organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[2-(2-thienyl­methyl­amino)­eth­yl]ammonium triiodide

aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: alamgir@chem.jsums.edu

(Received 11 September 2010; accepted 2 October 2010; online 9 October 2010)

In the title compound, C21H33N4S33+·3I, three secondary amines are protonated, while the central amine remains unprotonated. One thio­phene is disordered with an occupancy ratio of 0.868 (6)/0.132 (6). Each protonated amine is involved in N—H⋯I hydrogen-bonding inter­actions with the iodide anions.

Related literature

For general background to anion hosts, see: Bianchi et al. (1997[Bianchi, A., García-España, E. & Bowman-James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley-VCH.]); Kang et al. (2005[Kang, S. O., Hossain, M. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328-330.]); Hossain (2008[Hossain, M. A. (2008). Curr. Org. Chem. 12, 1231-1256.]); For related structures, see: Bazzicalupi et al. (2009[Bazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem. 48, 2391-2398.]); Hossain et al. (2002[Hossain, M. A., Lilinares, J. M., Powell, R. D. & Bowman-James, K. (2002). J. Supramol. Chem. 2, 143-151.], 2004[Hossain, M. A., Liljegren, J. A., Powell, R. D. & Bowman-James, K. (2004). Inorg. Chem. 43, 3751-3755.]); Burgess et al. (1991[Burgess, J., Al-Alousy, A., Fawcett, J. & Russell, D. R. (1991). Acta Cryst. C47, 2506-2508.]); Saeed et al. (2010[Saeed, M. A., Fronczek, F. R. & Hossain, M. A. (2010). Acta Cryst. E66, o656-o657.]).

[Scheme 1]

Experimental

Crystal data
  • C21H33N4S33+·3I

  • Mr = 818.42

  • Orthorhombic, P 21 21 21

  • a = 10.5433 (5) Å

  • b = 11.4203 (6) Å

  • c = 24.5107 (15) Å

  • V = 2951.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.41 mm−1

  • T = 90 K

  • 0.20 × 0.17 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer with Oxford Cryostream

  • Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.549, Tmax = 0.629

  • 90447 measured reflections

  • 10653 independent reflections

  • 9446 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.04

  • 10653 reflections

  • 277 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 2.96 e Å−3

  • Δρmin = −2.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4708 Friedel pairs

  • Flack parameter: 0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21N⋯I1i 0.92 2.79 3.557 (4) 142
N2—H22N⋯I2 0.92 2.67 3.543 (4) 160
N3—H31N⋯I1 0.92 2.78 3.547 (3) 142
N3—H32N⋯I3 0.92 2.59 3.460 (3) 158
N4—H41N⋯I1 0.92 2.73 3.553 (4) 150
N4—H42N⋯I2ii 0.92 2.57 3.479 (4) 172
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP–3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Anions play a key role in many chemical and biological processes. In particular, structural characterization of an anion complex is important in achieving selective hosts for anions (Hossain, 2008, Saeed et al., 2010). Among the numerous systems, trigonal receptors are of interest because of their synthetic simplicity and capability for anion binding though hydrogen bonding interactions. Tris(aminoethyl)–amine is an excellent building block for synthesizing fuctionalized tripodal hosts for anion binding (Burgess et al., 1991; Hossain et al., 2004; Bazzicalupi, et al., 2009). These molecules have been shown to bind a variety of anion including nitrate, phosphate and sulfate (Bianchi et al., 1997; Kang et al., 2005). Herein, we report the molecular structure of the title compound in which three iodides are held by hydrogen bonding with protonated secondary amines.

