organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acet­­oxy-2-naphthoic acid

aDepto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and bUniversity Chemical Laboratory, Cambridge University, Cambridge CB2 1EW, England
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 29 September 2010; accepted 8 October 2010; online 20 October 2010)

In the title compound, C13H10O4, an analog of acetyl­salicylic acid, the naphthalene unit is twisted slightly due to ortho disubstitution [dihedral angle between conjugated rings system in the naphthalene unit = 2.0 (2)°]. The mean planes of the carb­oxy­lic and ester groups are almost coplanar and perpendicular, respectively, to the mean plane of the conjugated aromatic system, making dihedral angles of 8.9 (3) and 89.3 (1)°. In the crystal, mol­ecules are paired through their carb­oxy­lic groups by the typical centrosymmetric O—H⋯O inter­actions with R22(8) hydrogen-bond motifs. In addition, several weak C—H⋯O inter­molecular contacts are also observed. Finally, the mol­ecules are stacked along crystallographic [100] and [010] directions.

Related literature

This work was undertaken as part of our study on the relationship between conformation and reactivity in the hydrolysis reactions of esters bearing neighboring catalytic groups. For the synthesis, see: Bergeron et al. (1996[Bergeron, R. J., Wiegand, J., Wollenweber, M., McManis, J. S., Algee, S. E. & Ratliff-Thompson, K. (1996). J. Med. Chem. 39, 1575-1581.]). For related structures, see: Souza et al. (2007[Souza, B. S., Bortoluzzi, A. J. & Nome, F. (2007). Acta Cryst. E63, o4523.]); Gu et al. (2001[Gu, W., Abdallah, D. J. & Weiss, R. G. (2001). Photochem. Photobiol. A, 139, 79-87.]); Wilson (2002)[Wilson, C. C. (2002). New J. Chem. 26, 1733-1739.]. Besides electronic effects, intra­molecular reactions depend on the spatial relationship of the reacting groups, see: Orth et al. (2010[Orth, E. S., Brandão, T. A. S., Souza, B. S., Pliego, J. R., Vaz, B. G., Eberlin, M. N., Kirby, A. J. & Nome, F. (2010). J. Am. Chem. Soc. 132, 8513-8523.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O4

  • Mr = 230.21

  • Monoclinic, P 21 /n

  • a = 10.235 (2) Å

  • b = 4.739 (2) Å

  • c = 23.0873 (16) Å

  • β = 101.060 (11)°

  • V = 1099.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.50 × 0.33 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 1999 measured reflections

  • 1950 independent reflections

  • 1214 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.204

  • S = 1.05

  • 1950 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.91 1.74 2.636 (3) 171
C7—H7⋯O4ii 0.93 2.71 3.368 (5) 128
C13—H13B⋯O4iii 0.96 2.52 3.435 (5) 160
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.].

Supporting information


Comment top

Besides electronic effects, intramolecular reactions depend on the spatial relationship of the reacting groups (Orth et al., 2010). Subtle changes in the structure of similar compounds may lead to different relationships between nucleophilic-electrophilic centers within similar molecules, leading to different reaction mechanisms in solution. On this basis, we are currently studying the hydrolysis of a series of structurally related naphthyl esters. In a previous report (Souza et al., 2007), we published the structure of 2-carboxy-1-naphthyl acetate, a naphthoic acid bearing an ortho-ester group. In that structure, the dihedral angle between the aromatic mean plane and the ester group is 80.34 (5)°, considerably smaller than the one observed in α-naphthyl acetate (86.50°) (Gu et al., 2001), and we explained this difference in terms of an attractive interaction between the ester and the acid groups in 2-carboxy-1-naphthyl acetate. In the current work, we report the structure of 3-acetoxy-2-naphthoic acid I (Fig. 1), C13H10O4, an acetylsalicylic analog. In this system the dihedral angle between acetoxy and aromatic mean planes is 89.3 (1)°, while the carboxylic acid group and naphthalene ring are almost coplanar with dihedral angle of 8.9 (3)°. Packing is controlled by carboxylic acid dimer formation, involving centrosymmetric O2–H···O1 interactions (R22(8) hydrogen bond pattern, Fig. 2). Several weak C–H···O intermolecular contacts are also observed. Finally, the molecules are stacked along crystallographic [100] and [010] directions (Fig. 3).

Related literature top

This work was undertaken as part of our study on the relationship between conformation and reactivity in the hydrolysis reactions of esters bearing neighboring catalytic groups. For the synthesis, see: Bergeron et al. (1996). For related structures, see: Souza et al. (2007); Gu et al. (2001); Wilson (2002). Besides electronic effects, intramolecular reactions depend on the spatial relationship of the reacting groups, see: Orth et al. (2010).

Experimental top

The title compound was prepared by following the procedure reported by Bergeron et al., (1996). Concentrated sulfuric acid (10 drops) was added to a refluxing mixture of 3-hydroxy-2-naphthoic acid (3.50 g, 18.6 mmol) in acetic anhydride (8 ml, 89.7 mmol). The mixture was kept under reflux for 10 additional minutes and, after cooling to room temperature, the pale solid was filtered off and recrystallized in aqueous ethanol. The 10 mg of the prepared 3-acetoxy-2-naphthoic acid were dissolved in 5 ml of dry CHCl3 in a 10 ml glass vial and the flask was kept in a saturated petroleum ether (313-333 K) atmosphere at 293 K, giving the title compound as pale yellow crystals that melt at 458-459 K.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed at their idealized positions with distances of 0.93Å for C–HAr and 0.96Å for CH3 group. Their UisoH were fixed at 1.2 and 1.5 times UeqC of the preceding atom for aromatic and methyl group, respectively. The hydrogen atom of the acid group was located from the Fourier difference map and treated using a riding model with UisoH = 1.2UeqO.

Structure description top

Besides electronic effects, intramolecular reactions depend on the spatial relationship of the reacting groups (Orth et al., 2010). Subtle changes in the structure of similar compounds may lead to different relationships between nucleophilic-electrophilic centers within similar molecules, leading to different reaction mechanisms in solution. On this basis, we are currently studying the hydrolysis of a series of structurally related naphthyl esters. In a previous report (Souza et al., 2007), we published the structure of 2-carboxy-1-naphthyl acetate, a naphthoic acid bearing an ortho-ester group. In that structure, the dihedral angle between the aromatic mean plane and the ester group is 80.34 (5)°, considerably smaller than the one observed in α-naphthyl acetate (86.50°) (Gu et al., 2001), and we explained this difference in terms of an attractive interaction between the ester and the acid groups in 2-carboxy-1-naphthyl acetate. In the current work, we report the structure of 3-acetoxy-2-naphthoic acid I (Fig. 1), C13H10O4, an acetylsalicylic analog. In this system the dihedral angle between acetoxy and aromatic mean planes is 89.3 (1)°, while the carboxylic acid group and naphthalene ring are almost coplanar with dihedral angle of 8.9 (3)°. Packing is controlled by carboxylic acid dimer formation, involving centrosymmetric O2–H···O1 interactions (R22(8) hydrogen bond pattern, Fig. 2). Several weak C–H···O intermolecular contacts are also observed. Finally, the molecules are stacked along crystallographic [100] and [010] directions (Fig. 3).

This work was undertaken as part of our study on the relationship between conformation and reactivity in the hydrolysis reactions of esters bearing neighboring catalytic groups. For the synthesis, see: Bergeron et al. (1996). For related structures, see: Souza et al. (2007); Gu et al. (2001); Wilson (2002). Besides electronic effects, intramolecular reactions depend on the spatial relationship of the reacting groups, see: Orth et al. (2010).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids are shown at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecules paired by centrosymmetric R22(8) hydrogen bonds.
[Figure 3] Fig. 3. Molecules of I stacked along [100] direction (top) and along [010] direction (bottom).
3-Acetoxy-2-naphthoic acid top
Crystal data top
C13H10O4F(000) = 480
Mr = 230.21Dx = 1.391 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.235 (2) Åθ = 6.5–18.5°
b = 4.739 (2) ŵ = 0.10 mm1
c = 23.0873 (16) ÅT = 295 K
β = 101.060 (11)°Block, pale yellow
V = 1099.0 (5) Å30.50 × 0.33 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 1.8°
Graphite monochromatorh = 1112
ω–/2θ scansk = 50
1999 measured reflectionsl = 270
1950 independent reflections3 standard reflections every 200 reflections
1214 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1252P)2 + 0.1035P]
where P = (Fo2 + 2Fc2)/3
1950 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H10O4V = 1099.0 (5) Å3
Mr = 230.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.235 (2) ŵ = 0.10 mm1
b = 4.739 (2) ÅT = 295 K
c = 23.0873 (16) Å0.50 × 0.33 × 0.10 mm
β = 101.060 (11)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
1999 measured reflections3 standard reflections every 200 reflections
1950 independent reflections intensity decay: 1%
1214 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
1950 reflectionsΔρmin = 0.26 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5573 (3)0.3368 (7)0.18259 (12)0.0566 (8)
H10.61840.47630.17790.068*
C20.4810 (3)0.2182 (6)0.13351 (12)0.0518 (7)
C30.3930 (3)0.0003 (6)0.14168 (12)0.0540 (8)
C40.3780 (3)0.0817 (7)0.19648 (14)0.0632 (9)
H40.31700.22220.20060.076*
C50.4544 (3)0.0454 (7)0.24728 (13)0.0599 (8)
C60.4428 (3)0.0331 (9)0.30541 (14)0.0737 (10)
H60.38040.16800.31100.088*
C70.5213 (4)0.0861 (9)0.35239 (15)0.0806 (11)
H70.51270.03080.39010.097*
C80.6136 (4)0.2872 (9)0.34600 (14)0.0815 (11)
H80.66690.36590.37920.098*
C90.6278 (3)0.3735 (8)0.29060 (13)0.0736 (10)
H90.69060.50970.28630.088*
C100.5463 (3)0.2538 (7)0.24028 (12)0.0564 (8)
C110.4918 (3)0.3266 (7)0.07423 (12)0.0543 (7)
C120.2108 (3)0.0557 (7)0.06310 (13)0.0583 (8)
C130.1651 (3)0.2253 (8)0.00866 (15)0.0770 (10)
H13A0.07720.16620.00980.115*
H13B0.16350.42150.01880.115*
H13C0.22500.19740.01810.115*
O10.4153 (2)0.2552 (5)0.02898 (9)0.0680 (7)
O20.5866 (2)0.5076 (6)0.07447 (9)0.0768 (8)
H20.57640.59070.03850.092*
O30.32733 (19)0.1555 (4)0.09356 (9)0.0623 (6)
O40.1549 (2)0.1389 (6)0.07911 (10)0.0802 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0497 (15)0.073 (2)0.0460 (16)0.0003 (15)0.0077 (12)0.0016 (14)
C20.0447 (14)0.0656 (18)0.0458 (15)0.0087 (13)0.0105 (12)0.0041 (13)
C30.0466 (15)0.0625 (18)0.0508 (16)0.0069 (14)0.0043 (12)0.0017 (14)
C40.0547 (17)0.071 (2)0.0629 (19)0.0013 (15)0.0080 (14)0.0167 (16)
C50.0536 (17)0.073 (2)0.0530 (17)0.0156 (16)0.0112 (13)0.0124 (15)
C60.073 (2)0.096 (3)0.0540 (19)0.0135 (19)0.0171 (16)0.0212 (18)
C70.089 (2)0.105 (3)0.050 (2)0.029 (2)0.0195 (18)0.0172 (19)
C80.089 (2)0.109 (3)0.0429 (18)0.021 (2)0.0032 (16)0.0017 (18)
C90.071 (2)0.097 (3)0.0500 (18)0.0015 (19)0.0058 (15)0.0016 (17)
C100.0523 (16)0.070 (2)0.0465 (16)0.0156 (15)0.0082 (13)0.0037 (14)
C110.0464 (15)0.0720 (19)0.0457 (16)0.0021 (15)0.0116 (12)0.0024 (14)
C120.0507 (16)0.067 (2)0.0567 (17)0.0070 (15)0.0100 (13)0.0112 (16)
C130.069 (2)0.092 (3)0.064 (2)0.0046 (19)0.0036 (15)0.0056 (18)
O10.0652 (13)0.0970 (16)0.0415 (11)0.0110 (12)0.0096 (9)0.0044 (11)
O20.0623 (13)0.120 (2)0.0481 (12)0.0266 (14)0.0093 (9)0.0100 (12)
O30.0549 (12)0.0653 (13)0.0612 (13)0.0042 (10)0.0029 (9)0.0011 (10)
O40.0618 (13)0.1063 (19)0.0698 (15)0.0223 (14)0.0057 (11)0.0064 (13)
Geometric parameters (Å, º) top
C1—C21.368 (4)C7—H70.9300
C1—C101.414 (4)C8—C91.377 (5)
C1—H10.9300C8—H80.9300
C2—C31.409 (4)C9—C101.412 (4)
C2—C111.486 (4)C9—H90.9300
C3—C41.359 (4)C11—O11.227 (3)
C3—O31.393 (3)C11—O21.295 (3)
C4—C51.413 (4)C12—O41.181 (4)
C4—H40.9300C12—O31.349 (3)
C5—C101.395 (4)C12—C131.490 (4)
C5—C61.419 (4)C13—H13A0.9600
C6—C71.344 (5)C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C7—C81.370 (5)O2—H20.9071
C2—C1—C10122.0 (3)C7—C8—H8119.9
C2—C1—H1119.0C9—C8—H8119.9
C10—C1—H1119.0C8—C9—C10119.6 (4)
C1—C2—C3118.0 (3)C8—C9—H9120.2
C1—C2—C11119.3 (3)C10—C9—H9120.2
C3—C2—C11122.7 (3)C5—C10—C9119.6 (3)
C4—C3—O3118.0 (3)C5—C10—C1118.9 (3)
C4—C3—C2121.5 (3)C9—C10—C1121.5 (3)
O3—C3—C2120.3 (2)O1—C11—O2122.8 (3)
C3—C4—C5120.6 (3)O1—C11—C2122.8 (3)
C3—C4—H4119.7O2—C11—C2114.4 (2)
C5—C4—H4119.7O4—C12—O3122.9 (3)
C10—C5—C4118.9 (3)O4—C12—C13126.3 (3)
C10—C5—C6118.4 (3)O3—C12—C13110.7 (3)
C4—C5—C6122.7 (3)C12—C13—H13A109.5
C7—C6—C5120.5 (4)C12—C13—H13B109.5
C7—C6—H6119.8H13A—C13—H13B109.5
C5—C6—H6119.8C12—C13—H13C109.5
C6—C7—C8121.6 (3)H13A—C13—H13C109.5
C6—C7—H7119.2H13B—C13—H13C109.5
C8—C7—H7119.2C11—O2—H2109.2
C7—C8—C9120.3 (3)C12—O3—C3118.3 (2)
C10—C1—C2—C32.4 (4)C6—C5—C10—C92.1 (4)
C10—C1—C2—C11176.4 (3)C4—C5—C10—C11.8 (4)
C1—C2—C3—C43.6 (4)C6—C5—C10—C1179.1 (3)
C11—C2—C3—C4175.2 (3)C8—C9—C10—C51.3 (5)
C1—C2—C3—O3170.7 (2)C8—C9—C10—C1179.8 (3)
C11—C2—C3—O310.5 (4)C2—C1—C10—C50.3 (4)
O3—C3—C4—C5172.3 (2)C2—C1—C10—C9178.6 (3)
C2—C3—C4—C52.1 (5)C1—C2—C11—O1170.7 (3)
C3—C4—C5—C100.6 (5)C3—C2—C11—O18.0 (5)
C3—C4—C5—C6179.7 (3)C1—C2—C11—O27.7 (4)
C10—C5—C6—C71.7 (5)C3—C2—C11—O2173.5 (2)
C4—C5—C6—C7177.4 (3)O4—C12—O3—C38.7 (4)
C5—C6—C7—C80.5 (6)C13—C12—O3—C3171.9 (3)
C6—C7—C8—C90.3 (6)C4—C3—O3—C1298.6 (3)
C7—C8—C9—C100.1 (5)C2—C3—O3—C1286.8 (3)
C4—C5—C10—C9177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.911.742.636 (3)171
C7—H7···O4ii0.932.713.368 (5)128
C13—H13B···O4iii0.962.523.435 (5)160
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H10O4
Mr230.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.235 (2), 4.739 (2), 23.0873 (16)
β (°) 101.060 (11)
V3)1099.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.33 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1999, 1950, 1214
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.204, 1.05
No. of reflections1950
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.911.742.636 (3)170.7
C7—H7···O4ii0.932.713.368 (5)128
C13—H13B···O4iii0.962.523.435 (5)160
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Instituto Nacional de Ciência e Tecnologia (INCT) – Catálise for financial assistance. We also thank Dr J. E. Davies for his important contribution to this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBergeron, R. J., Wiegand, J., Wollenweber, M., McManis, J. S., Algee, S. E. & Ratliff-Thompson, K. (1996). J. Med. Chem. 39, 1575–1581.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGu, W., Abdallah, D. J. & Weiss, R. G. (2001). Photochem. Photobiol. A, 139, 79–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrth, E. S., Brandão, T. A. S., Souza, B. S., Pliego, J. R., Vaz, B. G., Eberlin, M. N., Kirby, A. J. & Nome, F. (2010). J. Am. Chem. Soc. 132, 8513–8523.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, B. S., Bortoluzzi, A. J. & Nome, F. (2007). Acta Cryst. E63, o4523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, C. C. (2002). New J. Chem. 26, 1733–1739.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds