C25—C261.386 (2)
N1—C111.4400 (19)C12—H120.9500
N3—C21.319 (2)C13—H130.9500
N3—C41.375 (2)C15—H150.9500
C2—C211.474 (2)C16—H160.9500
C4—C51.362 (2)C17—H17A0.9800
C4—C411.499 (2)C17—H17B0.9800
C5—C511.489 (2)C17—H17C0.9800
C11—C121.386 (2)C22—H220.9500
C11—C161.385 (2)C23—H230.9500
C12—C131.392 (2)C24—H240.9500
C13—C141.392 (2)C25—H250.9500
C14—C151.395 (2)C26—H260.9500
C14—C171.509 (2)C41—H41A0.9800
C15—C161.390 (2)C41—H41B0.9800
C21—C221.396 (2)C41—H41C0.9800
C21—C261.397 (2)C51—H51A0.9800
C22—C231.386 (2)C51—H51B0.9800
C23—C241.388 (3)C51—H51C0.9800
N3···C12i3.324 (2)C21···H41Aii3.0800
N1···H222.8300C23···H41Bvi3.0400
N3···H262.5600C24···H17Av3.1000
N3···H12i2.5100C24···H15vii3.0500
N3···H16ii2.5400C41···H22i3.0800
C4···C22i3.530 (2)C41···H51A2.9200
C4···C26ii3.427 (2)C51···H41C2.9200
C5···C22i3.537 (2)C51···H25iv2.8500
C5···C26ii3.362 (2)H12···N3i2.5100
C11···C223.143 (2)H15···H17B2.3700
C12···N3i3.324 (2)H15···C24vii3.0500
C12···C513.278 (2)H16···C23.0500
C16···C213.530 (2)H16···N3ii2.5400
C16···C223.454 (2)H17A···H51Avi2.5400
C21···C163.530 (2)H17A···C24v3.1000
C22···C41i3.596 (3)H17B···H152.3700
C22···C4i3.530 (2)H22···N12.8300
C22···C113.143 (2)H22···C112.5600
C22···C163.454 (2)H22···C122.9700
C22···C5i3.537 (2)H22···C163.0100
C25···C51iii3.537 (2)H22···C41i3.0800
C26···C4ii3.427 (2)H23···H41Bvi2.4300
C26···C5ii3.362 (2)H23···C13v2.9300
C26···C51ii3.600 (3)H25···C51iii2.8500
C41···C22i3.596 (3)H26···N32.5600
C51···C123.278 (2)H26···C5ii2.9600
C51···C25iv3.537 (2)H41A···C21ii3.0800
C51···C26ii3.600 (3)H41B···C23viii3.0400
C2···H163.0500H41B···H23viii2.4300
C5···H26ii2.9600H41C···C512.9200
C11···H222.5600H41C···H51A2.3300
C11···H51C2.7900H51A···C17viii3.0700
C12···H51B2.9800H51A···C412.9200
C12···H222.9700H51A···H17Aviii2.5400
C13···H23v2.9300H51A···H41C2.3300
C16···H223.0100H51B···C122.9800
C17···H51Avi3.0700H51B···C21i3.0800
C21···H51Bi3.0800H51C···C112.7900
C2—N1—C5106.63 (12)C14—C13—H13119.00
C2—N1—C11129.03 (13)C14—C15—H15119.00
C5—N1—C11122.83 (12)C16—C15—H15119.00
C2—N3—C4106.36 (13)C11—C16—H16120.00
N1—C2—N3110.95 (13)C15—C16—H16120.00
N1—C2—C21126.14 (14)C14—C17—H17A109.00
N3—C2—C21122.80 (13)C14—C17—H17B109.00
N3—C4—C5110.17 (14)C14—C17—H17C109.00
N3—C4—C41121.39 (14)H17A—C17—H17B109.00
C5—C4—C41128.41 (15)H17A—C17—H17C109.00
N1—C5—C4105.89 (13)H17B—C17—H17C109.00
N1—C5—C51122.59 (14)C21—C22—H22120.00
C4—C5—C51131.50 (15)C23—C22—H22120.00
N1—C11—C12119.87 (14)C22—C23—H23120.00
N1—C11—C16119.14 (13)C24—C23—H23120.00
C12—C11—C16120.90 (14)C23—C24—H24120.00
C11—C12—C13119.07 (14)C25—C24—H24120.00
C12—C13—C14121.47 (14)C24—C25—H25120.00
C13—C14—C15117.96 (14)C26—C25—H25120.00
C13—C14—C17120.75 (15)C21—C26—H26120.00
C15—C14—C17121.29 (15)C25—C26—H26120.00
C14—C15—C16121.48 (14)C4—C41—H41A109.00
C11—C16—C15119.09 (14)C4—C41—H41B109.00
C2—C21—C22123.89 (14)C4—C41—H41C109.00
C2—C21—C26117.45 (14)H41A—C41—H41B109.00
C22—C21—C26118.58 (14)H41A—C41—H41C109.00
C21—C22—C23120.55 (15)H41B—C41—H41C109.00