Single crystal analysis of the title compound reveals that the molecule crystallizes in its orthorhombic space group forming a cavity. The tren unit is triply charged, where all three secondary N atoms are protonated. The central amine is not protonated. The three arms form a cavity, and one thiophene unit is disordered. In the complex, the protonated amines are involved in hydrogen bonding interactions with iodide anions having N···I distances 3.460 (3) to 3.553 (4)Å (Fig. 1 and Table 1). One iodide (I1) accepts two hydrogen bonds from two protonated amines (N3 and N4), while each of the other two iodides accepts one hydrogen bond from N2 and N3. Therefore, one secondary nitrogen (N3) donates two hydrogen bonds to two iodides (I1 and I3). The N···I distances are comparable with those observed in an iodide complex of an azacryptand (3.476 (4)Å and 3.632 (4)Å) reported earlier (Hossain et al., 2002).

The disorder of the thiophene ring containing S3 involves two conformations, differing by rotation about two different bonds. One is a twofold rotation about C17—C18, which swaps S3 and C19. Refinement of this type of model resulted in elongated ellipsoids in the plane of the ring for all atoms of the thiophene, as well as unacceptable residual densities. This was interpreted as a second conformational difference involving a difference in rotation about the N4—C17 bond, amounting to a torsional difference of 11.7°.

Related literature top

For general background [to what?], see: Bianchi et al. (1997); Kang et al. (2005); Hossain (2008); For related structures, see: Bazzicalupi et al. (2009); Hossain et al. (2002), Hossain et al. (2004); Burgess et al. (1991); Saeed et al. (2010).

Experimental top

To a solution of 2–thiophene aldehyde (4.60 g, 41 mmol) in diethylether (50 ml) was added tris(2–aminoethyl)amine (2.00 g, 13.7 mmol) in ethanol (50 ml). The mixture was stirred overnight at room temperature, and the solvent was evaporated. After diluting with methanol (100 ml), NaBH4 (2.00 g) was added to convert the imine into the corresponding amine. The reaction mixture was stirred for 24 hrs at room temperature. After evaporation of the solvent, the residue was partitioned in water/CH2Cl2 (50/50 ml). The organic layers were collected and dried with MgSO4 to give an oily product. Yield 4.38 g (74%). 1H NMR (500 MHz, CDCl3, TMS): δ 2.58 (t, 6H, NCH2), 2.69 ((t, 6H, NCH2CH2), 3.95 (s, 6H, ArCH2)), 6.89 (b, 3H, ArH), 6.93 (b, ArH), 7.18 (b, ArH). MS (ESI): m/z (+) 435 (M + H)+. The iodide salt was prepared from the reaction of the free amine (0.20 g, 0.47 mmol) with HI in ethanol. The white precipitate was obtained after evaporation of the solvent. The salt was redissolved in water and ethanol (1:2 v/v, 1 ml) and crystals suitable for X–ray analysis were grown from slow evaporation of the solvent at room temperature.

Refinement top

H atoms based on C were placed in idealized positions with C—H distances 0.95Å–0.99Å, N—H distances 0.92Å, and thereafter treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached atom. The largest residual density peak was 0.81Å from I2, and the deepest hole was 0.59Å from I2. The disorder in the thiophene ring containing S3 was modeled with two orientations having populations 0.868 (6) and 0.132 (6), their geometries being restrained to be the same as that of the thiophene containing S1. This required 30 restraints. Full anisotropic refinement was not successful for the disordered region, and it was necessary to treat nine atoms as isotropic, with a common displacement parameter for the five atoms of the minor contributor thiophene ring. The absolute structure was determined by refinement of the Flack (1983) parameter, based on 4708 Friedel pairs. Six low–angle reflections were given zero weight in the refinement.

Structure description top

Anions play a key role in many chemical and biological processes. In particular, structural characterization of an anion complex is important in achieving selective hosts for anions (Hossain, 2008, Saeed et al., 2010). Among the numerous systems, trigonal receptors are of interest because of their synthetic simplicity and capability for anion binding though hydrogen bonding interactions. Tris(aminoethyl)–amine is an excellent building block for synthesizing fuctionalized tripodal hosts for anion binding (Burgess et al., 1991; Hossain et al., 2004; Bazzicalupi, et al., 2009). These molecules have been shown to bind a variety of anion including nitrate, phosphate and sulfate (Bianchi et al., 1997; Kang et al., 2005). Herein, we report the molecular structure of the title compound in which three iodides are held by hydrogen bonding with protonated secondary amines.

Single crystal analysis of the title compound reveals that the molecule crystallizes in its orthorhombic space group forming a cavity. The tren unit is triply charged, where all three secondary N atoms are protonated. The central amine is not protonated. The three arms form a cavity, and one thiophene unit is disordered. In the complex, the protonated amines are involved in hydrogen bonding interactions with iodide anions having N···I distances 3.460 (3) to 3.553 (4)Å (Fig. 1 and Table 1). One iodide (I1) accepts two hydrogen bonds from two protonated amines (N3 and N4), while each of the other two iodides accepts one hydrogen bond from N2 and N3. Therefore, one secondary nitrogen (N3) donates two hydrogen bonds to two iodides (I1 and I3). The N···I distances are comparable with those observed in an iodide complex of an azacryptand (3.476 (4)Å and 3.632 (4)Å) reported earlier (Hossain et al., 2002).

The disorder of the thiophene ring containing S3 involves two conformations, differing by rotation about two different bonds. One is a twofold rotation about C17—C18, which swaps S3 and C19. Refinement of this type of model resulted in elongated ellipsoids in the plane of the ring for all atoms of the thiophene, as well as unacceptable residual densities. This was interpreted as a second conformational difference involving a difference in rotation about the N4—C17 bond, amounting to a torsional difference of 11.7°.

For general background [to what?], see: Bianchi et al. (1997); Kang et al. (2005); Hossain (2008); For related structures, see: Bazzicalupi et al. (2009); Hossain et al. (2002), Hossain et al. (2004); Burgess et al. (1991); Saeed et al. (2010).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP–3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Only major fragment is drawn. The several H bonds are drawn by dashed lines.
Tris[2-(2-thienylmethylamino)ethyl]ammonium triiodide top
Crystal data top
C21H33N4S33+·3IF(000) = 1576
Mr = 818.42Dx = 1.842 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5918 reflections
a = 10.5433 (5) Åθ = 2.5–32.6°
b = 11.4203 (6) ŵ = 3.41 mm1
c = 24.5107 (15) ÅT = 90 K
V = 2951.3 (3) Å3Block, colourless
Z = 40.20 × 0.17 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
10653 independent reflections
Radiation source: fine–focus sealed tube9446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω– and φ–scansθmax = 32.6°, θmin = 2.6°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
h = 1515
Tmin = 0.549, Tmax = 0.629k = 1717
90447 measured reflectionsl = 3636
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0425P)2 + 8.7643P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
10653 reflectionsΔρmax = 2.96 e Å3
277 parametersΔρmin = 2.18 e Å3
30 restraintsAbsolute structure: Flack (1983), 4708 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
C21H33N4S33+·3IV = 2951.3 (3) Å3
Mr = 818.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.5433 (5) ŵ = 3.41 mm1
b = 11.4203 (6) ÅT = 90 K
c = 24.5107 (15) Å0.20 × 0.17 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
10653 independent reflections
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
9446 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.629Rint = 0.069
90447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.093Δρmax = 2.96 e Å3
S = 1.04Δρmin = 2.18 e Å3
10653 reflectionsAbsolute structure: Flack (1983), 4708 Friedel pairs
277 parametersAbsolute structure parameter: 0.02 (2)
30 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.66009 (2)0.80566 (2)0.512489 (10)0.01937 (5)
I20.28784 (4)0.15756 (3)0.526628 (15)0.03742 (9)
I30.69376 (3)0.78787 (3)0.708662 (14)0.03409 (8)
S20.31359 (12)1.01963 (11)0.68942 (5)0.0312 (2)
N10.4937 (3)0.5219 (3)0.59749 (14)0.0169 (6)
N20.3384 (4)0.4343 (3)0.46508 (14)0.0209 (6)
H21N0.26300.47230.47180.025*
H22N0.32660.35580.47170.025*
N30.4390 (3)0.7677 (3)0.62014 (14)0.0179 (6)
H31N0.48630.73880.59160.021*
H32N0.49460.79220.64670.021*
N40.7721 (4)0.5480 (4)0.57790 (16)0.0247 (7)
H41N0.71360.60200.56600.030*
H42N0.78510.49540.55000.030*
C10.3954 (4)0.4734 (4)0.56157 (18)0.0210 (8)
H1A0.31550.51800.56620.025*
H1B0.37890.39070.57130.025*
C20.4394 (4)0.4811 (4)0.50268 (17)0.0225 (8)
H2A0.45800.56370.49330.027*
H2B0.51830.43520.49800.027*
C30.3761 (5)0.4522 (4)0.40606 (18)0.0273 (9)
H3A0.37020.53670.39730.033*
H3B0.46570.42830.40150.033*
S10.13415 (11)0.40416 (11)0.36040 (5)0.0283 (2)
C40.2957 (4)0.3848 (4)0.36614 (18)0.0251 (8)
C50.3416 (5)0.3115 (4)0.32588 (17)0.0267 (8)
H50.42830.29070.32170.032*
C60.2417 (5)0.2710 (4)0.29130 (19)0.0315 (10)
H60.25470.21870.26170.038*
C70.1270 (5)0.3147 (4)0.30498 (19)0.0296 (9)
H70.05090.29740.28580.036*
C80.4383 (4)0.5616 (4)0.64961 (17)0.0205 (7)
H8A0.50740.57720.67600.025*
H8B0.38450.49850.66480.025*
C90.3594 (4)0.6709 (4)0.64269 (16)0.0196 (7)
H9A0.28780.65490.61770.024*
H9B0.32400.69480.67840.024*
C100.3644 (4)0.8723 (4)0.60019 (17)0.0202 (8)
H10A0.42400.93630.59080.024*
H10B0.31790.85050.56660.024*
C110.2721 (4)0.9156 (4)0.64173 (17)0.0209 (8)
C120.1429 (5)0.8797 (5)0.64632 (19)0.0309 (11)
H120.10170.82390.62370.037*
C130.0854 (5)0.9420 (5)0.6908 (2)0.0340 (11)
H130.00050.93120.70130.041*
C140.1650 (5)1.0182 (5)0.7170 (2)0.0336 (10)
H140.14031.06510.74720.040*
C150.5898 (4)0.4310 (4)0.6089 (2)0.0243 (8)
H15A0.60160.38190.57600.029*
H15B0.55900.37980.63870.029*
C160.7168 (4)0.4837 (4)0.62527 (18)0.0235 (8)
H16A0.70490.53820.65630.028*
H16B0.77550.42080.63700.028*
C170.8947 (4)0.6105 (5)0.5889 (2)0.0337 (11)
H17A0.87850.67890.61270.040*0.868 (6)
H17B0.93040.63960.55410.040*0.868 (6)
H17C0.87350.68760.60500.040*0.132 (6)
H17D0.93550.62580.55320.040*0.132 (6)
S3A1.04963 (14)0.40627 (17)0.58903 (9)0.0441 (6)0.868 (6)
C18A0.9893 (7)0.5305 (6)0.6160 (3)0.0322 (13)*0.868 (6)
C19A1.0385 (6)0.5521 (6)0.6685 (3)0.0331 (12)*0.868 (6)
H19A1.01770.61780.69050.040*0.868 (6)
C20A1.1234 (8)0.4622 (7)0.6835 (3)0.0493 (18)*0.868 (6)
H20A1.16800.46170.71720.059*0.868 (6)
C21A1.1351 (8)0.3783 (7)0.6464 (3)0.0448 (17)*0.868 (6)
H21A1.18560.31030.65130.054*0.868 (6)
S3B1.0412 (10)0.6016 (10)0.6856 (4)0.033 (3)*0.132 (6)
C18B0.993 (4)0.554 (3)0.6254 (12)0.033 (3)*0.132 (6)
C19B1.054 (4)0.447 (3)0.6152 (12)0.033 (3)*0.132 (6)
H19B1.04740.40430.58190.040*0.132 (6)
C20B1.128 (4)0.408 (2)0.6616 (14)0.033 (3)*0.132 (6)
H20B1.16920.33440.66400.040*0.132 (6)
C21B1.132 (3)0.489 (3)0.7001 (13)0.033 (3)*0.132 (6)
H21B1.18210.48330.73230.040*0.132 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01816 (10)0.02106 (11)0.01888 (10)0.00339 (9)0.00220 (9)0.00444 (9)
I20.0504 (2)0.02224 (13)0.03961 (17)0.01073 (13)0.01876 (15)0.00445 (12)
I30.03868 (16)0.02779 (14)0.03580 (15)0.00952 (12)0.01948 (13)0.00415 (12)
S20.0324 (6)0.0314 (6)0.0298 (5)0.0004 (5)0.0018 (5)0.0100 (4)
N10.0152 (14)0.0155 (14)0.0200 (15)0.0018 (12)0.0020 (12)0.0027 (12)
N20.0193 (14)0.0213 (15)0.0221 (15)0.0023 (13)0.0029 (13)0.0018 (12)
N30.0152 (14)0.0196 (15)0.0189 (15)0.0007 (11)0.0005 (12)0.0024 (12)
N40.0216 (17)0.0277 (18)0.0248 (17)0.0067 (14)0.0015 (14)0.0108 (14)
C10.0190 (18)0.0216 (19)0.0223 (18)0.0027 (15)0.0032 (15)0.0002 (15)
C20.0193 (17)0.0244 (19)0.024 (2)0.0032 (15)0.0001 (14)0.0034 (15)
C30.034 (2)0.030 (2)0.0179 (18)0.0056 (18)0.0019 (17)0.0004 (16)
S10.0268 (6)0.0249 (5)0.0334 (6)0.0016 (4)0.0023 (4)0.0020 (4)
C40.0248 (19)0.0242 (19)0.026 (2)0.0003 (17)0.0041 (17)0.0008 (16)
C50.033 (2)0.026 (2)0.0215 (17)0.0029 (19)0.0073 (16)0.0021 (16)
C60.047 (3)0.028 (2)0.0199 (19)0.0038 (19)0.0049 (19)0.0035 (17)
C70.035 (2)0.027 (2)0.027 (2)0.0053 (18)0.0090 (17)0.0038 (17)
C80.0180 (17)0.0239 (19)0.0196 (18)0.0032 (14)0.0006 (14)0.0003 (15)
C90.0171 (17)0.0211 (18)0.0208 (17)0.0004 (13)0.0043 (13)0.0005 (14)
C100.023 (2)0.0185 (17)0.0191 (17)0.0024 (14)0.0001 (14)0.0026 (13)
C110.0221 (19)0.0207 (18)0.0200 (18)0.0051 (15)0.0031 (15)0.0042 (14)
C120.030 (2)0.040 (3)0.0221 (19)0.024 (2)0.0050 (17)0.0012 (18)
C130.025 (2)0.044 (3)0.034 (2)0.010 (2)0.0009 (19)0.008 (2)
C140.032 (2)0.042 (3)0.027 (2)0.012 (2)0.0066 (19)0.0079 (19)
C150.0193 (19)0.023 (2)0.030 (2)0.0009 (15)0.0007 (15)0.0011 (17)
C160.0158 (18)0.027 (2)0.027 (2)0.0045 (15)0.0024 (15)0.0129 (16)
C170.0174 (19)0.043 (3)0.041 (3)0.0009 (18)0.0022 (19)0.024 (2)
S3A0.0175 (6)0.0484 (11)0.0664 (13)0.0046 (6)0.0020 (7)0.0329 (9)
Geometric parameters (Å, º) top
S2—C141.706 (5)C9—H9B0.9900
S2—C111.723 (4)C10—C111.493 (6)
N1—C11.468 (5)C10—H10A0.9900
N1—C81.476 (5)C10—H10B0.9900
N1—C151.477 (6)C11—C121.427 (7)
N2—C21.506 (5)C12—C131.436 (7)
N2—C31.514 (6)C12—H120.9500
N2—H21N0.9200C13—C141.368 (8)
N2—H22N0.9200C13—H130.9500
N3—C91.493 (5)C14—H140.9500
N3—C101.512 (5)C15—C161.522 (6)
N3—H31N0.9200C15—H15A0.9900
N3—H32N0.9200C15—H15B0.9900
N4—C161.492 (5)C16—H16A0.9900
N4—C171.501 (6)C16—H16B0.9900
N4—H41N0.9200C17—C18A1.507 (8)
N4—H42N0.9200C17—C18B1.51 (2)
C1—C21.519 (6)C17—H17A0.9900
C1—H1A0.9900C17—H17B0.9900
C1—H1B0.9900C17—H17C0.9900
C2—H2A0.9900C17—H17D0.9900
C2—H2B0.9900S3A—C18A1.690 (6)
C3—C41.506 (6)S3A—C21A1.700 (7)
C3—H3A0.9900C18A—C19A1.409 (8)
C3—H3B0.9900C19A—C20A1.411 (9)
S1—C71.702 (5)C19A—H19A0.9500
S1—C41.724 (5)C20A—C21A1.327 (10)
C4—C51.382 (6)C20A—H20A0.9500
C5—C61.429 (6)C21A—H21A0.9500
C5—H50.9500S3B—C21B1.641 (16)
C6—C71.350 (7)S3B—C18B1.655 (16)
C6—H60.9500C18B—C19B1.406 (17)
C7—H70.9500C19B—C20B1.448 (17)
C8—C91.510 (6)C19B—H19B0.9500
C8—H8A0.9900C20B—C21B1.322 (17)
C8—H8B0.9900C20B—H20B0.9500
C9—H9A0.9900C21B—H21B0.9500
C14—S2—C1191.7 (2)H10A—C10—H10B107.9
C1—N1—C8110.8 (3)C12—C11—C10125.5 (4)
C1—N1—C15109.5 (3)C12—C11—S2112.8 (3)
C8—N1—C15108.9 (3)C10—C11—S2121.7 (3)
C2—N2—C3110.6 (3)C11—C12—C13108.7 (5)
C2—N2—H21N109.5C11—C12—H12125.7
C3—N2—H21N109.5C13—C12—H12125.7
C2—N2—H22N109.5C14—C13—C12114.3 (5)
C3—N2—H22N109.5C14—C13—H13122.8
H21N—N2—H22N108.1C12—C13—H13122.8
C9—N3—C10114.3 (3)C13—C14—S2112.6 (4)
C9—N3—H31N108.7C13—C14—H14123.7
C10—N3—H31N108.7S2—C14—H14123.7
C9—N3—H32N108.7N1—C15—C16112.1 (4)
C10—N3—H32N108.7N1—C15—H15A109.2
H31N—N3—H32N107.6C16—C15—H15A109.2
C16—N4—C17115.5 (4)N1—C15—H15B109.2
C16—N4—H41N108.4C16—C15—H15B109.2
C17—N4—H41N108.4H15A—C15—H15B107.9
C16—N4—H42N108.4N4—C16—C15109.5 (4)
C17—N4—H42N108.4N4—C16—H16A109.8
H41N—N4—H42N107.5C15—C16—H16A109.8
N1—C1—C2109.4 (3)N4—C16—H16B109.8
N1—C1—H1A109.8C15—C16—H16B109.8
C2—C1—H1A109.8H16A—C16—H16B108.2
N1—C1—H1B109.8N4—C17—C18A111.1 (5)
C2—C1—H1B109.8N4—C17—C18B119.4 (19)
H1A—C1—H1B108.2N4—C17—H17A109.4
N2—C2—C1110.2 (3)C18A—C17—H17A109.4
N2—C2—H2A109.6C18B—C17—H17A96.2
C1—C2—H2A109.6N4—C17—H17B109.4
N2—C2—H2B109.6C18A—C17—H17B109.4
C1—C2—H2B109.6C18B—C17—H17B113.2
H2A—C2—H2B108.1H17A—C17—H17B108.0
C4—C3—N2113.8 (4)N4—C17—H17C107.5
C4—C3—H3A108.8C18A—C17—H17C120.9
N2—C3—H3A108.8C18B—C17—H17C107.5
C4—C3—H3B108.8H17B—C17—H17C97.5
N2—C3—H3B108.8N4—C17—H17D107.5
H3A—C3—H3B107.7C18A—C17—H17D102.1
C7—S1—C491.8 (2)C18B—C17—H17D107.5
C5—C4—C3125.2 (4)H17A—C17—H17D117.2
C5—C4—S1111.5 (3)H17C—C17—H17D107.0
C3—C4—S1122.9 (4)C18A—S3A—C21A91.9 (3)
C4—C5—C6111.2 (4)C19A—C18A—C17122.7 (6)
C4—C5—H5124.4C19A—C18A—S3A111.4 (5)
C6—C5—H5124.4C17—C18A—S3A125.8 (5)
C7—C6—C5113.2 (4)C18A—C19A—C20A110.2 (6)
C7—C6—H6123.4C18A—C19A—H19A124.9
C5—C6—H6123.4C20A—C19A—H19A124.9
C6—C7—S1112.3 (4)C21A—C20A—C19A113.9 (7)
C6—C7—H7123.8C21A—C20A—H20A123.0
S1—C7—H7123.8C19A—C20A—H20A123.0
N1—C8—C9112.0 (3)C20A—C21A—S3A112.5 (6)
N1—C8—H8A109.2C20A—C21A—H21A123.8
C9—C8—H8A109.2S3A—C21A—H21A123.8
N1—C8—H8B109.2C21B—S3B—C18B96.6 (11)
C9—C8—H8B109.2C19B—C18B—C17125.6 (18)
H8A—C8—H8B107.9C19B—C18B—S3B107.7 (14)
N3—C9—C8110.1 (3)C17—C18B—S3B126.6 (17)
N3—C9—H9A109.6C18B—C19B—C20B111.8 (16)
C8—C9—H9A109.6C18B—C19B—H19B124.1
N3—C9—H9B109.6C20B—C19B—H19B124.1
C8—C9—H9B109.6C21B—C20B—C19B111.5 (17)
H9A—C9—H9B108.1C21B—C20B—H20B124.2
C11—C10—N3112.3 (3)C19B—C20B—H20B124.2
C11—C10—H10A109.1C20B—C21B—S3B111.9 (15)
N3—C10—H10A109.1C20B—C21B—H21B124.0
C11—C10—H10B109.1S3B—C21B—H21B124.0
N3—C10—H10B109.1
C8—N1—C1—C2156.4 (4)C1—N1—C15—C16156.8 (4)
C15—N1—C1—C283.5 (4)C8—N1—C15—C1682.0 (4)
C3—N2—C2—C1174.6 (4)C17—N4—C16—C15176.8 (4)
N1—C1—C2—N2178.7 (3)N1—C15—C16—N466.4 (5)
C2—N2—C3—C4167.0 (4)C16—N4—C17—C18A50.2 (6)
N2—C3—C4—C5128.0 (5)C16—N4—C17—C18B38.5 (15)
N2—C3—C4—S160.0 (5)N4—C17—C18A—C19A118.1 (7)
C7—S1—C4—C50.3 (4)C18B—C17—C18A—C19A12 (9)
C7—S1—C4—C3173.3 (4)N4—C17—C18A—S3A61.9 (7)
C3—C4—C5—C6173.7 (4)C18B—C17—C18A—S3A168 (10)
S1—C4—C5—C60.9 (5)C21A—S3A—C18A—C19A2.0 (6)
C4—C5—C6—C71.1 (6)C21A—S3A—C18A—C17178.0 (7)
C5—C6—C7—S10.9 (6)C17—C18A—C19A—C20A179.3 (7)
C4—S1—C7—C60.3 (4)S3A—C18A—C19A—C20A0.7 (8)
C1—N1—C8—C971.3 (4)C18A—C19A—C20A—C21A1.4 (10)
C15—N1—C8—C9168.2 (3)C19A—C20A—C21A—S3A3.0 (10)
C10—N3—C9—C8167.4 (3)C18A—S3A—C21A—C20A2.9 (7)
N1—C8—C9—N359.3 (4)N4—C17—C18B—C19B62 (5)
C9—N3—C10—C1151.0 (4)C18A—C17—C18B—C19B7 (6)
N3—C10—C11—C1291.8 (5)N4—C17—C18B—S3B114 (3)
N3—C10—C11—S289.5 (4)C18A—C17—C18B—S3B169 (13)
C14—S2—C11—C120.6 (4)C21B—S3B—C18B—C19B2 (4)
C14—S2—C11—C10179.4 (4)C21B—S3B—C18B—C17175 (4)
C10—C11—C12—C13179.4 (4)C17—C18B—C19B—C20B172 (4)
S2—C11—C12—C130.6 (5)S3B—C18B—C19B—C20B5 (5)
C11—C12—C13—C140.3 (6)C18B—C19B—C20B—C21B7 (6)
C12—C13—C14—S20.1 (6)C19B—C20B—C21B—S3B5 (5)
C11—S2—C14—C130.4 (4)C18B—S3B—C21B—C20B2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21N···I1i0.922.793.557 (4)142
N2—H22N···I20.922.673.543 (4)160
N3—H31N···I10.922.783.547 (3)142
N3—H32N···I30.922.593.460 (3)158
N4—H41N···I10.922.733.553 (4)150
N4—H42N···I2ii0.922.573.479 (4)172
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H33N4S33+·3I
Mr818.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)10.5433 (5), 11.4203 (6), 24.5107 (15)
V3)2951.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.20 × 0.17 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer with Oxford Cryostream
Absorption correctionMulti-scan
(HKL SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.549, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
90447, 10653, 9446
Rint0.069
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.04
No. of reflections10653
No. of parameters277
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.96, 2.18
Absolute structureFlack (1983), 4708 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP–3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21N···I1i0.922.793.557 (4)142.2
N2—H22N···I20.922.673.543 (4)159.6
N3—H31N···I10.922.783.547 (3)142.2
N3—H32N···I30.922.593.460 (3)157.7
N4—H41N···I10.922.733.553 (4)149.6
N4—H42N···I2ii0.922.573.479 (4)171.9
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Institutes of Health, Division of National Center for Research Resources, under grant No. G12RR013459. This material is based upon work supported by the National Science Foundation under CHE–0821357. Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)–ENH–TR–13, administered by the Louisiana Board of Regents.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem. 48, 2391–2398.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBianchi, A., García-España, E. & Bowman-James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley–VCH.  Google Scholar
First citationBurgess, J., Al-Alousy, A., Fawcett, J. & Russell, D. R. (1991). Acta Cryst. C47, 2506–2508.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHossain, M. A. (2008). Curr. Org. Chem. 12, 1231–1256.  Web of Science CrossRef CAS Google Scholar
First citationHossain, M. A., Lilinares, J. M., Powell, R. D. & Bowman-James, K. (2002). J. Supramol. Chem. 2, 143–151.  CSD CrossRef CAS Google Scholar
First citationHossain, M. A., Liljegren, J. A., Powell, R. D. & Bowman-James, K. (2004). Inorg. Chem. 43, 3751–3755.  CSD CrossRef PubMed CAS Google Scholar
First citationKang, S. O., Hossain, M. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328–330.  Web of Science CSD CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSaeed, M. A., Fronczek, F. R. & Hossain, M. A. (2010). Acta Cryst. E66, o656–o657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds