metal-organic compounds
catena-Poly[[bis(μ-5-bromopyridine-3-carboxylato-κ2O:O′)dicopper(II)]-bis(μ-5-bromopyridine-3-carboxylato)-κ3O,O′:N;κ3N:O,O′]
aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu
The title compound [Cu2(C6H3BrNO2)4]n, forms sheets in the bc plane. The structure features the dinuclear paddle-wheel cage motif common to copper(II) carboxylates. The polymeric structure is achieved through bridging between binuclear units by the pyridyl donors of two of the four carboxylates of the cage. Each cage engages in axial bonding at each copper atom to a pyridyl nitrogen donor and extends two 5-bromopyridine-3-carboxylate groups to bridge to adjacent binuclear sites in the bc plane. Each cage is linked to four adjacent cages in the plane. The intradimer Cu⋯Cu distance is 2.6465 (5) Å. The remaining 5-bromopyridine-3-carboxylate groups project into the interlamellar domain and interdigitate in pairs from each neighboring layer.
Related literature
For a general review of copper(II) carboxylates, see: Doedens (1976). For polynuclear copper carboxylates with the [Cu2(O2CR)4] core, see: Agterberg et al. (1997); Valentine et al. (1974); Yamanaka et al. (1991). For the preparation of copper coordination polymers under hydrothermal conditions, see: Lu (2003). For general discussion of hydrothermal methods, see: Gopalakrishnan (1995); Zubieta (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S160053681004242X/rn2072sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681004242X/rn2072Isup2.hkl
A solution containing Cu(II) acetate hydrate (0.201 g, 1.01 mmol), 5-bromo-2-pyridylcarboxylic acid (0.102, 0.50 mmol), methanol (5.00 ml, 123.56 mmol), and DMF (5.00 ml, 64.58 mmol), in the mole ratio 2.02:1.00:247:129 was stirred briefly before transfer to a 20 ml glass vial. The capped vial was heated at 75 oC for 72 h. Green blocks of the title compound, suitable for X-ray diffraction, were isolated in 50% yield. Initial and final pH values of 4.0 and 4.0, respectively, were recorded. Anal. Calcd. for C12H6Br2CuN2O4:C, 30.9; H, 1.29; N, 6.01. Found: C, 29.7; H, 1.55; N, 5.93.
All hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C).
The dinuclear paddle-wheel cage structure of copper(II) carboxylates is well established [Doedens (1976)]. Polymeric structures incorporating this core can be obtained using ligands capable of bridging between the dinuclear units [Agterberg, et al. (1997); Valentine, et al. (1974); Yamanaka, et al. (1991)]. Since hydrothermal methods are most effective for the preparation and crystallization of organic-inorganic coordination polymers [Gopalakrishnan (1995); Zubieta (2004)], the crystal engineering of copper-containing materials under these conditions has witnessed considerable contemporary attention [Lu (2003)]. In the course of our investigations of Cu(II)-ligand substructures in complex metal oxide hybrid materials, the two-dimensional material [Cu2(O2CC5H3NBr)4] was isolated.
As shown in Fig. 1, the title compound is two-dimensional, forming sheets oriented parallel to the crystallographic bc plane. The fundamental building block of these sheets is the dinuclear paddle-wheel cage structure [Cu2(O2CR)4], shown in Fig. 2. The four oxygen donors of the basal plane about the crystallographically unique copper site exhibit Cu—O distances in the range of 1.959 (1)Å to 1.985 (1) Å. There is a crystallographic inversion center at the mid-point of the CuLCu vector relating the two halves of the cage. The Cu···Cu distance is 2.6465 (5) Å.
The cages are linked into the two-dimensional network through the pyridylnitrogen donors of two of the 5-bromopyridine-3-carboxylato ligands, with a copper-axial nitrogen distance of 2.160 (2) Å. The connectivity pattern links each [Cu2(O2CR)4] cage to four neighboring cages to provide the 2-D extension. Two 5-bromopyridine-3-carboxylato ligands of each cage are pendant and project from either face of the polymeric sheets into the interlamellar domains (Fig. 3). These projecting groups interdigitate in pairs with those of neighboring sheets to provide a relatively densely packed arrangement of sheets.
For a general review of copper(II) carboxylates, see: Doedens (1976). For polynuclear copper carboxylates with the [Cu2(O2CR)4] core, see: Agterberg, et al. (1997); Valentine, et al. (1974); Yamanaka, et al. (1991). For the preparation of copper coordination polymers under hydrothermal conditions, see: Lu (2003). For general discussion of hydrothermal methods, see: Gopalakrishnan (1995); Zubieta (2004).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C6H3BrNO2)4] | F(000) = 892 |
Mr = 931.11 | Dx = 2.100 Mg m−3 Dm = 2.09 (2) Mg m−3 Dm measured by flotation |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3266 reflections |
a = 11.1390 (12) Å | θ = 2.4–28.3° |
b = 11.5866 (13) Å | µ = 6.93 mm−1 |
c = 12.6325 (14) Å | T = 90 K |
β = 115.432 (2)° | Block, blue |
V = 1472.4 (3) Å3 | 0.35 × 0.30 × 0.27 mm |
Z = 2 |
Bruker APEX CCD area-detector diffractometer | 3571 independent reflections |
Radiation source: fine-focus sealed tube | 3218 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 512 pixels mm-1 | θmax = 28.1°, θmin = 2.0° |
φ and ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | k = −15→14 |
Tmin = 0.196, Tmax = 0.256 | l = −15→16 |
14281 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0258P)2 + 1.3076P] where P = (Fo2 + 2Fc2)/3 |
3571 reflections | (Δ/σ)max = 0.001 |
190 parameters | Δρmax = 0.77 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
[Cu2(C6H3BrNO2)4] | V = 1472.4 (3) Å3 |
Mr = 931.11 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.1390 (12) Å | µ = 6.93 mm−1 |
b = 11.5866 (13) Å | T = 90 K |
c = 12.6325 (14) Å | 0.35 × 0.30 × 0.27 mm |
β = 115.432 (2)° |
Bruker APEX CCD area-detector diffractometer | 3571 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3218 reflections with I > 2σ(I) |
Tmin = 0.196, Tmax = 0.256 | Rint = 0.022 |
14281 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.77 e Å−3 |
3571 reflections | Δρmin = −0.51 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | −0.18056 (2) | 0.76143 (2) | −0.11231 (2) | 0.02559 (7) | |
Br2 | 0.84249 (2) | 0.868086 (18) | 0.603257 (19) | 0.02064 (6) | |
Cu1 | 0.56886 (2) | 1.02600 (2) | 0.11208 (2) | 0.01009 (6) | |
O1 | 0.40781 (14) | 0.98221 (13) | 0.12844 (14) | 0.0179 (3) | |
O2 | 0.29176 (14) | 0.93567 (13) | −0.06153 (13) | 0.0174 (3) | |
O3 | 1.00043 (14) | 1.31393 (12) | 0.57312 (13) | 0.0153 (3) | |
O4 | 0.88355 (15) | 1.36151 (12) | 0.38361 (13) | 0.0176 (3) | |
N1 | 0.08987 (19) | 0.89646 (18) | 0.19994 (17) | 0.0232 (4) | |
N2 | 0.70137 (17) | 1.05035 (15) | 0.29489 (15) | 0.0142 (3) | |
C1 | −0.0161 (2) | 0.8474 (2) | 0.1151 (2) | 0.0214 (5) | |
H1 | −0.0875 | 0.8233 | 0.1320 | 0.026* | |
C2 | −0.0258 (2) | 0.83017 (19) | 0.00277 (19) | 0.0176 (4) | |
C3 | 0.0770 (2) | 0.86282 (17) | −0.0242 (2) | 0.0161 (4) | |
H3 | 0.0718 | 0.8518 | −0.1006 | 0.019* | |
C4 | 0.1886 (2) | 0.91256 (18) | 0.06474 (19) | 0.0146 (4) | |
C5 | 0.1900 (2) | 0.92849 (19) | 0.17425 (19) | 0.0181 (4) | |
H5 | 0.2657 | 0.9639 | 0.2340 | 0.022* | |
C6 | 0.30570 (19) | 0.94647 (17) | 0.04201 (19) | 0.0139 (4) | |
C7 | 0.7262 (2) | 0.96880 (18) | 0.37741 (18) | 0.0146 (4) | |
H7 | 0.6806 | 0.8971 | 0.3561 | 0.018* | |
C8 | 0.8166 (2) | 0.98675 (17) | 0.49263 (18) | 0.0137 (4) | |
C9 | 0.8847 (2) | 1.09039 (17) | 0.52675 (18) | 0.0138 (4) | |
H9 | 0.9470 | 1.1034 | 0.6056 | 0.017* | |
C10 | 0.85843 (19) | 1.17443 (17) | 0.44120 (18) | 0.0116 (4) | |
C11 | 0.76676 (19) | 1.15074 (17) | 0.32653 (18) | 0.0132 (4) | |
H11 | 0.7500 | 1.2083 | 0.2683 | 0.016* | |
C12 | 0.92049 (19) | 1.29269 (17) | 0.46889 (18) | 0.0124 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01981 (11) | 0.03107 (13) | 0.02547 (13) | −0.01189 (9) | 0.00931 (10) | −0.00522 (10) |
Br2 | 0.03049 (12) | 0.01399 (11) | 0.01496 (11) | −0.00414 (8) | 0.00738 (9) | 0.00332 (8) |
Cu1 | 0.01025 (11) | 0.00862 (12) | 0.00980 (12) | 0.00020 (8) | 0.00280 (9) | 0.00007 (9) |
O1 | 0.0152 (7) | 0.0211 (8) | 0.0180 (8) | −0.0049 (6) | 0.0078 (6) | −0.0028 (6) |
O2 | 0.0140 (7) | 0.0229 (8) | 0.0163 (8) | −0.0013 (6) | 0.0073 (6) | 0.0000 (6) |
O3 | 0.0183 (7) | 0.0113 (7) | 0.0127 (7) | −0.0035 (6) | 0.0033 (6) | −0.0016 (6) |
O4 | 0.0220 (8) | 0.0105 (7) | 0.0139 (8) | −0.0030 (6) | 0.0015 (6) | 0.0012 (6) |
N1 | 0.0233 (10) | 0.0302 (11) | 0.0186 (10) | −0.0033 (8) | 0.0113 (8) | 0.0015 (8) |
N2 | 0.0163 (8) | 0.0120 (8) | 0.0130 (9) | −0.0012 (6) | 0.0049 (7) | −0.0006 (7) |
C1 | 0.0197 (10) | 0.0245 (11) | 0.0239 (12) | −0.0031 (9) | 0.0130 (9) | 0.0016 (9) |
C2 | 0.0142 (9) | 0.0171 (10) | 0.0201 (11) | −0.0033 (8) | 0.0060 (8) | −0.0010 (9) |
C3 | 0.0176 (10) | 0.0140 (10) | 0.0184 (11) | 0.0002 (8) | 0.0092 (8) | 0.0003 (8) |
C4 | 0.0143 (9) | 0.0124 (9) | 0.0175 (10) | 0.0008 (7) | 0.0073 (8) | 0.0024 (8) |
C5 | 0.0169 (10) | 0.0190 (11) | 0.0170 (11) | −0.0025 (8) | 0.0060 (8) | 0.0001 (8) |
C6 | 0.0132 (9) | 0.0090 (9) | 0.0197 (11) | 0.0008 (7) | 0.0071 (8) | 0.0017 (8) |
C7 | 0.0168 (10) | 0.0119 (9) | 0.0151 (10) | −0.0038 (7) | 0.0068 (8) | −0.0024 (8) |
C8 | 0.0174 (9) | 0.0116 (9) | 0.0125 (10) | 0.0005 (7) | 0.0068 (8) | 0.0038 (8) |
C9 | 0.0145 (9) | 0.0143 (10) | 0.0115 (10) | −0.0005 (7) | 0.0045 (8) | −0.0016 (8) |
C10 | 0.0130 (9) | 0.0094 (9) | 0.0127 (10) | 0.0000 (7) | 0.0056 (7) | −0.0011 (7) |
C11 | 0.0142 (9) | 0.0114 (9) | 0.0132 (10) | −0.0007 (7) | 0.0053 (8) | 0.0013 (7) |
C12 | 0.0125 (9) | 0.0107 (9) | 0.0154 (10) | 0.0004 (7) | 0.0072 (8) | −0.0007 (8) |
Br1—C2 | 1.888 (2) | C1—C2 | 1.390 (3) |
Br2—C8 | 1.892 (2) | C1—H1 | 0.9500 |
Cu1—O1 | 1.9588 (14) | C2—C3 | 1.380 (3) |
Cu1—O2i | 1.9665 (14) | C3—C4 | 1.393 (3) |
Cu1—O4ii | 1.9726 (14) | C3—H3 | 0.9500 |
Cu1—O3iii | 1.9852 (14) | C4—C5 | 1.389 (3) |
Cu1—N2 | 2.1595 (18) | C4—C6 | 1.504 (3) |
Cu1—Cu1i | 2.6465 (5) | C5—H5 | 0.9500 |
O1—C6 | 1.261 (3) | C7—C8 | 1.384 (3) |
O2—C6 | 1.255 (3) | C7—H7 | 0.9500 |
O3—C12 | 1.257 (2) | C8—C9 | 1.387 (3) |
O4—C12 | 1.259 (2) | C9—C10 | 1.389 (3) |
N1—C1 | 1.334 (3) | C9—H9 | 0.9500 |
N1—C5 | 1.340 (3) | C10—C11 | 1.395 (3) |
N2—C11 | 1.339 (3) | C10—C12 | 1.507 (3) |
N2—C7 | 1.345 (3) | C11—H11 | 0.9500 |
O1—Cu1—O2i | 168.33 (6) | C2—C3—H3 | 121.2 |
O1—Cu1—O4ii | 89.67 (6) | C4—C3—H3 | 121.2 |
O2i—Cu1—O4ii | 89.25 (7) | C5—C4—C3 | 118.87 (19) |
O1—Cu1—O3iii | 89.81 (6) | C5—C4—C6 | 121.06 (19) |
O2i—Cu1—O3iii | 88.91 (6) | C3—C4—C6 | 120.06 (19) |
O4ii—Cu1—O3iii | 168.37 (6) | N1—C5—C4 | 123.3 (2) |
O1—Cu1—N2 | 99.05 (7) | N1—C5—H5 | 118.3 |
O2i—Cu1—N2 | 92.60 (6) | C4—C5—H5 | 118.3 |
O4ii—Cu1—N2 | 92.56 (6) | O2—C6—O1 | 126.63 (18) |
O3iii—Cu1—N2 | 99.00 (6) | O2—C6—C4 | 116.34 (18) |
O1—Cu1—Cu1i | 85.28 (5) | O1—C6—C4 | 117.03 (18) |
O2i—Cu1—Cu1i | 83.08 (5) | N2—C7—C8 | 121.60 (18) |
O4ii—Cu1—Cu1i | 80.50 (4) | N2—C7—H7 | 119.2 |
O3iii—Cu1—Cu1i | 87.88 (4) | C8—C7—H7 | 119.2 |
N2—Cu1—Cu1i | 171.84 (5) | C7—C8—C9 | 120.71 (18) |
C6—O1—Cu1 | 121.33 (13) | C7—C8—Br2 | 118.60 (15) |
C6—O2—Cu1i | 123.66 (13) | C9—C8—Br2 | 120.67 (16) |
C12—O3—Cu1iv | 117.81 (13) | C8—C9—C10 | 117.44 (19) |
C12—O4—Cu1v | 127.10 (14) | C8—C9—H9 | 121.3 |
C1—N1—C5 | 117.7 (2) | C10—C9—H9 | 121.3 |
C11—N2—C7 | 118.33 (18) | C9—C10—C11 | 119.06 (18) |
C11—N2—Cu1 | 117.85 (14) | C9—C10—C12 | 122.30 (18) |
C7—N2—Cu1 | 123.76 (14) | C11—C10—C12 | 118.57 (17) |
N1—C1—C2 | 122.4 (2) | N2—C11—C10 | 122.86 (18) |
N1—C1—H1 | 118.8 | N2—C11—H11 | 118.6 |
C2—C1—H1 | 118.8 | C10—C11—H11 | 118.6 |
C3—C2—C1 | 120.2 (2) | O3—C12—O4 | 126.62 (18) |
C3—C2—Br1 | 120.35 (17) | O3—C12—C10 | 117.99 (18) |
C1—C2—Br1 | 119.44 (15) | O4—C12—C10 | 115.38 (18) |
C2—C3—C4 | 117.5 (2) | ||
O2i—Cu1—O1—C6 | 5.4 (4) | Cu1—O1—C6—C4 | 178.63 (13) |
O4ii—Cu1—O1—C6 | −79.30 (16) | C5—C4—C6—O2 | −175.55 (19) |
O3iii—Cu1—O1—C6 | 89.08 (16) | C3—C4—C6—O2 | 5.4 (3) |
N2—Cu1—O1—C6 | −171.84 (15) | C5—C4—C6—O1 | 4.8 (3) |
Cu1i—Cu1—O1—C6 | 1.20 (15) | C3—C4—C6—O1 | −174.31 (19) |
O1—Cu1—N2—C11 | −127.00 (15) | C11—N2—C7—C8 | 0.1 (3) |
O2i—Cu1—N2—C11 | 53.57 (15) | Cu1—N2—C7—C8 | 177.04 (15) |
O4ii—Cu1—N2—C11 | 142.93 (15) | N2—C7—C8—C9 | 0.1 (3) |
O3iii—Cu1—N2—C11 | −35.75 (15) | N2—C7—C8—Br2 | 178.81 (15) |
O1—Cu1—N2—C7 | 56.05 (17) | C7—C8—C9—C10 | 0.1 (3) |
O2i—Cu1—N2—C7 | −123.39 (16) | Br2—C8—C9—C10 | −178.61 (14) |
O4ii—Cu1—N2—C7 | −34.03 (16) | C8—C9—C10—C11 | −0.4 (3) |
O3iii—Cu1—N2—C7 | 147.30 (16) | C8—C9—C10—C12 | 176.54 (18) |
C5—N1—C1—C2 | −0.7 (3) | C7—N2—C11—C10 | −0.5 (3) |
N1—C1—C2—C3 | 0.8 (4) | Cu1—N2—C11—C10 | −177.61 (15) |
N1—C1—C2—Br1 | −179.34 (18) | C9—C10—C11—N2 | 0.7 (3) |
C1—C2—C3—C4 | 0.1 (3) | C12—C10—C11—N2 | −176.43 (18) |
Br1—C2—C3—C4 | −179.72 (15) | Cu1iv—O3—C12—O4 | 4.0 (3) |
C2—C3—C4—C5 | −1.1 (3) | Cu1iv—O3—C12—C10 | −174.39 (12) |
C2—C3—C4—C6 | 178.03 (19) | Cu1v—O4—C12—O3 | −3.7 (3) |
C1—N1—C5—C4 | −0.3 (3) | Cu1v—O4—C12—C10 | 174.71 (12) |
C3—C4—C5—N1 | 1.2 (3) | C9—C10—C12—O3 | 1.3 (3) |
C6—C4—C5—N1 | −177.9 (2) | C11—C10—C12—O3 | 178.26 (18) |
Cu1i—O2—C6—O1 | −0.2 (3) | C9—C10—C12—O4 | −177.28 (18) |
Cu1i—O2—C6—C4 | −179.81 (13) | C11—C10—C12—O4 | −0.3 (3) |
Cu1—O1—C6—O2 | −1.0 (3) |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x−1/2, −y+5/2, z−1/2; (iv) x+1/2, −y+5/2, z+1/2; (v) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C6H3BrNO2)4] |
Mr | 931.11 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 90 |
a, b, c (Å) | 11.1390 (12), 11.5866 (13), 12.6325 (14) |
β (°) | 115.432 (2) |
V (Å3) | 1472.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.93 |
Crystal size (mm) | 0.35 × 0.30 × 0.27 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.196, 0.256 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14281, 3571, 3218 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.054, 1.05 |
No. of reflections | 3571 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.77, −0.51 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by a grant from the National Science Foundation, CHE-0907787.
References
Agterberg, F. P. W., Kluit, H. A. J. P., Driessen, W. L., Oevering, H., Buijs, W., Lakin, M. T., Spek, A. L. & Reedijk, J. (1997). Inorg. Chem. 36, 4321–4328. CSD CrossRef PubMed CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Doedens, R. J. (1976). Prog. Inorg. Chem. 21, 209–231. CrossRef CAS Google Scholar
Gopalakrishnan, J. (1995). Chem. Mater. 7, 1265–1275. CrossRef CAS Web of Science Google Scholar
Lu, J. L. (2003). Coord. Chem. Rev. 246, 327–347. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Valentine, J. S., Silverstein, A. J. & Soos, Z. G. (1974). J. Am. Chem. Soc. 96, 97–103. CrossRef CAS Web of Science Google Scholar
Yamanaka, M., Uekusa, H., Ohba, S., Saito, Y., Iwata, S., Kato, M., Tokii, T., Muto, Y. & Steward, O. W. (1991). Acta Cryst. B47, 344–355. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Zubieta, J. (2004). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 697–709. Amsterdam: Elsevier. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The dinuclear paddle-wheel cage structure of copper(II) carboxylates is well established [Doedens (1976)]. Polymeric structures incorporating this core can be obtained using ligands capable of bridging between the dinuclear units [Agterberg, et al. (1997); Valentine, et al. (1974); Yamanaka, et al. (1991)]. Since hydrothermal methods are most effective for the preparation and crystallization of organic-inorganic coordination polymers [Gopalakrishnan (1995); Zubieta (2004)], the crystal engineering of copper-containing materials under these conditions has witnessed considerable contemporary attention [Lu (2003)]. In the course of our investigations of Cu(II)-ligand substructures in complex metal oxide hybrid materials, the two-dimensional material [Cu2(O2CC5H3NBr)4] was isolated.
As shown in Fig. 1, the title compound is two-dimensional, forming sheets oriented parallel to the crystallographic bc plane. The fundamental building block of these sheets is the dinuclear paddle-wheel cage structure [Cu2(O2CR)4], shown in Fig. 2. The four oxygen donors of the basal plane about the crystallographically unique copper site exhibit Cu—O distances in the range of 1.959 (1)Å to 1.985 (1) Å. There is a crystallographic inversion center at the mid-point of the CuLCu vector relating the two halves of the cage. The Cu···Cu distance is 2.6465 (5) Å.
The cages are linked into the two-dimensional network through the pyridylnitrogen donors of two of the 5-bromopyridine-3-carboxylato ligands, with a copper-axial nitrogen distance of 2.160 (2) Å. The connectivity pattern links each [Cu2(O2CR)4] cage to four neighboring cages to provide the 2-D extension. Two 5-bromopyridine-3-carboxylato ligands of each cage are pendant and project from either face of the polymeric sheets into the interlamellar domains (Fig. 3). These projecting groups interdigitate in pairs with those of neighboring sheets to provide a relatively densely packed arrangement of sheets.