C22—C23—C24120.50 (17)C5—C51—H51A109.00
C23—C24—C25119.36 (16)C5—C51—H51B109.00
C24—C25—C26120.24 (15)C5—C51—H51C109.00
C21—C26—C25120.77 (15)H51A—C51—H51B109.00
C11—C12—H12120.00H51A—C51—H51C109.00
C13—C12—H12120.00H51B—C51—H51C109.00
C12—C13—H13119.00
C5—N1—C2—N30.36 (17)N3—C4—C5—C51178.79 (17)
C5—N1—C2—C21176.54 (14)C41—C4—C5—N1177.62 (16)
C11—N1—C2—N3166.40 (14)C41—C4—C5—C510.7 (3)
C11—N1—C2—C2117.4 (2)N1—C11—C12—C13176.00 (14)
C2—N1—C5—C40.06 (16)C16—C11—C12—C130.7 (2)
C2—N1—C5—C51178.60 (16)N1—C11—C16—C15177.22 (14)
C11—N1—C5—C4167.05 (13)C12—C11—C16—C150.5 (2)
C11—N1—C5—C5111.5 (2)C11—C12—C13—C140.8 (2)
C2—N1—C11—C12122.48 (17)C12—C13—C14—C150.3 (2)
C2—N1—C11—C1660.8 (2)C12—C13—C14—C17179.07 (15)
C5—N1—C11—C1273.49 (19)C13—C14—C15—C161.6 (2)
C5—N1—C11—C16103.27 (17)C17—C14—C15—C16177.82 (15)
C4—N3—C2—N10.62 (17)C14—C15—C16—C111.7 (2)
C4—N3—C2—C21176.95 (14)C2—C21—C22—C23176.04 (16)
C2—N3—C4—C50.66 (17)C26—C21—C22—C230.7 (2)
C2—N3—C4—C41177.56 (15)C2—C21—C26—C25176.69 (14)
N1—C2—C21—C2219.2 (2)C22—C21—C26—C250.3 (2)
N1—C2—C21—C26164.06 (15)C21—C22—C23—C240.9 (3)
N3—C2—C21—C22156.57 (15)C22—C23—C24—C250.7 (3)
N3—C2—C21—C2620.2 (2)C23—C24—C25—C260.2 (3)
N3—C4—C5—N10.43 (17)C24—C25—C26—C210.0 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x+1, y+1, z; (vi) x1, y, z; (vii) x+1, y+2, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N3i0.952.513.324 (2)144
C16—H16···N3ii0.952.543.465 (2)164
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC18H18N2
Mr262.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.6971 (3), 7.5458 (2), 19.8407 (7)
β (°) 96.604 (3)
V3)1442.16 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.49 × 0.43 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.606, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5113, 2849, 2529
Rint0.024
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.11
No. of reflections2849
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N3i0.952.513.324 (2)144
C16—H16···N3ii0.952.543.465 (2)164
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z.
 

Acknowledgements

JJ is thankful tothe Department of Science and Technology [No. SR/S1/IC-07/2007], University Grants commission (F. No. 36-21/2008 (SR)) for providing funding for this research work. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGayathri, P., Jayabharathi, J., Saravanan, K., Thiruvalluvar, A. & Butcher, R. J. (2010a). Acta Cryst. E66, o1791.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGayathri, P., Jayabharathi, J., Srinivasan, N., Thiruvalluvar, A. & Butcher, R. J. (2010b). Acta Cryst. E66, o1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGayathri, P., Thiruvalluvar, A., Saravanan, K., Jayabharathi, J. & Butcher, R. J. (2010c). Acta Cryst. E66, o2219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGayathri, P., Thiruvalluvar, A., Srinivasan, N., Jayabharathi, J. & Butcher, R. J. (2010d). Acta Cryst. E66, o2519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds