organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(2-Chloro­phen­yl)-2-hy­dr­oxy­eth­yl]propan-2-aminium benzoate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bHangzhou Gallop Biological Products Co., Ltd, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: fenghai289289@163.com

(Received 27 September 2010; accepted 8 October 2010; online 23 October 2010)

In the title compound, C11H17ClNO+·C7H5O2, obtained by the reaction of chlorprenaline {or 1-(2-chlorophenyl)-2-[(1-methylethyl)amino]ethanol} and benzoic acid, the chlorprenaline is twisted moderately [C—C—C—C torsion angle = −76.00 (17)°] compared with related compounds. The mol­ecules as usual form dimers. In the crystal structure, the two components are connected by classical O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Feld et al. (1981[Feld, R., Lehmann, M. S., Muir, K. W. & Speakman, J. C. (1981). Z. Kristallogr. 157, 215-231.]); Feng et al. (2010[Feng, H., Tang, Z., Xie, L.-J. & Xing, B.-T. (2010). Acta Cryst. E66, o391.]); Tang et al. (2009a[Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009a). Acta Cryst. E65, o1501.],b[Tang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009b). Acta Cryst. E65, o1670.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17ClNO+·C7H5O2

  • Mr = 335.82

  • Monoclinic, P 21 /n

  • a = 7.8343 (3) Å

  • b = 13.1260 (5) Å

  • c = 17.7308 (7) Å

  • β = 94.330 (1)°

  • V = 1818.11 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.53 × 0.48 × 0.46 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.871, Tmax = 0.904

  • 17400 measured reflections

  • 4123 independent reflections

  • 3186 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.00

  • 4123 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.90 1.85 2.7231 (15) 162
O1—H1⋯O3 0.82 1.93 2.7219 (15) 162
N1—H1B⋯O3i 0.90 1.88 2.7710 (15) 169
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006[Rigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A recent study reports the structure of bis{N-[2-(2-chlorophenyl)-2-hydroxyethyl]propan-2-aminium} oxalate (Tang et al., 2009b), which was synthesized by oxalic acid and chlorprenaline (Tang et al., 2009a). Here using benzoic acid instead of oxalic acid and following a similar synthetic procedure yields the title compound, I.

In I (Fig. 1), the chlorprenaline molecule and the benzoic acid molecule are linked to each other by the N1—H1A···O2 hydogen bond (2.7231 (15)Å) and the O1—H1···O3 hydogen bond (2.7219 (15)Å) (Fig. 2 & Table 1). The chlorprenaline in I are twisted moderately as compared with those of other compounds. The C12—O2 distance of 1.2456 (18)Å is much shorter than the similar distance of 1.2675 (15)Å (Feld et al., 1981). The C1—C6—C7—C8 torsion angle of -76.00 (17)° (104.0 (17)°) is larger than the value of the similar torsion angle of 91.9 (2)° (Tang et al., 2009a). The C9—N1 distance of 1.5096 (17)Å is longer than the value of the similar bond distance of 1.473 (4)Å (Tang et al., 2009b), as similar as the value of the similar bond distance of 1.503 (2)Å (Feng et al., 2010).

Classical hydrogen bonds (O—H···O and N—H···O) are found in the cystal structure (Fig. 2 & Table 1) are essential forces in crystal formation.

Related literature top

For related structures, see: Feld et al. (1981); Feng et al. (2010); Tang et al. (2009a,b).

Experimental top

Racemic chlorprenaline was prepared by chlorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. chlorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol–water solution (1:1 v/v). The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic chlorprenaline (0.5 g, 0.0023 mol) was dissolved in methanol (5 ml) and then Benzoic acid (0.3 g, 0.0023 mol) was added. The mixture was dissovled by heating to 323 K where a clear solution resulted. The resulting solution was concentrated at ambient temperature. Colourless crystals of I separated from the solution in about 68% yield after one day.

Refinement top

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93Å (aromatic), 0.98Å (methine), 0.97Å (methylene), 0.96Å (methyl) 0.82Å (hydroxyl) and N—H = 0.90Å, with Uiso(H) = 1.2–1.5 Ueq(C,O,N).

Structure description top

A recent study reports the structure of bis{N-[2-(2-chlorophenyl)-2-hydroxyethyl]propan-2-aminium} oxalate (Tang et al., 2009b), which was synthesized by oxalic acid and chlorprenaline (Tang et al., 2009a). Here using benzoic acid instead of oxalic acid and following a similar synthetic procedure yields the title compound, I.

In I (Fig. 1), the chlorprenaline molecule and the benzoic acid molecule are linked to each other by the N1—H1A···O2 hydogen bond (2.7231 (15)Å) and the O1—H1···O3 hydogen bond (2.7219 (15)Å) (Fig. 2 & Table 1). The chlorprenaline in I are twisted moderately as compared with those of other compounds. The C12—O2 distance of 1.2456 (18)Å is much shorter than the similar distance of 1.2675 (15)Å (Feld et al., 1981). The C1—C6—C7—C8 torsion angle of -76.00 (17)° (104.0 (17)°) is larger than the value of the similar torsion angle of 91.9 (2)° (Tang et al., 2009a). The C9—N1 distance of 1.5096 (17)Å is longer than the value of the similar bond distance of 1.473 (4)Å (Tang et al., 2009b), as similar as the value of the similar bond distance of 1.503 (2)Å (Feng et al., 2010).

Classical hydrogen bonds (O—H···O and N—H···O) are found in the cystal structure (Fig. 2 & Table 1) are essential forces in crystal formation.

For related structures, see: Feld et al. (1981); Feng et al. (2010); Tang et al. (2009a,b).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 200)); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I with atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen bonds (dashed lines) system in I.
N-[2-(2-Chlorophenyl)-2-hydroxyethyl]propan-2-aminium benzoate top
Crystal data top
C11H17ClNO+·C7H5O2F(000) = 712
Mr = 335.82Dx = 1.227 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12983 reflections
a = 7.8343 (3) Åθ = 3.0–27.4°
b = 13.1260 (5) ŵ = 0.22 mm1
c = 17.7308 (7) ÅT = 296 K
β = 94.330 (1)°Chunk, colourless
V = 1818.11 (12) Å30.53 × 0.48 × 0.46 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4123 independent reflections
Radiation source: rolling anode3186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 910
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1517
Tmin = 0.871, Tmax = 0.904l = 2222
17400 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.6461P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4123 reflectionsΔρmax = 0.31 e Å3
210 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0125 (12)
Crystal data top
C11H17ClNO+·C7H5O2V = 1818.11 (12) Å3
Mr = 335.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8343 (3) ŵ = 0.22 mm1
b = 13.1260 (5) ÅT = 296 K
c = 17.7308 (7) Å0.53 × 0.48 × 0.46 mm
β = 94.330 (1)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4123 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3186 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.904Rint = 0.023
17400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
4123 reflectionsΔρmin = 0.32 e Å3
210 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45832 (8)0.73075 (5)0.69565 (4)0.0898 (2)
N10.27625 (14)0.59370 (8)0.48693 (6)0.0326 (2)
H1A0.27650.52720.47440.039*
H1B0.38580.61490.49120.039*
O30.40196 (12)0.31773 (8)0.50725 (6)0.0456 (3)
O20.23389 (16)0.40526 (8)0.42406 (7)0.0543 (3)
O10.25272 (15)0.43338 (8)0.61142 (6)0.0497 (3)
H10.31430.40810.58100.075*
C130.21403 (17)0.22582 (10)0.42001 (8)0.0369 (3)
C80.20481 (18)0.60417 (11)0.56199 (8)0.0392 (3)
H8A0.08440.58620.55710.047*
H8B0.21350.67480.57790.047*
C90.18157 (18)0.65197 (11)0.42338 (9)0.0418 (3)
H90.06420.62580.41640.050*
C10.3003 (2)0.65860 (13)0.73480 (9)0.0522 (4)
C140.1011 (2)0.22632 (12)0.35609 (9)0.0463 (4)
H140.07600.28730.33090.056*
C120.28937 (17)0.32356 (10)0.45198 (8)0.0373 (3)
C60.23953 (18)0.57020 (11)0.69877 (8)0.0410 (3)
C70.29652 (18)0.53722 (10)0.62261 (8)0.0369 (3)
H70.42060.54580.62180.044*
C100.2707 (2)0.63197 (14)0.35160 (9)0.0545 (4)
H10A0.27230.56000.34190.082*
H10B0.38600.65710.35770.082*
H10C0.21000.66610.30980.082*
C110.1747 (3)0.76461 (13)0.44186 (11)0.0617 (5)
H11A0.11770.77400.48740.093*
H11B0.11300.80000.40100.093*
H11C0.28900.79110.44880.093*
C160.0598 (3)0.04706 (15)0.36633 (13)0.0800 (7)
H160.00700.01280.34890.096*
C180.2509 (3)0.13432 (13)0.45566 (11)0.0644 (5)
H180.32920.13230.49780.077*
C150.0252 (2)0.13674 (14)0.32929 (11)0.0625 (5)
H150.04950.13770.28600.075*
C50.1165 (2)0.51537 (15)0.73318 (9)0.0572 (4)
H50.07560.45490.71130.069*
C30.1146 (3)0.63805 (19)0.83306 (11)0.0776 (7)
H30.07120.66110.87740.093*
C170.1724 (4)0.04543 (14)0.42930 (14)0.0901 (8)
H170.19610.01570.45450.108*
C20.2388 (3)0.69251 (17)0.80124 (10)0.0688 (6)
H20.28160.75190.82410.083*
C40.0528 (3)0.5488 (2)0.79991 (11)0.0783 (6)
H40.03090.51130.82210.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0863 (4)0.0823 (4)0.1027 (4)0.0357 (3)0.0192 (3)0.0458 (3)
N10.0330 (5)0.0275 (5)0.0370 (6)0.0016 (4)0.0007 (4)0.0014 (4)
O30.0384 (5)0.0479 (6)0.0497 (6)0.0055 (5)0.0019 (4)0.0129 (5)
O20.0723 (8)0.0301 (5)0.0588 (7)0.0024 (5)0.0053 (6)0.0076 (5)
O10.0659 (7)0.0344 (5)0.0512 (6)0.0035 (5)0.0199 (5)0.0064 (5)
C130.0375 (7)0.0323 (7)0.0412 (7)0.0023 (6)0.0046 (6)0.0077 (6)
C80.0381 (7)0.0382 (7)0.0416 (8)0.0030 (6)0.0053 (6)0.0045 (6)
C90.0370 (7)0.0397 (8)0.0473 (8)0.0004 (6)0.0054 (6)0.0072 (6)
C10.0531 (9)0.0565 (10)0.0458 (9)0.0081 (8)0.0039 (7)0.0146 (7)
C140.0491 (8)0.0384 (8)0.0502 (9)0.0006 (7)0.0040 (7)0.0073 (6)
C120.0355 (7)0.0351 (7)0.0419 (7)0.0045 (6)0.0074 (6)0.0090 (6)
C60.0425 (7)0.0454 (8)0.0348 (7)0.0094 (6)0.0005 (6)0.0031 (6)
C70.0381 (7)0.0342 (7)0.0386 (7)0.0006 (6)0.0050 (6)0.0052 (5)
C100.0610 (10)0.0605 (10)0.0410 (8)0.0011 (8)0.0027 (7)0.0093 (7)
C110.0728 (12)0.0393 (9)0.0729 (12)0.0131 (8)0.0032 (9)0.0116 (8)
C160.1048 (17)0.0444 (10)0.0876 (15)0.0270 (11)0.0145 (13)0.0166 (10)
C180.0916 (14)0.0393 (8)0.0581 (11)0.0045 (9)0.0216 (10)0.0008 (8)
C150.0630 (11)0.0572 (11)0.0642 (11)0.0086 (9)0.0147 (9)0.0186 (9)
C50.0658 (11)0.0623 (11)0.0453 (9)0.0028 (9)0.0154 (8)0.0000 (8)
C30.0973 (16)0.1001 (17)0.0361 (9)0.0424 (14)0.0090 (10)0.0085 (10)
C170.144 (2)0.0329 (9)0.0878 (16)0.0147 (11)0.0269 (15)0.0046 (9)
C20.0803 (13)0.0757 (13)0.0483 (10)0.0247 (11)0.0089 (9)0.0237 (9)
C40.0884 (15)0.0955 (17)0.0549 (11)0.0159 (13)0.0311 (11)0.0092 (11)
Geometric parameters (Å, º) top
Cl1—C11.7438 (19)C6—C71.5169 (19)
N1—C81.4884 (17)C7—H70.9800
N1—C91.5096 (17)C10—H10A0.9600
N1—H1A0.9000C10—H10B0.9600
N1—H1B0.9000C10—H10C0.9600
O3—C121.2704 (17)C11—H11A0.9600
O2—C121.2456 (18)C11—H11B0.9600
O1—C71.4158 (16)C11—H11C0.9600
O1—H10.8200C16—C151.365 (3)
C13—C181.378 (2)C16—C171.370 (3)
C13—C141.384 (2)C16—H160.9300
C13—C121.5050 (18)C18—C171.384 (3)
C8—C71.526 (2)C18—H180.9300
C8—H8A0.9700C15—H150.9300
C8—H8B0.9700C5—C41.390 (3)
C9—C111.516 (2)C5—H50.9300
C9—C101.520 (2)C3—C21.363 (3)
C9—H90.9800C3—C41.382 (3)
C1—C21.380 (2)C3—H30.9300
C1—C61.391 (2)C17—H170.9300
C14—C151.386 (2)C2—H20.9300
C14—H140.9300C4—H40.9300
C6—C51.381 (2)
C8—N1—C9115.08 (11)C6—C7—H7109.8
C8—N1—H1A108.5C8—C7—H7109.8
C9—N1—H1A108.5C9—C10—H10A109.5
C8—N1—H1B108.5C9—C10—H10B109.5
C9—N1—H1B108.5H10A—C10—H10B109.5
H1A—N1—H1B107.5C9—C10—H10C109.5
C7—O1—H1109.5H10A—C10—H10C109.5
C18—C13—C14118.61 (14)H10B—C10—H10C109.5
C18—C13—C12120.50 (13)C9—C11—H11A109.5
C14—C13—C12120.84 (13)C9—C11—H11B109.5
N1—C8—C7112.82 (11)H11A—C11—H11B109.5
N1—C8—H8A109.0C9—C11—H11C109.5
C7—C8—H8A109.0H11A—C11—H11C109.5
N1—C8—H8B109.0H11B—C11—H11C109.5
C7—C8—H8B109.0C15—C16—C17119.85 (16)
H8A—C8—H8B107.8C15—C16—H16120.1
N1—C9—C11110.87 (13)C17—C16—H16120.1
N1—C9—C10107.86 (12)C13—C18—C17120.49 (17)
C11—C9—C10112.06 (14)C13—C18—H18119.8
N1—C9—H9108.7C17—C18—H18119.8
C11—C9—H9108.7C16—C15—C14120.15 (17)
C10—C9—H9108.7C16—C15—H15119.9
C2—C1—C6122.12 (18)C14—C15—H15119.9
C2—C1—Cl1117.95 (15)C6—C5—C4121.29 (19)
C6—C1—Cl1119.92 (12)C6—C5—H5119.4
C13—C14—C15120.55 (15)C4—C5—H5119.4
C13—C14—H14119.7C2—C3—C4120.44 (18)
C15—C14—H14119.7C2—C3—H3119.8
O2—C12—O3124.03 (13)C4—C3—H3119.8
O2—C12—C13117.97 (12)C16—C17—C18120.32 (19)
O3—C12—C13117.97 (13)C16—C17—H17119.8
C5—C6—C1117.24 (15)C18—C17—H17119.8
C5—C6—C7120.44 (14)C3—C2—C1119.36 (19)
C1—C6—C7122.23 (14)C3—C2—H2120.3
O1—C7—C6108.36 (12)C1—C2—H2120.3
O1—C7—C8111.07 (12)C3—C4—C5119.5 (2)
C6—C7—C8107.95 (11)C3—C4—H4120.2
O1—C7—H7109.8C5—C4—H4120.2
C9—N1—C8—C7175.43 (11)C1—C6—C7—C876.00 (17)
C8—N1—C9—C1157.38 (16)N1—C8—C7—O173.09 (15)
C8—N1—C9—C10179.59 (12)N1—C8—C7—C6168.25 (11)
C18—C13—C14—C150.9 (3)C14—C13—C18—C172.0 (3)
C12—C13—C14—C15176.53 (15)C12—C13—C18—C17175.4 (2)
C18—C13—C12—O2170.12 (16)C17—C16—C15—C141.3 (4)
C14—C13—C12—O27.3 (2)C13—C14—C15—C160.7 (3)
C18—C13—C12—O37.8 (2)C1—C6—C5—C41.8 (3)
C14—C13—C12—O3174.79 (13)C7—C6—C5—C4174.81 (17)
C2—C1—C6—C51.5 (2)C15—C16—C17—C180.2 (4)
Cl1—C1—C6—C5178.90 (13)C13—C18—C17—C161.5 (4)
C2—C1—C6—C7175.02 (15)C4—C3—C2—C11.1 (3)
Cl1—C1—C6—C74.6 (2)C6—C1—C2—C30.1 (3)
C5—C6—C7—O119.97 (19)Cl1—C1—C2—C3179.68 (15)
C1—C6—C7—O1163.62 (14)C2—C3—C4—C50.8 (3)
C5—C6—C7—C8100.41 (16)C6—C5—C4—C30.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.901.852.7231 (15)162
O1—H1···O30.821.932.7219 (15)162
N1—H1B···O3i0.901.882.7710 (15)169
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H17ClNO+·C7H5O2
Mr335.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.8343 (3), 13.1260 (5), 17.7308 (7)
β (°) 94.330 (1)
V3)1818.11 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.53 × 0.48 × 0.46
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.871, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
17400, 4123, 3186
Rint0.023
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.00
No. of reflections4123
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: PROCESS-AUTO (Rigaku/MSC, 200)), PROCESS-AUTO (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.901.852.7231 (15)162
O1—H1···O30.821.932.7219 (15)162
N1—H1B···O3i0.901.882.7710 (15)169
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Key Scientific and Technological Research Project of the Science and Technology Department of Zhejiang Province of China (grant No. 2009 C32078).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeld, R., Lehmann, M. S., Muir, K. W. & Speakman, J. C. (1981). Z. Kristallogr. 157, 215–231.  CrossRef CAS Web of Science Google Scholar
First citationFeng, H., Tang, Z., Xie, L.-J. & Xing, B.-T. (2010). Acta Cryst. E66, o391.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009b). Acta Cryst. E65, o1670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009a). Acta Cryst. E65, o1501.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds