metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(μ-5-bromo­pyridine-3-carboxyl­ato-κ2O:O′)dicopper(II)]-bis­­(μ-5-bromo­pyridine-3-carboxyl­ato)-κ3O,O′:N;κ3N:O,O′]

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 7 October 2010; accepted 19 October 2010; online 23 October 2010)

The title compound [Cu2(C6H3BrNO2)4]n, forms sheets in the bc plane. The structure features the dinuclear paddle-wheel cage motif common to copper(II) carboxyl­ates. The polymeric structure is achieved through bridging between binuclear units by the pyridyl donors of two of the four carboxyl­ates of the cage. Each cage engages in axial bonding at each copper atom to a pyridyl nitro­gen donor and extends two 5-bromo­pyridine-3-carboxyl­ate groups to bridge to adjacent binuclear sites in the bc plane. Each cage is linked to four adjacent cages in the plane. The intra­dimer Cu⋯Cu distance is 2.6465 (5) Å. The remaining 5-bromo­pyridine-3-carboxyl­ate groups project into the inter­lamellar domain and inter­digitate in pairs from each neighboring layer.

Related literature

For a general review of copper(II) carboxyl­ates, see: Doedens (1976[Doedens, R. J. (1976). Prog. Inorg. Chem. 21, 209-231.]). For polynuclear copper carboxyl­ates with the [Cu2(O2CR)4] core, see: Agterberg et al. (1997[Agterberg, F. P. W., Kluit, H. A. J. P., Driessen, W. L., Oevering, H., Buijs, W., Lakin, M. T., Spek, A. L. & Reedijk, J. (1997). Inorg. Chem. 36, 4321-4328.]); Valentine et al. (1974[Valentine, J. S., Silverstein, A. J. & Soos, Z. G. (1974). J. Am. Chem. Soc. 96, 97-103.]); Yamanaka et al. (1991[Yamanaka, M., Uekusa, H., Ohba, S., Saito, Y., Iwata, S., Kato, M., Tokii, T., Muto, Y. & Steward, O. W. (1991). Acta Cryst. B47, 344-355.]). For the preparation of copper coordination polymers under hydro­thermal conditions, see: Lu (2003[Lu, J. L. (2003). Coord. Chem. Rev. 246, 327-347.]). For general discussion of hydro­thermal methods, see: Gopalakrishnan (1995[Gopalakrishnan, J. (1995). Chem. Mater. 7, 1265-1275.]); Zubieta (2004[Zubieta, J. (2004). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 697-709. Amsterdam: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C6H3BrNO2)4]

  • Mr = 931.11

  • Monoclinic, P 21 /n

  • a = 11.1390 (12) Å

  • b = 11.5866 (13) Å

  • c = 12.6325 (14) Å

  • β = 115.432 (2)°

  • V = 1472.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.93 mm−1

  • T = 90 K

  • 0.35 × 0.30 × 0.27 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.196, Tmax = 0.256

  • 14281 measured reflections

  • 3571 independent reflections

  • 3218 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.05

  • 3571 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The dinuclear paddle-wheel cage structure of copper(II) carboxylates is well established [Doedens (1976)]. Polymeric structures incorporating this core can be obtained using ligands capable of bridging between the dinuclear units [Agterberg, et al. (1997); Valentine, et al. (1974); Yamanaka, et al. (1991)]. Since hydrothermal methods are most effective for the preparation and crystallization of organic-inorganic coordination polymers [Gopalakrishnan (1995); Zubieta (2004)], the crystal engineering of copper-containing materials under these conditions has witnessed considerable contemporary attention [Lu (2003)]. In the course of our investigations of Cu(II)-ligand substructures in complex metal oxide hybrid materials, the two-dimensional material [Cu2(O2CC5H3NBr)4] was isolated.

As shown in Fig. 1, the title compound is two-dimensional, forming sheets oriented parallel to the crystallographic bc plane. The fundamental building block of these sheets is the dinuclear paddle-wheel cage structure [Cu2(O2CR)4], shown in Fig. 2. The four oxygen donors of the basal plane about the crystallographically unique copper site exhibit Cu—O distances in the range of 1.959 (1)Å to 1.985 (1) Å. There is a crystallographic inversion center at the mid-point of the CuLCu vector relating the two halves of the cage. The Cu···Cu distance is 2.6465 (5) Å.

The cages are linked into the two-dimensional network through the pyridylnitrogen donors of two of the 5-bromopyridine-3-carboxylato ligands, with a copper-axial nitrogen distance of 2.160 (2) Å. The connectivity pattern links each [Cu2(O2CR)4] cage to four neighboring cages to provide the 2-D extension. Two 5-bromopyridine-3-carboxylato ligands of each cage are pendant and project from either face of the polymeric sheets into the interlamellar domains (Fig. 3). These projecting groups interdigitate in pairs with those of neighboring sheets to provide a relatively densely packed arrangement of sheets.

Related literature top

For a general review of copper(II) carboxylates, see: Doedens (1976). For polynuclear copper carboxylates with the [Cu2(O2CR)4] core, see: Agterberg, et al. (1997); Valentine, et al. (1974); Yamanaka, et al. (1991). For the preparation of copper coordination polymers under hydrothermal conditions, see: Lu (2003). For general discussion of hydrothermal methods, see: Gopalakrishnan (1995); Zubieta (2004).

Experimental top

A solution containing Cu(II) acetate hydrate (0.201 g, 1.01 mmol), 5-bromo-2-pyridylcarboxylic acid (0.102, 0.50 mmol), methanol (5.00 ml, 123.56 mmol), and DMF (5.00 ml, 64.58 mmol), in the mole ratio 2.02:1.00:247:129 was stirred briefly before transfer to a 20 ml glass vial. The capped vial was heated at 75 oC for 72 h. Green blocks of the title compound, suitable for X-ray diffraction, were isolated in 50% yield. Initial and final pH values of 4.0 and 4.0, respectively, were recorded. Anal. Calcd. for C12H6Br2CuN2O4:C, 30.9; H, 1.29; N, 6.01. Found: C, 29.7; H, 1.55; N, 5.93.

Refinement top

All hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C).

Structure description top

The dinuclear paddle-wheel cage structure of copper(II) carboxylates is well established [Doedens (1976)]. Polymeric structures incorporating this core can be obtained using ligands capable of bridging between the dinuclear units [Agterberg, et al. (1997); Valentine, et al. (1974); Yamanaka, et al. (1991)]. Since hydrothermal methods are most effective for the preparation and crystallization of organic-inorganic coordination polymers [Gopalakrishnan (1995); Zubieta (2004)], the crystal engineering of copper-containing materials under these conditions has witnessed considerable contemporary attention [Lu (2003)]. In the course of our investigations of Cu(II)-ligand substructures in complex metal oxide hybrid materials, the two-dimensional material [Cu2(O2CC5H3NBr)4] was isolated.

As shown in Fig. 1, the title compound is two-dimensional, forming sheets oriented parallel to the crystallographic bc plane. The fundamental building block of these sheets is the dinuclear paddle-wheel cage structure [Cu2(O2CR)4], shown in Fig. 2. The four oxygen donors of the basal plane about the crystallographically unique copper site exhibit Cu—O distances in the range of 1.959 (1)Å to 1.985 (1) Å. There is a crystallographic inversion center at the mid-point of the CuLCu vector relating the two halves of the cage. The Cu···Cu distance is 2.6465 (5) Å.

The cages are linked into the two-dimensional network through the pyridylnitrogen donors of two of the 5-bromopyridine-3-carboxylato ligands, with a copper-axial nitrogen distance of 2.160 (2) Å. The connectivity pattern links each [Cu2(O2CR)4] cage to four neighboring cages to provide the 2-D extension. Two 5-bromopyridine-3-carboxylato ligands of each cage are pendant and project from either face of the polymeric sheets into the interlamellar domains (Fig. 3). These projecting groups interdigitate in pairs with those of neighboring sheets to provide a relatively densely packed arrangement of sheets.

For a general review of copper(II) carboxylates, see: Doedens (1976). For polynuclear copper carboxylates with the [Cu2(O2CR)4] core, see: Agterberg, et al. (1997); Valentine, et al. (1974); Yamanaka, et al. (1991). For the preparation of copper coordination polymers under hydrothermal conditions, see: Lu (2003). For general discussion of hydrothermal methods, see: Gopalakrishnan (1995); Zubieta (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the two-dimensional structure of [Cu2(O2CC5H3NBr)4] in the bc plane. Color scheme as for Fig. 2.
[Figure 2] Fig. 2. An ORTEP view of the dinuclear paddle-wheel cage building block of the title compound, showing the atom-labeling scheme for the asymmetric unit and 50% displacement ellipsoids. Color scheme: Cu, blue; Br, maroon; O, red; N, light blue; C, black; H, pink.
[Figure 3] Fig. 3. A view of the packing showing the interdigitation of the pendant 5-bromo-2-pyridyl groups. Color scheme as for Fig. 2.
catena-Poly[[bis(µ-5-bromopyridine-3-carboxylato- κ2O:O')dicopper(II)]-bis(µ-5-bromopyridine-3-carboxylato)- κ3O,O':N;κ3N:O,O'] top
Crystal data top
[Cu2(C6H3BrNO2)4]F(000) = 892
Mr = 931.11Dx = 2.100 Mg m3
Dm = 2.09 (2) Mg m3
Dm measured by flotation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3266 reflections
a = 11.1390 (12) Åθ = 2.4–28.3°
b = 11.5866 (13) ŵ = 6.93 mm1
c = 12.6325 (14) ÅT = 90 K
β = 115.432 (2)°Block, blue
V = 1472.4 (3) Å30.35 × 0.30 × 0.27 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
3571 independent reflections
Radiation source: fine-focus sealed tube3218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 2.0°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1514
Tmin = 0.196, Tmax = 0.256l = 1516
14281 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0258P)2 + 1.3076P]
where P = (Fo2 + 2Fc2)/3
3571 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cu2(C6H3BrNO2)4]V = 1472.4 (3) Å3
Mr = 931.11Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.1390 (12) ŵ = 6.93 mm1
b = 11.5866 (13) ÅT = 90 K
c = 12.6325 (14) Å0.35 × 0.30 × 0.27 mm
β = 115.432 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3571 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3218 reflections with I > 2σ(I)
Tmin = 0.196, Tmax = 0.256Rint = 0.022
14281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.05Δρmax = 0.77 e Å3
3571 reflectionsΔρmin = 0.51 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18056 (2)0.76143 (2)0.11231 (2)0.02559 (7)
Br20.84249 (2)0.868086 (18)0.603257 (19)0.02064 (6)
Cu10.56886 (2)1.02600 (2)0.11208 (2)0.01009 (6)
O10.40781 (14)0.98221 (13)0.12844 (14)0.0179 (3)
O20.29176 (14)0.93567 (13)0.06153 (13)0.0174 (3)
O31.00043 (14)1.31393 (12)0.57312 (13)0.0153 (3)
O40.88355 (15)1.36151 (12)0.38361 (13)0.0176 (3)
N10.08987 (19)0.89646 (18)0.19994 (17)0.0232 (4)
N20.70137 (17)1.05035 (15)0.29489 (15)0.0142 (3)
C10.0161 (2)0.8474 (2)0.1151 (2)0.0214 (5)
H10.08750.82330.13200.026*
C20.0258 (2)0.83017 (19)0.00277 (19)0.0176 (4)
C30.0770 (2)0.86282 (17)0.0242 (2)0.0161 (4)
H30.07180.85180.10060.019*
C40.1886 (2)0.91256 (18)0.06474 (19)0.0146 (4)
C50.1900 (2)0.92849 (19)0.17425 (19)0.0181 (4)
H50.26570.96390.23400.022*
C60.30570 (19)0.94647 (17)0.04201 (19)0.0139 (4)
C70.7262 (2)0.96880 (18)0.37741 (18)0.0146 (4)
H70.68060.89710.35610.018*
C80.8166 (2)0.98675 (17)0.49263 (18)0.0137 (4)
C90.8847 (2)1.09039 (17)0.52675 (18)0.0138 (4)
H90.94701.10340.60560.017*
C100.85843 (19)1.17443 (17)0.44120 (18)0.0116 (4)
C110.76676 (19)1.15074 (17)0.32653 (18)0.0132 (4)
H110.75001.20830.26830.016*
C120.92049 (19)1.29269 (17)0.46889 (18)0.0124 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01981 (11)0.03107 (13)0.02547 (13)0.01189 (9)0.00931 (10)0.00522 (10)
Br20.03049 (12)0.01399 (11)0.01496 (11)0.00414 (8)0.00738 (9)0.00332 (8)
Cu10.01025 (11)0.00862 (12)0.00980 (12)0.00020 (8)0.00280 (9)0.00007 (9)
O10.0152 (7)0.0211 (8)0.0180 (8)0.0049 (6)0.0078 (6)0.0028 (6)
O20.0140 (7)0.0229 (8)0.0163 (8)0.0013 (6)0.0073 (6)0.0000 (6)
O30.0183 (7)0.0113 (7)0.0127 (7)0.0035 (6)0.0033 (6)0.0016 (6)
O40.0220 (8)0.0105 (7)0.0139 (8)0.0030 (6)0.0015 (6)0.0012 (6)
N10.0233 (10)0.0302 (11)0.0186 (10)0.0033 (8)0.0113 (8)0.0015 (8)
N20.0163 (8)0.0120 (8)0.0130 (9)0.0012 (6)0.0049 (7)0.0006 (7)
C10.0197 (10)0.0245 (11)0.0239 (12)0.0031 (9)0.0130 (9)0.0016 (9)
C20.0142 (9)0.0171 (10)0.0201 (11)0.0033 (8)0.0060 (8)0.0010 (9)
C30.0176 (10)0.0140 (10)0.0184 (11)0.0002 (8)0.0092 (8)0.0003 (8)
C40.0143 (9)0.0124 (9)0.0175 (10)0.0008 (7)0.0073 (8)0.0024 (8)
C50.0169 (10)0.0190 (11)0.0170 (11)0.0025 (8)0.0060 (8)0.0001 (8)
C60.0132 (9)0.0090 (9)0.0197 (11)0.0008 (7)0.0071 (8)0.0017 (8)
C70.0168 (10)0.0119 (9)0.0151 (10)0.0038 (7)0.0068 (8)0.0024 (8)
C80.0174 (9)0.0116 (9)0.0125 (10)0.0005 (7)0.0068 (8)0.0038 (8)
C90.0145 (9)0.0143 (10)0.0115 (10)0.0005 (7)0.0045 (8)0.0016 (8)
C100.0130 (9)0.0094 (9)0.0127 (10)0.0000 (7)0.0056 (7)0.0011 (7)
C110.0142 (9)0.0114 (9)0.0132 (10)0.0007 (7)0.0053 (8)0.0013 (7)
C120.0125 (9)0.0107 (9)0.0154 (10)0.0004 (7)0.0072 (8)0.0007 (8)
Geometric parameters (Å, º) top
Br1—C21.888 (2)C1—C21.390 (3)
Br2—C81.892 (2)C1—H10.9500
Cu1—O11.9588 (14)C2—C31.380 (3)
Cu1—O2i1.9665 (14)C3—C41.393 (3)
Cu1—O4ii1.9726 (14)C3—H30.9500
Cu1—O3iii1.9852 (14)C4—C51.389 (3)
Cu1—N22.1595 (18)C4—C61.504 (3)
Cu1—Cu1i2.6465 (5)C5—H50.9500
O1—C61.261 (3)C7—C81.384 (3)
O2—C61.255 (3)C7—H70.9500
O3—C121.257 (2)C8—C91.387 (3)
O4—C121.259 (2)C9—C101.389 (3)
N1—C11.334 (3)C9—H90.9500
N1—C51.340 (3)C10—C111.395 (3)
N2—C111.339 (3)C10—C121.507 (3)
N2—C71.345 (3)C11—H110.9500
O1—Cu1—O2i168.33 (6)C2—C3—H3121.2
O1—Cu1—O4ii89.67 (6)C4—C3—H3121.2
O2i—Cu1—O4ii89.25 (7)C5—C4—C3118.87 (19)
O1—Cu1—O3iii89.81 (6)C5—C4—C6121.06 (19)
O2i—Cu1—O3iii88.91 (6)C3—C4—C6120.06 (19)
O4ii—Cu1—O3iii168.37 (6)N1—C5—C4123.3 (2)
O1—Cu1—N299.05 (7)N1—C5—H5118.3
O2i—Cu1—N292.60 (6)C4—C5—H5118.3
O4ii—Cu1—N292.56 (6)O2—C6—O1126.63 (18)
O3iii—Cu1—N299.00 (6)O2—C6—C4116.34 (18)
O1—Cu1—Cu1i85.28 (5)O1—C6—C4117.03 (18)
O2i—Cu1—Cu1i83.08 (5)N2—C7—C8121.60 (18)
O4ii—Cu1—Cu1i80.50 (4)N2—C7—H7119.2
O3iii—Cu1—Cu1i87.88 (4)C8—C7—H7119.2
N2—Cu1—Cu1i171.84 (5)C7—C8—C9120.71 (18)
C6—O1—Cu1121.33 (13)C7—C8—Br2118.60 (15)
C6—O2—Cu1i123.66 (13)C9—C8—Br2120.67 (16)
C12—O3—Cu1iv117.81 (13)C8—C9—C10117.44 (19)
C12—O4—Cu1v127.10 (14)C8—C9—H9121.3
C1—N1—C5117.7 (2)C10—C9—H9121.3
C11—N2—C7118.33 (18)C9—C10—C11119.06 (18)
C11—N2—Cu1117.85 (14)C9—C10—C12122.30 (18)
C7—N2—Cu1123.76 (14)C11—C10—C12118.57 (17)
N1—C1—C2122.4 (2)N2—C11—C10122.86 (18)
N1—C1—H1118.8N2—C11—H11118.6
C2—C1—H1118.8C10—C11—H11118.6
C3—C2—C1120.2 (2)O3—C12—O4126.62 (18)
C3—C2—Br1120.35 (17)O3—C12—C10117.99 (18)
C1—C2—Br1119.44 (15)O4—C12—C10115.38 (18)
C2—C3—C4117.5 (2)
O2i—Cu1—O1—C65.4 (4)Cu1—O1—C6—C4178.63 (13)
O4ii—Cu1—O1—C679.30 (16)C5—C4—C6—O2175.55 (19)
O3iii—Cu1—O1—C689.08 (16)C3—C4—C6—O25.4 (3)
N2—Cu1—O1—C6171.84 (15)C5—C4—C6—O14.8 (3)
Cu1i—Cu1—O1—C61.20 (15)C3—C4—C6—O1174.31 (19)
O1—Cu1—N2—C11127.00 (15)C11—N2—C7—C80.1 (3)
O2i—Cu1—N2—C1153.57 (15)Cu1—N2—C7—C8177.04 (15)
O4ii—Cu1—N2—C11142.93 (15)N2—C7—C8—C90.1 (3)
O3iii—Cu1—N2—C1135.75 (15)N2—C7—C8—Br2178.81 (15)
O1—Cu1—N2—C756.05 (17)C7—C8—C9—C100.1 (3)
O2i—Cu1—N2—C7123.39 (16)Br2—C8—C9—C10178.61 (14)
O4ii—Cu1—N2—C734.03 (16)C8—C9—C10—C110.4 (3)
O3iii—Cu1—N2—C7147.30 (16)C8—C9—C10—C12176.54 (18)
C5—N1—C1—C20.7 (3)C7—N2—C11—C100.5 (3)
N1—C1—C2—C30.8 (4)Cu1—N2—C11—C10177.61 (15)
N1—C1—C2—Br1179.34 (18)C9—C10—C11—N20.7 (3)
C1—C2—C3—C40.1 (3)C12—C10—C11—N2176.43 (18)
Br1—C2—C3—C4179.72 (15)Cu1iv—O3—C12—O44.0 (3)
C2—C3—C4—C51.1 (3)Cu1iv—O3—C12—C10174.39 (12)
C2—C3—C4—C6178.03 (19)Cu1v—O4—C12—O33.7 (3)
C1—N1—C5—C40.3 (3)Cu1v—O4—C12—C10174.71 (12)
C3—C4—C5—N11.2 (3)C9—C10—C12—O31.3 (3)
C6—C4—C5—N1177.9 (2)C11—C10—C12—O3178.26 (18)
Cu1i—O2—C6—O10.2 (3)C9—C10—C12—O4177.28 (18)
Cu1i—O2—C6—C4179.81 (13)C11—C10—C12—O40.3 (3)
Cu1—O1—C6—O21.0 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+3/2, y1/2, z+1/2; (iii) x1/2, y+5/2, z1/2; (iv) x+1/2, y+5/2, z+1/2; (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C6H3BrNO2)4]
Mr931.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)11.1390 (12), 11.5866 (13), 12.6325 (14)
β (°) 115.432 (2)
V3)1472.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.93
Crystal size (mm)0.35 × 0.30 × 0.27
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.196, 0.256
No. of measured, independent and
observed [I > 2σ(I)] reflections
14281, 3571, 3218
Rint0.022
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.05
No. of reflections3571
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a grant from the National Science Foundation, CHE-0907787.

References

First citationAgterberg, F. P. W., Kluit, H. A. J. P., Driessen, W. L., Oevering, H., Buijs, W., Lakin, M. T., Spek, A. L. & Reedijk, J. (1997). Inorg. Chem. 36, 4321–4328.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoedens, R. J. (1976). Prog. Inorg. Chem. 21, 209–231.  CrossRef CAS Google Scholar
First citationGopalakrishnan, J. (1995). Chem. Mater. 7, 1265–1275.  CrossRef CAS Web of Science Google Scholar
First citationLu, J. L. (2003). Coord. Chem. Rev. 246, 327–347.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValentine, J. S., Silverstein, A. J. & Soos, Z. G. (1974). J. Am. Chem. Soc. 96, 97–103.  CrossRef CAS Web of Science Google Scholar
First citationYamanaka, M., Uekusa, H., Ohba, S., Saito, Y., Iwata, S., Kato, M., Tokii, T., Muto, Y. & Steward, O. W. (1991). Acta Cryst. B47, 344–355.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZubieta, J. (2004). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 697–709. Amsterdam: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds