organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,7-Dimeth­­oxy­naphthalen-1-yl)(3-nitro­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 13 October 2010; accepted 21 October 2010; online 30 October 2010)

The title compound, C19H15NO5, has an intra­molecular C—H⋯O=C hydrogen bond between a naphthalene H atom and the O atom of the carbonyl group. The inter­planar angle between the naphthalene ring system and the benzene ring is 69.59 (5)°. The dihedral angle between the bridging carbonyl C—C(=O)—C plane and the naphthalene ring system is 61.02 (6)°, which is far larger than that between the bridging carbonyl plane and the benzene ring [12.68 (7)°]. The nitro group is slightly out of the plane of the benzene ring [O—N—C—C torsion angle = 4.97 (17)°]. In the crystal, the packing is mainly stabilized by C—H⋯O inter­actions between an H atom of the benzene ring and an O atom of the nitro group.

Related literature

For the electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene giving aroylated naphthalene compounds, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Nishijima et al. (2010[Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904-o2905.]); Watanabe et al. (2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NO5

  • Mr = 337.32

  • Monoclinic, P 21 /n

  • a = 8.05658 (18) Å

  • b = 17.0634 (4) Å

  • c = 11.7660 (3) Å

  • β = 94.660 (1)°

  • V = 1612.15 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 193 K

  • 0.55 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.653, Tmax = 0.849

  • 29060 measured reflections

  • 2942 independent reflections

  • 2685 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.00

  • 2942 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.60 3.3150 (15) 132
C9—H9⋯O1 0.95 2.56 3.0935 (14) 116
C17—H17⋯O5i 0.95 2.37 3.2028 (15) 146
Symmetry code: (i) x-1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have been found to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). We have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalenes such as 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010). In these compounds, the aroyl groups are oriented in opposite directions. The benzene rings of the aroyl groups are largely out of the plane of the naphthalene ring. Moreover, the ketone carbonyl vectors are out of the planes of the benzene rings and also out of the plane of the naphthalene ring at the same time. The aromatic rings in this type of molecule are assembled with non-coplanar configuration resulting in partial disruption of π-conjugated ring systems. Furthermore, the crystal structures of 1-monoaroylated naphthalene compounds, i. e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008) and (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), also exhibit essentially the same non-coplanar conformation as the 1,8-diaroylated naphthalene compounds. As a part of our continuous studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of title compound, (I), 1-monoaroylnaphthalene with a nitro substituent, is discussed in this article.

An ORTEPIII (Burnett & Johnson, 1996) plot of title compound is displayed in Fig. 1. The interplanar angle between the benzene ring (C12–C17) and the naphthalene ring (C1–C10) is 69.59 (5)°. The bridging carbonyl plane [C1—C11(O1)—C12] makes dihedral angles with the naphthalene ring system and the benzene ring, viz., 61.02 (6)° [C10—C1—C11—O1 torsion angle = -59.97 (15)°] and 12.68 (7)° [O1—C1—C12—C13 torsion angle = -12.50 (17)°]. The interplanar angle and the dihedral angles are slightly larger than those of 1-(4-nitrobenzoyl)-2,7-dimethoxynaphthalene [Watanabe et al., 2010; interplanar angle = 61.97 (5)°, dihedral angles = 54.68 (6) and 12.54 (7)°]. On the other hand, both 1-monoaroylnaphthalene analogues with a nitro group have a relatively small dihedral angle between the benzene ring and naphthalene ring system compared to other 1-monoaroylnaphthalene homologues. This difference is presumably caused by the intramolecular C—H···OC interaction, which forms a six-membered ring including the carbonyl group and a naphthalene hydrogen atom (Fig. 1 and Table 1). Besides, the nitro group is slightly out of the plane of the benzene ring [O5—N1—C14—C13 torsion angle = 4.97 (17)°].

In the crystal, the molecular packing is stabilized by C—H···O interactions between a hydrogen atom on the benzene ring and a nitro oxygen atom (C17—H17···O5 = 2.37 Å; Fig. 2 and Table 1). Furthermore, the carbonyl group and the naphthalene ring are connected with a weak C—H···O interaction (C4—H4···O1 = 2.60 Å).

Related literature top

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kato et al. (2010); Mitsui et al. (2008); Muto et al. (2010); Nishijima et al. (2010); Watanabe et al. (2010).

Experimental top

To 50 ml flask, 3-nitrobenzoyl chloride (8.8 mmol, 1.63 g), aluminium chloride (9.7 mmol, 1.29 g) and methylene chloride (10 ml) were placed and stirred at 273 K. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (4 mmol, 0.75 g) in methylene chloride (10 ml) were added. After the reaction mixture was stirred at 273 K for 24 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by silica gel chromatography (CHCl3). Yellow platelet single crystals suitable for X-ray diffraction were obtained by crystallization from hexane and chloroform (45% yield).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 3.77 [3.766](3H, s), 3.77 [3.772] (3H, s), 6.87 (1H, d, J = 2 Hz), 7.06 (1H, dd, J = 2, 9 Hz), 7.20 (1H, d, J = 9 Hz), 7.64 (1H, t, J = 8 Hz), 7.76 (1H, d, J = 9 Hz), 7.94 (1H, d, J = 9 Hz), 8.17 (1H, ddd, J = 1, 2, 8 Hz), 7.92 (1H, ddd, J = 1, 2, 8 Hz), 8.65 (1H, dd, J = 1, 2 Hz) p.p.m..

13C NMR (75 MHz, CDCl3) δ 55.2, 56.1, 101.7, 109.8, 117.3, 119.7, 124.1, 124.5, 127.4, 129.6, 130.0, 132.3, 133.0, 134.9, 139.7, 148.5, 155.6, 159.3, 195.7 p.p.m..

IR (KBr): 1670, 1624, 1513, 1253 cm-1.

Anal. Calcd for C19H15NO5: C, 67.65%; H, 4.48%; Found: C, 67.79%; H, 4.58%.

Refinement top

All the H-atoms could be located in difference Fourier maps. The H atoms attached to carbon were introduced in calculated positions and treated as riding on their parent atoms with C—H = 0.98 Å (methyl) or 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have been found to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). We have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalenes such as 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010) and 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010). In these compounds, the aroyl groups are oriented in opposite directions. The benzene rings of the aroyl groups are largely out of the plane of the naphthalene ring. Moreover, the ketone carbonyl vectors are out of the planes of the benzene rings and also out of the plane of the naphthalene ring at the same time. The aromatic rings in this type of molecule are assembled with non-coplanar configuration resulting in partial disruption of π-conjugated ring systems. Furthermore, the crystal structures of 1-monoaroylated naphthalene compounds, i. e., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008) and (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), also exhibit essentially the same non-coplanar conformation as the 1,8-diaroylated naphthalene compounds. As a part of our continuous studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of title compound, (I), 1-monoaroylnaphthalene with a nitro substituent, is discussed in this article.

An ORTEPIII (Burnett & Johnson, 1996) plot of title compound is displayed in Fig. 1. The interplanar angle between the benzene ring (C12–C17) and the naphthalene ring (C1–C10) is 69.59 (5)°. The bridging carbonyl plane [C1—C11(O1)—C12] makes dihedral angles with the naphthalene ring system and the benzene ring, viz., 61.02 (6)° [C10—C1—C11—O1 torsion angle = -59.97 (15)°] and 12.68 (7)° [O1—C1—C12—C13 torsion angle = -12.50 (17)°]. The interplanar angle and the dihedral angles are slightly larger than those of 1-(4-nitrobenzoyl)-2,7-dimethoxynaphthalene [Watanabe et al., 2010; interplanar angle = 61.97 (5)°, dihedral angles = 54.68 (6) and 12.54 (7)°]. On the other hand, both 1-monoaroylnaphthalene analogues with a nitro group have a relatively small dihedral angle between the benzene ring and naphthalene ring system compared to other 1-monoaroylnaphthalene homologues. This difference is presumably caused by the intramolecular C—H···OC interaction, which forms a six-membered ring including the carbonyl group and a naphthalene hydrogen atom (Fig. 1 and Table 1). Besides, the nitro group is slightly out of the plane of the benzene ring [O5—N1—C14—C13 torsion angle = 4.97 (17)°].

In the crystal, the molecular packing is stabilized by C—H···O interactions between a hydrogen atom on the benzene ring and a nitro oxygen atom (C17—H17···O5 = 2.37 Å; Fig. 2 and Table 1). Furthermore, the carbonyl group and the naphthalene ring are connected with a weak C—H···O interaction (C4—H4···O1 = 2.60 Å).

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kato et al. (2010); Mitsui et al. (2008); Muto et al. (2010); Nishijima et al. (2010); Watanabe et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I), showing 50% probability displacement ellipsoids. The dashed line indicates an intramolecular C—H···O hydrogen bond.
[Figure 2] Fig. 2. A partial crystal packing diagram of compound (I), viewed down the b axis. The intra- and intermolecular C—H···O hydrogen bonds are shown as dashed lines.
(2,7-Dimethoxynaphthalen-1-yl)(3-nitrophenyl)methanone top
Crystal data top
C19H15NO5F(000) = 704
Mr = 337.32Dx = 1.390 Mg m3
Monoclinic, P21/nMelting point = 418.8–419.1 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54187 Å
a = 8.05658 (18) ÅCell parameters from 23523 reflections
b = 17.0634 (4) Åθ = 3.8–68.2°
c = 11.7660 (3) ŵ = 0.85 mm1
β = 94.660 (1)°T = 193 K
V = 1612.15 (6) Å3Block, yellow
Z = 40.55 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2942 independent reflections
Radiation source: rotating anode2685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.6°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2020
Tmin = 0.653, Tmax = 0.849l = 1414
29060 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.4684P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2942 reflectionsΔρmax = 0.19 e Å3
229 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (4)
Crystal data top
C19H15NO5V = 1612.15 (6) Å3
Mr = 337.32Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.05658 (18) ŵ = 0.85 mm1
b = 17.0634 (4) ÅT = 193 K
c = 11.7660 (3) Å0.55 × 0.20 × 0.20 mm
β = 94.660 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2942 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2685 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 0.849Rint = 0.022
29060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2942 reflectionsΔρmin = 0.14 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27637 (10)0.43017 (5)0.69042 (8)0.0421 (2)
O20.00689 (11)0.59531 (5)0.62855 (8)0.0451 (3)
O30.04611 (11)0.18744 (5)0.79381 (8)0.0432 (2)
O40.64787 (14)0.65633 (7)1.04665 (10)0.0638 (3)
O50.71205 (11)0.57358 (6)0.91928 (9)0.0526 (3)
N10.61035 (14)0.60860 (6)0.97139 (10)0.0416 (3)
C10.00844 (14)0.46560 (7)0.68859 (9)0.0309 (3)
C20.08844 (15)0.52991 (7)0.63812 (10)0.0343 (3)
C30.25834 (16)0.52651 (8)0.59896 (10)0.0377 (3)
H30.31270.57130.56550.045*
C40.34356 (15)0.45847 (8)0.60951 (10)0.0371 (3)
H40.45860.45680.58430.044*
C50.26677 (14)0.39048 (7)0.65650 (9)0.0328 (3)
C60.35374 (15)0.31846 (8)0.66192 (10)0.0372 (3)
H60.46790.31610.63470.045*
C70.27714 (16)0.25281 (8)0.70512 (10)0.0386 (3)
H70.33640.20470.70610.046*
C80.10780 (15)0.25655 (7)0.74891 (10)0.0342 (3)
C90.01892 (14)0.32474 (7)0.74566 (9)0.0318 (3)
H90.09420.32620.77550.038*
C100.09579 (14)0.39342 (7)0.69773 (9)0.0298 (3)
C110.17233 (14)0.47124 (7)0.73012 (9)0.0307 (3)
C120.22134 (14)0.52681 (7)0.82550 (9)0.0298 (3)
C130.38964 (14)0.54220 (7)0.85296 (10)0.0311 (3)
H130.47250.51900.81080.037*
C140.43276 (15)0.59185 (7)0.94285 (10)0.0341 (3)
C150.31664 (17)0.62608 (8)1.00789 (11)0.0425 (3)
H150.35050.65971.06990.051*
C160.15028 (17)0.61002 (8)0.98007 (11)0.0444 (3)
H160.06810.63271.02340.053*
C170.10273 (15)0.56103 (8)0.88928 (10)0.0368 (3)
H170.01210.55070.87040.044*
C180.05995 (17)0.65802 (8)0.55877 (11)0.0412 (3)
H18A0.02660.69750.55070.049*
H18B0.15350.68190.59430.049*
H18C0.09880.63770.48340.049*
C190.12202 (18)0.18734 (8)0.84244 (12)0.0461 (3)
H19A0.14980.13540.87400.055*
H19B0.13490.22660.90330.055*
H19C0.19680.20000.78340.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0304 (5)0.0488 (5)0.0476 (5)0.0002 (4)0.0063 (4)0.0138 (4)
O20.0411 (5)0.0371 (5)0.0550 (6)0.0072 (4)0.0099 (4)0.0087 (4)
O30.0441 (5)0.0346 (5)0.0504 (5)0.0017 (4)0.0003 (4)0.0029 (4)
O40.0542 (7)0.0562 (6)0.0767 (7)0.0120 (5)0.0224 (6)0.0144 (6)
O50.0293 (5)0.0639 (7)0.0639 (6)0.0023 (4)0.0007 (4)0.0040 (5)
N10.0356 (6)0.0387 (6)0.0484 (6)0.0068 (5)0.0087 (5)0.0058 (5)
C10.0280 (6)0.0360 (6)0.0287 (5)0.0012 (5)0.0016 (4)0.0036 (5)
C20.0340 (6)0.0349 (6)0.0338 (6)0.0023 (5)0.0002 (5)0.0021 (5)
C30.0346 (7)0.0406 (7)0.0370 (6)0.0039 (5)0.0038 (5)0.0010 (5)
C40.0272 (6)0.0481 (7)0.0351 (6)0.0002 (5)0.0023 (5)0.0016 (5)
C50.0288 (6)0.0421 (7)0.0275 (6)0.0024 (5)0.0024 (4)0.0034 (5)
C60.0287 (6)0.0476 (7)0.0350 (6)0.0078 (5)0.0004 (5)0.0025 (5)
C70.0391 (7)0.0401 (7)0.0369 (6)0.0109 (5)0.0048 (5)0.0031 (5)
C80.0378 (6)0.0348 (6)0.0302 (6)0.0010 (5)0.0049 (5)0.0021 (5)
C90.0277 (6)0.0387 (6)0.0289 (5)0.0000 (5)0.0019 (4)0.0030 (5)
C100.0280 (6)0.0365 (6)0.0252 (5)0.0016 (5)0.0033 (4)0.0039 (4)
C110.0280 (6)0.0334 (6)0.0310 (6)0.0014 (5)0.0042 (5)0.0014 (5)
C120.0271 (6)0.0324 (6)0.0300 (6)0.0009 (4)0.0018 (4)0.0017 (4)
C130.0283 (6)0.0324 (6)0.0326 (6)0.0014 (5)0.0029 (5)0.0033 (5)
C140.0305 (6)0.0338 (6)0.0368 (6)0.0036 (5)0.0042 (5)0.0042 (5)
C150.0461 (8)0.0417 (7)0.0386 (7)0.0012 (6)0.0023 (6)0.0089 (5)
C160.0395 (7)0.0521 (8)0.0422 (7)0.0048 (6)0.0075 (6)0.0115 (6)
C170.0273 (6)0.0455 (7)0.0377 (6)0.0006 (5)0.0030 (5)0.0034 (5)
C180.0481 (8)0.0356 (6)0.0396 (7)0.0013 (6)0.0021 (6)0.0020 (5)
C190.0496 (8)0.0389 (7)0.0482 (8)0.0051 (6)0.0053 (6)0.0003 (6)
Geometric parameters (Å, º) top
O1—C111.2147 (14)C7—H70.9500
O2—C21.3646 (15)C8—C91.3685 (17)
O2—C181.4273 (15)C9—C101.4206 (17)
O3—C81.3689 (15)C9—H90.9500
O3—C191.4270 (16)C11—C121.4974 (16)
O4—N11.2229 (15)C12—C171.3906 (16)
O5—N11.2189 (15)C12—C131.3931 (16)
N1—C141.4709 (16)C13—C141.3774 (17)
C1—C21.3821 (17)C13—H130.9500
C1—C101.4269 (16)C14—C151.3851 (18)
C1—C111.5012 (16)C15—C161.3810 (19)
C2—C31.4096 (17)C15—H150.9500
C3—C41.3596 (18)C16—C171.3858 (18)
C3—H30.9500C16—H160.9500
C4—C51.4067 (18)C17—H170.9500
C4—H40.9500C18—H18A0.9800
C5—C61.4187 (17)C18—H18B0.9800
C5—C101.4236 (16)C18—H18C0.9800
C6—C71.3576 (18)C19—H19A0.9800
C6—H60.9500C19—H19B0.9800
C7—C81.4201 (18)C19—H19C0.9800
C2—O2—C18118.16 (10)C5—C10—C1118.31 (11)
C8—O3—C19117.31 (10)O1—C11—C12120.36 (10)
O5—N1—O4123.64 (11)O1—C11—C1121.29 (10)
O5—N1—C14118.11 (11)C12—C11—C1118.31 (10)
O4—N1—C14118.25 (12)C17—C12—C13119.62 (11)
C2—C1—C10120.14 (11)C17—C12—C11121.29 (10)
C2—C1—C11119.68 (10)C13—C12—C11119.05 (10)
C10—C1—C11120.15 (10)C14—C13—C12118.30 (11)
O2—C2—C1116.03 (10)C14—C13—H13120.9
O2—C2—C3123.01 (11)C12—C13—H13120.9
C1—C2—C3120.96 (11)C13—C14—C15122.96 (11)
C4—C3—C2119.31 (12)C13—C14—N1118.34 (11)
C4—C3—H3120.3C15—C14—N1118.69 (11)
C2—C3—H3120.3C16—C15—C14118.13 (11)
C3—C4—C5122.06 (11)C16—C15—H15120.9
C3—C4—H4119.0C14—C15—H15120.9
C5—C4—H4119.0C15—C16—C17120.31 (12)
C4—C5—C6121.94 (11)C15—C16—H16119.8
C4—C5—C10119.17 (11)C17—C16—H16119.8
C6—C5—C10118.88 (11)C16—C17—C12120.68 (11)
C7—C6—C5121.36 (11)C16—C17—H17119.7
C7—C6—H6119.3C12—C17—H17119.7
C5—C6—H6119.3O2—C18—H18A109.5
C6—C7—C8119.53 (11)O2—C18—H18B109.5
C6—C7—H7120.2H18A—C18—H18B109.5
C8—C7—H7120.2O2—C18—H18C109.5
C9—C8—O3124.67 (11)H18A—C18—H18C109.5
C9—C8—C7121.17 (11)H18B—C18—H18C109.5
O3—C8—C7114.16 (11)O3—C19—H19A109.5
C8—C9—C10120.02 (11)O3—C19—H19B109.5
C8—C9—H9120.0H19A—C19—H19B109.5
C10—C9—H9120.0O3—C19—H19C109.5
C9—C10—C5119.00 (11)H19A—C19—H19C109.5
C9—C10—C1122.69 (10)H19B—C19—H19C109.5
C18—O2—C2—C1168.50 (11)C2—C1—C10—C9178.10 (11)
C18—O2—C2—C311.15 (17)C11—C1—C10—C90.20 (16)
C10—C1—C2—O2177.16 (10)C2—C1—C10—C51.63 (16)
C11—C1—C2—O20.74 (16)C11—C1—C10—C5179.53 (10)
C10—C1—C2—C32.49 (18)C2—C1—C11—O1117.94 (13)
C11—C1—C2—C3179.60 (10)C10—C1—C11—O159.96 (15)
O2—C2—C3—C4178.56 (11)C2—C1—C11—C1264.42 (14)
C1—C2—C3—C41.07 (18)C10—C1—C11—C12117.67 (12)
C2—C3—C4—C51.23 (19)O1—C11—C12—C17165.28 (11)
C3—C4—C5—C6176.62 (11)C1—C11—C12—C1712.37 (16)
C3—C4—C5—C102.03 (18)O1—C11—C12—C1312.50 (17)
C4—C5—C6—C7178.48 (11)C1—C11—C12—C13169.84 (10)
C10—C5—C6—C70.17 (18)C17—C12—C13—C140.50 (17)
C5—C6—C7—C81.83 (18)C11—C12—C13—C14178.32 (10)
C19—O3—C8—C91.23 (17)C12—C13—C14—C150.96 (18)
C19—O3—C8—C7178.24 (11)C12—C13—C14—N1179.56 (10)
C6—C7—C8—C91.73 (18)O5—N1—C14—C134.97 (17)
C6—C7—C8—O3177.76 (11)O4—N1—C14—C13175.63 (11)
O3—C8—C9—C10179.52 (10)O5—N1—C14—C15174.53 (12)
C7—C8—C9—C100.09 (17)O4—N1—C14—C154.87 (17)
C8—C9—C10—C51.75 (16)C13—C14—C15—C160.7 (2)
C8—C9—C10—C1177.99 (10)N1—C14—C15—C16179.87 (12)
C4—C5—C10—C9179.68 (10)C14—C15—C16—C170.1 (2)
C6—C5—C10—C91.63 (16)C15—C16—C17—C120.5 (2)
C4—C5—C10—C10.57 (16)C13—C12—C17—C160.24 (19)
C6—C5—C10—C1178.12 (10)C11—C12—C17—C16177.54 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.603.3150 (15)132
C9—H9···O10.952.563.0935 (14)116
C17—H17···O5i0.952.373.2028 (15)146
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H15NO5
Mr337.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)8.05658 (18), 17.0634 (4), 11.7660 (3)
β (°) 94.660 (1)
V3)1612.15 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.85
Crystal size (mm)0.55 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.653, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
29060, 2942, 2685
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.00
No. of reflections2942
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.603.3150 (15)132
C9—H9···O10.952.563.0935 (14)116
C17—H17···O5i0.952.373.2028 (15)146
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Sasakawa Scientific Research Grant from The Japan Science Society.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904-o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds