metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua(2,2′-bi­pyridine-κ2N,N′)magnesium(II) bis­­(4-bromo­benzoate)

aCollege of Material Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China, and bMunicipal Key Laboratory of Inorganic Materials Chemistry, Institute for Solid State Chemistry, Ninbo University, Ningbo, 315211, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 10 October 2010; accepted 14 October 2010; online 23 October 2010)

In the complex cation of the title compound, [Mg(C10H8N2)(H2O)4](C7H4BrO2)2, the MgII atom is coordinated by two N atoms from a 2,2′-bipyridine ligand and four water O atoms in a distorted MgN2O4 octa­hedral geometry. The cation is located on a special position on a twofold rotation axis which passes through the MgII atom and the centroid of the 2,2′-bipyridine ligand. The 2,2′-bipyridine ligands exhibit nearly perfect coplanarity (r.m.s. deviation = 0.0035 Å) . In the crystal, O—H⋯O and C—H⋯O, C—H⋯Br hydrogen bonds and ππ stacking inter­actions [mean inter­planar distance of 3.475 (6) Å between adjacent 2,2′-bipyridine ligands] link the cations and anions into a three-dimensional supra­molecular network. One Br atom is disordered over two sites with occupancy factors of 0.55 and 0.45.

Related literature

For related magnesium(II) complexes with 1.10-phenanthroline and pyridine ligands, see: Halut-Desportes (1981[Halut-Desportes, S. (1981). Rev. Chim. Miner. 18, 199.]); Hao et al. (2008[Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052.]); Zhang (2004[Zhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411-1415.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C10H8N2)(H2O)4](C7H4BrO2)2

  • Mr = 652.56

  • Monoclinic, C 2/c

  • a = 30.275 (6) Å

  • b = 12.308 (3) Å

  • c = 7.5785 (15) Å

  • β = 103.90 (3)°

  • V = 2741.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 290 K

  • 0.31 × 0.27 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.406, Tmax = 0.562

  • 10517 measured reflections

  • 2412 independent reflections

  • 1505 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.174

  • S = 1.08

  • 2412 reflections

  • 171 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.82 1.89 2.702 (4) 172
O1—H1B⋯O3ii 0.82 1.84 2.640 (4) 165
O2—H2A⋯O4iii 0.82 1.86 2.679 (7) 175
O2—H2B⋯O3ii 0.82 2.08 2.790 (5) 145
C2—H2⋯Br1iv 0.93 3.00 3.525 (7) 117
C2—H2⋯Br1′iv 0.93 3.11 3.612 (7) 116
C3—H3⋯O4v 0.93 2.53 3.239 (6) 133
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MS, The Woodlands Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Magnesium(II) ions with 1.10-phenanthroline (phen) and pyridine (py) ligands can form tetraaqua(L)nMagnesium(II) (L = phen, n = 1; L = py, n = 2) complex cation ( Halut-Desportes, 1981; Hao et al., 2008; Zhang, 2004). In this paper we report synthesis and structure of the title compound. The crystal structure of title compound consists of [Mg(H2O)4(2,2'-bipy)]2+ complex cations and 4-bromobenzoate anion (Fig. 1). The cation placed in special position on twofold axis, which passes through MgII atom and middle C5—C5i bond of 2,2'-bipy molecule. Symmetry code: (i) -x, y, -z+1/2. In the cation, the MgII atom is coordinated by two N atoms from one 2,2'-bipy ligands, four O atoms from four different water molecules, completing a distorted MgN2O4 octahedral geometry. The Mg—N bond length is 2.199 (4)Å and Mg—O bond lengths are 2.035 (3)Å and 2.042Å. The chelating bipy ligands exhibit nearly perfect coplanarity (r.m.s. deviations = 0.0035Å ). The mean interplanar distances of 3.475 (6)Å between adjacent bipy ligands indicate π···π stacking interactions (Fig. 2). The complex cations and 4-bromobenzoate anins are connected via π···π stacking interactions and O—H···O and C—H···O, C—H···Br hydrogen bonds (Table 1) into a three-dimensional supramolecular network.

Related literature top

For related magnesium(II) complexes with 1.10-phenanthroline and pyridine ligands, see: Halut-Desportes (1981); Hao et al. (2008); Zhang (2004).

Experimental top

MgCl2.6H2O (0.11 g, 0.54 mmol) was dissolved in appropriate amount of water, and then 1M Na2CO3 solution was added. MgCO3 was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared MgCO3, 4-bromobenzoic acid (0.0508 g, 0.24 mmol), 2,2'-bipyridine (bipy) (0.0394 g, 0.22 mmol ), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2.0 h. Subsequently, the resulting cream suspension was heated in a 23 ml teflon-lined stainless steel autoclave at 433 K for 5800 minutes. After the autoclave was cooled to room temperature according to the procedure at 2600 minutes. the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 4 months afforded colourless block single crystals.

Refinement top

C-bound H atoms were placed in calculated positions, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C), and were refined using the riding-model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with an O—H distance restraint of 0.82 (1)Å and Uiso(H) = 1.5Ueq(O). The Br1 atom during anisotropic refinement procedure became prolate and was splitted on two positions with occupancy factors of 0.55 and 0.45.

Structure description top

Magnesium(II) ions with 1.10-phenanthroline (phen) and pyridine (py) ligands can form tetraaqua(L)nMagnesium(II) (L = phen, n = 1; L = py, n = 2) complex cation ( Halut-Desportes, 1981; Hao et al., 2008; Zhang, 2004). In this paper we report synthesis and structure of the title compound. The crystal structure of title compound consists of [Mg(H2O)4(2,2'-bipy)]2+ complex cations and 4-bromobenzoate anion (Fig. 1). The cation placed in special position on twofold axis, which passes through MgII atom and middle C5—C5i bond of 2,2'-bipy molecule. Symmetry code: (i) -x, y, -z+1/2. In the cation, the MgII atom is coordinated by two N atoms from one 2,2'-bipy ligands, four O atoms from four different water molecules, completing a distorted MgN2O4 octahedral geometry. The Mg—N bond length is 2.199 (4)Å and Mg—O bond lengths are 2.035 (3)Å and 2.042Å. The chelating bipy ligands exhibit nearly perfect coplanarity (r.m.s. deviations = 0.0035Å ). The mean interplanar distances of 3.475 (6)Å between adjacent bipy ligands indicate π···π stacking interactions (Fig. 2). The complex cations and 4-bromobenzoate anins are connected via π···π stacking interactions and O—H···O and C—H···O, C—H···Br hydrogen bonds (Table 1) into a three-dimensional supramolecular network.

For related magnesium(II) complexes with 1.10-phenanthroline and pyridine ligands, see: Halut-Desportes (1981); Hao et al. (2008); Zhang (2004).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. Symetry code: (i) -x, y, -z+1/2. H atoms are presented as a small spheres of arbitrary radius. Only major position of Br1 atom is drawn. Selected hydrogen bonds are drawn by dashed lines.
[Figure 2] Fig. 2. A packing diagram of the title complex, viewed down the c axis. The O—H···O, C—H···O and C—H···Br hydrogen bonds are drawn by dashed lines.
Tetraaqua(2,2'-bipyridine-κ2N,N')magnesium(II) bis(4-bromobenzoate) top
Crystal data top
[Mg(C10H8N2)(H2O)4](C7H4BrO2)2F(000) = 1312
Mr = 652.56Dx = 1.581 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6277 reflections
a = 30.275 (6) Åθ = 3.2–25.0°
b = 12.308 (3) ŵ = 3.03 mm1
c = 7.5785 (15) ÅT = 290 K
β = 103.90 (3)°Block, colourless
V = 2741.2 (11) Å30.31 × 0.27 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2412 independent reflections
Radiation source: fine-focus sealed tube1505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω–scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3535
Tmin = 0.406, Tmax = 0.562k = 1414
10517 measured reflectionsl = 97
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0695P)2 + 6.5977P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.88 e Å3
1 restraintΔρmin = 0.49 e Å3
Crystal data top
[Mg(C10H8N2)(H2O)4](C7H4BrO2)2V = 2741.2 (11) Å3
Mr = 652.56Z = 4
Monoclinic, C2/cMo Kα radiation
a = 30.275 (6) ŵ = 3.03 mm1
b = 12.308 (3) ÅT = 290 K
c = 7.5785 (15) Å0.31 × 0.27 × 0.19 mm
β = 103.90 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1505 reflections with I > 2σ(I)
Tmin = 0.406, Tmax = 0.562Rint = 0.063
10517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.174H-atom parameters constrained
S = 1.08Δρmax = 0.88 e Å3
2412 reflectionsΔρmin = 0.49 e Å3
171 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.00000.29391 (14)0.25000.0366 (5)
Br10.2137 (3)0.9201 (5)0.0828 (12)0.1255 (19)0.55
Br1'0.2127 (4)0.8733 (7)0.0939 (16)0.1255 (19)0.45
N10.04459 (13)0.1518 (3)0.2599 (5)0.0410 (9)
O10.05190 (12)0.4001 (2)0.2564 (4)0.0521 (9)
H1A0.05610.45610.31660.078*
H1B0.05120.40610.14800.078*
O20.01205 (11)0.2973 (2)0.0269 (4)0.0494 (8)
H2A0.03760.30090.09440.074*
H2B0.00360.32730.08680.074*
O30.43473 (11)0.9050 (2)0.5752 (4)0.0480 (8)
O40.40497 (12)0.7957 (3)0.7472 (5)0.0646 (10)
C10.08821 (17)0.1562 (4)0.2545 (6)0.0514 (12)
H10.10240.22370.26490.062*
C20.11341 (18)0.0657 (4)0.2343 (7)0.0543 (12)
H20.14380.07170.23020.065*
C30.09216 (19)0.0333 (4)0.2203 (7)0.0591 (13)
H30.10810.09590.20600.071*
C40.04759 (18)0.0403 (4)0.2274 (6)0.0510 (12)
H40.03320.10740.21980.061*
C50.02400 (15)0.0542 (3)0.2461 (5)0.0393 (10)
C60.35589 (17)0.8637 (4)0.4824 (6)0.0466 (11)
C70.32382 (19)0.7824 (4)0.4683 (7)0.0623 (14)
H70.33050.72090.54110.075*
C80.2819 (2)0.7917 (6)0.3469 (9)0.0837 (19)
H80.26090.73530.33310.100*
C90.2716 (2)0.8849 (7)0.2471 (8)0.089 (2)
C100.3022 (2)0.9671 (7)0.2613 (8)0.089 (2)
H100.29461.03010.19320.106*
C110.34477 (19)0.9563 (5)0.3780 (7)0.0640 (14)
H110.36611.01170.38630.077*
C120.40163 (16)0.8535 (3)0.6125 (6)0.0423 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0387 (12)0.0345 (10)0.0359 (10)0.0000.0074 (9)0.000
Br10.0583 (7)0.219 (6)0.0842 (12)0.038 (3)0.0128 (6)0.011 (3)
Br1'0.0583 (7)0.219 (6)0.0842 (12)0.038 (3)0.0128 (6)0.011 (3)
N10.043 (2)0.0397 (19)0.0380 (19)0.0001 (17)0.0041 (16)0.0003 (15)
O10.064 (2)0.0470 (17)0.0468 (18)0.0141 (15)0.0161 (17)0.0094 (14)
O20.047 (2)0.0625 (19)0.0367 (16)0.0069 (16)0.0061 (14)0.0051 (14)
O30.045 (2)0.0515 (17)0.0492 (18)0.0063 (15)0.0136 (15)0.0062 (14)
O40.052 (2)0.078 (2)0.056 (2)0.0141 (19)0.0018 (17)0.0225 (18)
C10.042 (3)0.054 (3)0.057 (3)0.004 (2)0.008 (2)0.000 (2)
C20.040 (3)0.062 (3)0.060 (3)0.015 (2)0.012 (2)0.003 (2)
C30.060 (4)0.054 (3)0.059 (3)0.016 (3)0.007 (3)0.002 (2)
C40.053 (3)0.042 (2)0.055 (3)0.004 (2)0.008 (2)0.001 (2)
C50.042 (3)0.041 (2)0.033 (2)0.0058 (19)0.0037 (19)0.0007 (18)
C60.041 (3)0.059 (3)0.040 (2)0.006 (2)0.011 (2)0.002 (2)
C70.049 (3)0.073 (3)0.063 (3)0.010 (3)0.011 (3)0.002 (3)
C80.050 (4)0.122 (5)0.076 (4)0.020 (4)0.008 (3)0.023 (4)
C90.046 (4)0.164 (7)0.054 (3)0.023 (4)0.009 (3)0.008 (4)
C100.063 (4)0.140 (6)0.067 (4)0.035 (4)0.023 (3)0.039 (4)
C110.052 (3)0.081 (4)0.062 (3)0.009 (3)0.019 (3)0.022 (3)
C120.040 (3)0.042 (2)0.046 (3)0.004 (2)0.013 (2)0.009 (2)
Geometric parameters (Å, º) top
Mg1—O12.035 (3)C2—C31.371 (7)
Mg1—O1i2.035 (3)C2—H20.9300
Mg1—O22.042 (3)C3—C41.366 (7)
Mg1—O2i2.042 (3)C3—H30.9300
Mg1—N1i2.199 (4)C4—C51.390 (6)
Mg1—N12.199 (4)C4—H40.9300
Mg1—H1B2.3424C5—C5i1.468 (9)
Br1—C91.939 (10)C6—C71.380 (7)
Br1'—C91.885 (11)C6—C111.382 (7)
N1—C11.332 (6)C6—C121.500 (7)
N1—C51.346 (5)C7—C81.382 (8)
O1—H1A0.8200C7—H70.9300
O1—H1B0.8200C8—C91.367 (9)
O2—H2A0.8199C8—H80.9300
O2—H2B0.8201C9—C101.358 (10)
O3—C121.274 (5)C10—C111.384 (8)
O4—C121.228 (5)C10—H100.9300
C1—C21.379 (7)C11—H110.9300
C1—H10.9300
O1—Mg1—O1i100.12 (19)C1—C2—H2121.1
O1—Mg1—O287.58 (13)C4—C3—C2120.2 (5)
O1i—Mg1—O290.94 (13)C4—C3—H3119.9
O1—Mg1—O2i90.94 (13)C2—C3—H3119.9
O1i—Mg1—O2i87.58 (13)C3—C4—C5119.2 (4)
O2—Mg1—O2i177.69 (19)C3—C4—H4120.4
O1—Mg1—N1i167.24 (14)C5—C4—H4120.4
O1i—Mg1—N1i92.61 (13)N1—C5—C4121.0 (4)
O2—Mg1—N1i91.39 (13)N1—C5—C5i116.2 (2)
O2i—Mg1—N1i90.45 (13)C4—C5—C5i122.8 (3)
O1—Mg1—N192.61 (13)C7—C6—C11118.9 (5)
O1i—Mg1—N1167.24 (14)C7—C6—C12120.8 (4)
O2—Mg1—N190.45 (13)C11—C6—C12120.3 (4)
O2i—Mg1—N191.39 (13)C6—C7—C8120.5 (5)
N1i—Mg1—N174.7 (2)C6—C7—H7119.7
O1—Mg1—H1B20.1C8—C7—H7119.7
O1i—Mg1—H1B100.5C9—C8—C7119.3 (6)
O2—Mg1—H1B67.5C9—C8—H8120.4
O2i—Mg1—H1B111.0C7—C8—H8120.4
N1i—Mg1—H1B155.1C10—C9—C8121.4 (6)
N1—Mg1—H1B91.7C10—C9—Br1'129.1 (6)
C1—N1—C5118.5 (4)C8—C9—Br1'109.5 (6)
C1—N1—Mg1124.9 (3)C10—C9—Br1112.2 (6)
C5—N1—Mg1116.0 (3)C8—C9—Br1126.4 (7)
Mg1—O1—H1A124.7Br1'—C9—Br117.5 (4)
Mg1—O1—H1B101.6C9—C10—C11119.4 (6)
H1A—O1—H1B116.4C9—C10—H10120.3
Mg1—O2—H2A123.4C11—C10—H10120.3
Mg1—O2—H2B126.4C6—C11—C10120.4 (6)
H2A—O2—H2B102.4C6—C11—H11119.8
N1—C1—C2123.4 (5)C10—C11—H11119.8
N1—C1—H1118.3O4—C12—O3124.1 (4)
C2—C1—H1118.3O4—C12—C6118.3 (4)
C3—C2—C1117.7 (5)O3—C12—C6117.6 (4)
C3—C2—H2121.1
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.821.892.702 (4)172
O1—H1B···O3iii0.821.842.640 (4)165
O2—H2A···O4iv0.821.862.679 (7)175
O2—H2B···O3iii0.822.082.790 (5)145
C2—H2···Br1v0.933.003.525 (7)117
C2—H2···Br1v0.933.113.612 (7)116
C3—H3···O4vi0.932.533.239 (6)133
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y1/2, z1; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mg(C10H8N2)(H2O)4](C7H4BrO2)2
Mr652.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)30.275 (6), 12.308 (3), 7.5785 (15)
β (°) 103.90 (3)
V3)2741.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.31 × 0.27 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.406, 0.562
No. of measured, independent and
observed [I > 2σ(I)] reflections
10517, 2412, 1505
Rint0.063
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.174, 1.08
No. of reflections2412
No. of parameters171
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.49

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.821.8872.702 (4)172
O1—H1B···O3ii0.821.8402.640 (4)165
O2—H2A···O4iii0.821.8612.679 (7)175
O2—H2B···O3ii0.822.0802.790 (5)145
C2—H2···Br1iv0.932.9993.525 (7)117
C2—H2···Br1'iv0.933.1103.612 (7)116
C3—H3···O4v0.932.5303.239 (6)133
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z1; (iv) x, y+1, z+1/2; (v) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Education Office of Zhejiang Province (grant No. 20051316) and the Scientific Research Fund of Ningbo University (grant No. XKL09078).

References

First citationHalut-Desportes, S. (1981). Rev. Chim. Miner. 18, 199.  Google Scholar
First citationHao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MS, The Woodlands Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411–1415.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds