organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2′-Bis[4-(di­methyl­amino)­benzyl­­idene]pyridine-2,6-dicarbohydrazide monohydrate

aDepartment of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: yongwang@lcu.edu.cn

(Received 27 August 2010; accepted 28 September 2010; online 2 October 2010)

In the title compound, C25H27N7O2·H2O, the bis­[4-(dimethyl­amino)­benzyl­idene]pyridine-2,6-dicarbohydrazide mol­ecule and the water mol­ecule are located on a twofold rotation axis. The benzene and pyridine rings form a dihedral angle of 17.13 (7)°. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional supermolecular structure parallel to the ab plane.

Related literature

For related structures, see: Cheng et al. (2007[Cheng, C.-X., Liu, H.-W., Luo, F.-H., Cao, M.-N. & Hu, Z.-Q. (2007). Acta Cryst. E63, o2899.]); Cheng & Liu (2008[Cheng, C. & Liu, H. (2008). Acta Cryst. E64, o155.]); Jia, Hu et al. (2006[Jia, B., Hu, Z.-Q., Deng, X.-T., Cheng, C.-X. & Shi, S.-M. (2006). Acta Cryst. E62, o4902-o4903.]); Jia, Shi et al. (2006[Jia, B., Shi, S., Luo, F. & Hu, Z. (2006). Acta Cryst. E62, o3326-o3327.]).

[Scheme 1]

Experimental

Crystal data
  • C25H27N7O2·H2O

  • Mr = 475.54

  • Monoclinic, C 2/c

  • a = 8.5718 (11) Å

  • b = 10.2802 (14) Å

  • c = 27.112 (3) Å

  • β = 97.865 (1)°

  • V = 2366.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.36 × 0.31 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.986

  • 5774 measured reflections

  • 2076 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.204

  • S = 1.05

  • 2076 reflections

  • 163 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.23 2.967 (4) 143
O2—H2⋯O1ii 0.85 (3) 2.04 (4) 2.844 (3) 157 (3)
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base ligands containing the pyridine ring have received considerable attention during the last decades, mainly because their coordinative and electronic properties. For this reason, much effort has been devoted to develop efficient routes for the synthesis of these classes of compounds. In this paper, we report the crystal structure of the title compound, obtained by the reaction of pyridine-2,6-dicarbohydrazide and 4-(dimethylamino)benzaldehyde.

In the title compound (Fig. 1), the bis(4-(dimethylamino)benzylidene)pyridine-2,6-dicarbohydrazide molecule and the water molecule possess crystallographic imposed twofold rotation symmetry. Bond lengths and angles are normal and correspond to those observed in related compounds (Cheng et al., 2007; Cheng & Liu, 2008; Jia, Hu et al., 2006; Jia, Shi et al., 2006). The dihedral angle formed by the benzene ring and the pyridine ring is 17.13 (7)°. In the crystal packing, a two-dimensional supermolecular structure parallel to the ab plane is formed by N—H···O and O—H···O intermolecular contacts (Table 1).

Related literature top

For related structures, see: Cheng et al. (2007); Cheng & Liu (2008); Jia, Hu et al. (2006); Jia, Shi et al. (2006).

Experimental top

To a solution of pyridine-2,6-dicarbohydrazide (3 mmol) in ethanol (30 ml) was added 4-(dimethylamino)benzaldehyde (6 mmol). The mixture was refluxed with stirring for 8 h. An red precipitate was then obtained. Red crystals suitable for X-ray diffraction analysis formed after several weeks on slow evaporation of an ethanol solution at room temperature. Elemental analysis: calculated for C25H29N7O3: C 63.14, H 6.15, N 20.62%; found: C 63.28, H 6.22, N 20.49%.

Refinement top

The independent water H atom was located in a difference Fourier map and refined with the O—H bond constrained to 0.85 Å and Uiso(H) = 1.2 Ueq(O). All other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å, N—H =0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms

Structure description top

Schiff base ligands containing the pyridine ring have received considerable attention during the last decades, mainly because their coordinative and electronic properties. For this reason, much effort has been devoted to develop efficient routes for the synthesis of these classes of compounds. In this paper, we report the crystal structure of the title compound, obtained by the reaction of pyridine-2,6-dicarbohydrazide and 4-(dimethylamino)benzaldehyde.

In the title compound (Fig. 1), the bis(4-(dimethylamino)benzylidene)pyridine-2,6-dicarbohydrazide molecule and the water molecule possess crystallographic imposed twofold rotation symmetry. Bond lengths and angles are normal and correspond to those observed in related compounds (Cheng et al., 2007; Cheng & Liu, 2008; Jia, Hu et al., 2006; Jia, Shi et al., 2006). The dihedral angle formed by the benzene ring and the pyridine ring is 17.13 (7)°. In the crystal packing, a two-dimensional supermolecular structure parallel to the ab plane is formed by N—H···O and O—H···O intermolecular contacts (Table 1).

For related structures, see: Cheng et al. (2007); Cheng & Liu (2008); Jia, Hu et al. (2006); Jia, Shi et al. (2006).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme and 30% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by (-x, y, 0.5-z).
N2,N2'-Bis[4-(dimethylamino)benzylidene]pyridine-2,6- dicarbohydrazide monohydrate top
Crystal data top
C25H27N7O2·H2OF(000) = 1008
Mr = 475.54Dx = 1.332 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1533 reflections
a = 8.5718 (11) Åθ = 3.0–24.4°
b = 10.2802 (14) ŵ = 0.09 mm1
c = 27.112 (3) ÅT = 298 K
β = 97.865 (1)°Block, red
V = 2366.7 (5) Å30.36 × 0.31 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2076 independent reflections
Radiation source: fine-focus sealed tube1348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.968, Tmax = 0.986k = 1212
5774 measured reflectionsl = 3217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1275P)2]
where P = (Fo2 + 2Fc2)/3
2076 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.59 e Å3
Crystal data top
C25H27N7O2·H2OV = 2366.7 (5) Å3
Mr = 475.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.5718 (11) ŵ = 0.09 mm1
b = 10.2802 (14) ÅT = 298 K
c = 27.112 (3) Å0.36 × 0.31 × 0.16 mm
β = 97.865 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2076 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1348 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.986Rint = 0.039
5774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
2076 reflectionsΔρmin = 0.59 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.00000.0318 (3)0.25000.0419 (8)
N20.1517 (3)0.1645 (2)0.18533 (9)0.0456 (6)
H2A0.07210.19380.19810.068*
N30.2319 (3)0.2465 (2)0.15743 (8)0.0448 (7)
N40.4368 (3)0.7693 (2)0.05148 (10)0.0556 (7)
O10.3055 (3)0.0104 (2)0.17635 (9)0.0669 (7)
O21.00000.3442 (4)0.25000.0927 (13)
H20.934 (4)0.398 (3)0.2352 (16)0.111*
C10.1949 (3)0.0402 (3)0.19306 (10)0.0445 (7)
C20.0935 (3)0.0351 (3)0.22381 (10)0.0411 (7)
C30.0976 (3)0.1702 (3)0.22298 (11)0.0488 (8)
H30.16500.21410.20460.059*
C40.00000.2371 (4)0.25000.0535 (11)
H40.00000.32760.25000.064*
C50.1730 (3)0.3604 (3)0.15200 (10)0.0462 (7)
H50.08170.37860.16570.055*
C60.2429 (3)0.4630 (3)0.12527 (10)0.0424 (7)
C70.3772 (3)0.4455 (3)0.10227 (11)0.0452 (7)
H70.42550.36430.10350.054*
C80.4387 (3)0.5447 (3)0.07816 (11)0.0474 (8)
H80.52760.52920.06280.057*
C90.3728 (3)0.6699 (3)0.07561 (10)0.0420 (7)
C100.2390 (3)0.6870 (3)0.09890 (11)0.0494 (8)
H100.19170.76850.09820.059*
C110.1755 (3)0.5864 (3)0.12276 (11)0.0489 (8)
H110.08540.60100.13760.059*
C120.5716 (4)0.7484 (3)0.02620 (13)0.0685 (10)
H12A0.65670.71410.04920.103*
H12B0.60310.82950.01300.103*
H12C0.54500.68770.00050.103*
C130.3639 (4)0.8964 (3)0.04783 (13)0.0639 (9)
H13A0.26690.89230.02550.096*
H13B0.43350.95760.03540.096*
H13C0.34300.92350.08020.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0486 (18)0.0423 (18)0.0350 (17)0.0000.0068 (15)0.000
N20.0534 (14)0.0424 (14)0.0433 (13)0.0004 (11)0.0155 (11)0.0021 (11)
N30.0518 (14)0.0457 (15)0.0376 (13)0.0025 (11)0.0082 (11)0.0021 (11)
N40.0561 (15)0.0533 (16)0.0613 (16)0.0005 (12)0.0220 (13)0.0100 (13)
O10.0674 (14)0.0616 (14)0.0780 (16)0.0146 (11)0.0330 (13)0.0048 (12)
O20.100 (3)0.081 (3)0.101 (3)0.0000.030 (3)0.000
C10.0497 (16)0.0449 (17)0.0392 (16)0.0056 (13)0.0068 (13)0.0040 (12)
C20.0472 (15)0.0377 (15)0.0370 (15)0.0009 (12)0.0013 (13)0.0015 (12)
C30.0497 (17)0.0461 (17)0.0495 (17)0.0057 (14)0.0031 (14)0.0055 (14)
C40.055 (3)0.036 (2)0.066 (3)0.0000.005 (2)0.000
C50.0480 (16)0.0520 (18)0.0400 (15)0.0003 (14)0.0107 (13)0.0012 (13)
C60.0466 (15)0.0469 (16)0.0341 (14)0.0018 (13)0.0072 (12)0.0000 (12)
C70.0443 (15)0.0449 (16)0.0472 (16)0.0026 (13)0.0091 (13)0.0015 (13)
C80.0422 (15)0.0556 (18)0.0472 (17)0.0008 (13)0.0162 (13)0.0020 (14)
C90.0415 (15)0.0484 (17)0.0369 (15)0.0024 (13)0.0080 (12)0.0008 (13)
C100.0512 (17)0.0456 (17)0.0533 (18)0.0064 (14)0.0134 (14)0.0008 (14)
C110.0503 (16)0.0510 (18)0.0496 (17)0.0024 (14)0.0220 (14)0.0010 (14)
C120.069 (2)0.072 (2)0.071 (2)0.0130 (17)0.0331 (19)0.0018 (18)
C130.073 (2)0.057 (2)0.065 (2)0.0058 (17)0.0188 (18)0.0117 (17)
Geometric parameters (Å, º) top
N1—C21.333 (3)C5—H50.9300
N1—C2i1.333 (3)C6—C111.392 (4)
N2—C11.339 (3)C6—C71.394 (4)
N2—N31.378 (3)C7—C81.356 (4)
N2—H2A0.8600C7—H70.9300
N3—C51.276 (3)C8—C91.404 (4)
N4—C91.368 (3)C8—H80.9300
N4—C121.438 (4)C9—C101.394 (4)
N4—C131.446 (4)C10—C111.371 (4)
O1—C11.222 (3)C10—H100.9300
O2—H20.85 (3)C11—H110.9300
C1—C21.499 (4)C12—H12A0.9600
C2—C31.390 (4)C12—H12B0.9600
C3—C41.370 (3)C12—H12C0.9600
C3—H30.9300C13—H13A0.9600
C4—C3i1.370 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.455 (4)
C2—N1—C2i117.8 (3)C8—C7—H7119.4
C1—N2—N3121.5 (2)C6—C7—H7119.4
C1—N2—H2A119.3C7—C8—C9122.2 (3)
N3—N2—H2A119.3C7—C8—H8118.9
C5—N3—N2114.0 (2)C9—C8—H8118.9
C9—N4—C12121.2 (3)N4—C9—C10122.1 (3)
C9—N4—C13120.6 (2)N4—C9—C8121.5 (2)
C12—N4—C13118.0 (2)C10—C9—C8116.3 (2)
O1—C1—N2124.1 (3)C11—C10—C9121.6 (3)
O1—C1—C2121.7 (3)C11—C10—H10119.2
N2—C1—C2114.3 (2)C9—C10—H10119.2
N1—C2—C3122.9 (3)C10—C11—C6121.4 (3)
N1—C2—C1117.8 (2)C10—C11—H11119.3
C3—C2—C1119.3 (2)C6—C11—H11119.3
C4—C3—C2118.3 (3)N4—C12—H12A109.5
C4—C3—H3120.8N4—C12—H12B109.5
C2—C3—H3120.8H12A—C12—H12B109.5
C3—C4—C3i119.8 (4)N4—C12—H12C109.5
C3—C4—H4120.1H12A—C12—H12C109.5
C3i—C4—H4120.1H12B—C12—H12C109.5
N3—C5—C6122.7 (3)N4—C13—H13A109.5
N3—C5—H5118.7N4—C13—H13B109.5
C6—C5—H5118.7H13A—C13—H13B109.5
C11—C6—C7117.3 (2)N4—C13—H13C109.5
C11—C6—C5119.2 (2)H13A—C13—H13C109.5
C7—C6—C5123.4 (3)H13B—C13—H13C109.5
C8—C7—C6121.2 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2ii0.862.232.967 (4)143
O2—H2···O1iii0.85 (3)2.04 (4)2.844 (3)157 (3)
Symmetry codes: (ii) x1, y, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC25H27N7O2·H2O
Mr475.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)8.5718 (11), 10.2802 (14), 27.112 (3)
β (°) 97.865 (1)
V3)2366.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.31 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5774, 2076, 1348
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.204, 1.05
No. of reflections2076
No. of parameters163
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.59

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.232.967 (4)143
O2—H2···O1ii0.85 (3)2.04 (4)2.844 (3)157 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the financial support of the University Student Science and Technology Culture Foundation of Liaocheng University (No. SRT10057HX2).

References

First citationCheng, C. & Liu, H. (2008). Acta Cryst. E64, o155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCheng, C.-X., Liu, H.-W., Luo, F.-H., Cao, M.-N. & Hu, Z.-Q. (2007). Acta Cryst. E63, o2899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, B., Hu, Z.-Q., Deng, X.-T., Cheng, C.-X. & Shi, S.-M. (2006). Acta Cryst. E62, o4902–o4903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, B., Shi, S., Luo, F. & Hu, Z. (2006). Acta Cryst. E62, o3326–o3327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds