organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N′-(4-nitro­benzyl­­idene)benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: tangchunbao@yahoo.com.cn

(Received 21 September 2010; accepted 29 September 2010; online 2 October 2010)

The title hydrazone compound, C15H13N3O3, was prepared by the condensation of 4-nitro­benzaldehyde with 2-methyl­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 14.8 (2)°. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a similar hydrazone compound reported recently by the author, see: Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O3

  • Mr = 283.28

  • Monoclinic, P 21 /n

  • a = 7.416 (1) Å

  • b = 26.198 (3) Å

  • c = 7.860 (2) Å

  • β = 114.206 (1)°

  • V = 1392.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.983

  • 7336 measured reflections

  • 2941 independent reflections

  • 1696 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.140

  • S = 1.01

  • 2941 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.90 (1) 1.99 (1) 2.870 (2) 167 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological chemistry and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the title new hydrazone compound (Fig. 1).

In the title molecule, the dihedral angle between the two benzene rings is 14.8 (2)°. The torsion angles C4—C7—N2—N3, C7—N2—N3—C8 and N2—N3—C8—C9 are 3.9 (2), 13.8 (2), and 1.5 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987) and comparable with those of a similar hydrazone compound the author reported recently (Tang, 2010).

In the crystal structure of the compound, molecules are linked through N–H···O intermolecular hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010); Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010). For bond-length data, see: Allen et al. (1987). For a similar hydrazone compound reported recently by the author, see: Tang (2010).

Experimental top

4-Nitrobenzaldehyde (0.1 mmol, 15.1 mg) and 3-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow block-shaped crystals of the title compound were formed by slow evaporation of the solvent over several days.

Refinement top

Atom H3 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries, with C–H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

Hydrazone compounds have received much attention in biological chemistry and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the title new hydrazone compound (Fig. 1).

In the title molecule, the dihedral angle between the two benzene rings is 14.8 (2)°. The torsion angles C4—C7—N2—N3, C7—N2—N3—C8 and N2—N3—C8—C9 are 3.9 (2), 13.8 (2), and 1.5 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987) and comparable with those of a similar hydrazone compound the author reported recently (Tang, 2010).

In the crystal structure of the compound, molecules are linked through N–H···O intermolecular hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010); Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010). For bond-length data, see: Allen et al. (1987). For a similar hydrazone compound reported recently by the author, see: Tang (2010).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed along the c axis, with hydrogen bonds shown as dashed lines.
2-Methyl-N'-(4-nitrobenzylidene)benzohydrazide top
Crystal data top
C15H13N3O3F(000) = 592
Mr = 283.28Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 996 reflections
a = 7.416 (1) Åθ = 2.7–24.5°
b = 26.198 (3) ŵ = 0.10 mm1
c = 7.860 (2) ÅT = 298 K
β = 114.206 (1)°Block, yellow
V = 1392.8 (4) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2941 independent reflections
Radiation source: fine-focus sealed tube1696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 69
Tmin = 0.981, Tmax = 0.983k = 2833
7336 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.3174P]
where P = (Fo2 + 2Fc2)/3
2941 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C15H13N3O3V = 1392.8 (4) Å3
Mr = 283.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.416 (1) ŵ = 0.10 mm1
b = 26.198 (3) ÅT = 298 K
c = 7.860 (2) Å0.20 × 0.18 × 0.18 mm
β = 114.206 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2941 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1696 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.046
7336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
2941 reflectionsΔρmin = 0.23 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2497 (4)0.47404 (10)0.4463 (3)0.0669 (7)
N20.2408 (3)0.28740 (7)0.0842 (2)0.0433 (5)
N30.2780 (3)0.25697 (8)0.2388 (3)0.0448 (5)
O10.2312 (4)0.45771 (9)0.5969 (3)0.0985 (8)
O20.2575 (5)0.51917 (9)0.4093 (3)0.1195 (10)
O30.0631 (2)0.19571 (6)0.0688 (2)0.0510 (5)
C10.2623 (3)0.43743 (9)0.3004 (3)0.0456 (6)
C20.2438 (3)0.38615 (9)0.3415 (3)0.0470 (6)
H20.22370.37470.45990.056*
C30.2557 (3)0.35214 (9)0.2037 (3)0.0440 (6)
H3A0.24200.31740.23010.053*
C40.2877 (3)0.36894 (8)0.0257 (3)0.0380 (5)
C50.3081 (4)0.42089 (9)0.0113 (3)0.0504 (6)
H50.33160.43260.13020.060*
C60.2938 (4)0.45538 (9)0.1266 (3)0.0527 (7)
H60.30550.49020.10190.063*
C70.3044 (3)0.33305 (9)0.1220 (3)0.0431 (6)
H70.36250.34360.24580.052*
C80.1838 (3)0.21176 (9)0.2194 (3)0.0383 (5)
C90.2356 (3)0.18386 (9)0.3991 (3)0.0382 (5)
C100.2726 (3)0.13129 (9)0.4118 (3)0.0440 (6)
C110.3170 (4)0.10849 (11)0.5841 (4)0.0620 (8)
H110.34660.07380.59810.074*
C120.3184 (4)0.13555 (13)0.7343 (4)0.0689 (9)
H120.34600.11880.84660.083*
C130.2796 (4)0.18702 (12)0.7209 (3)0.0620 (8)
H130.28010.20520.82260.074*
C140.2399 (4)0.21091 (10)0.5539 (3)0.0489 (6)
H140.21550.24580.54370.059*
C150.2671 (4)0.09958 (10)0.2502 (4)0.0589 (7)
H15A0.13330.09700.15850.088*
H15B0.31720.06600.29350.088*
H15C0.34740.11540.19540.088*
H30.373 (3)0.2669 (10)0.349 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0865 (18)0.0589 (17)0.0603 (16)0.0004 (13)0.0353 (14)0.0137 (13)
N20.0457 (12)0.0447 (12)0.0331 (10)0.0031 (9)0.0098 (9)0.0067 (9)
N30.0462 (13)0.0476 (12)0.0294 (10)0.0062 (10)0.0041 (9)0.0065 (9)
O10.158 (2)0.0905 (17)0.0585 (14)0.0072 (15)0.0554 (15)0.0135 (12)
O20.222 (3)0.0534 (15)0.1011 (19)0.0010 (17)0.084 (2)0.0192 (14)
O30.0561 (11)0.0503 (10)0.0322 (9)0.0084 (8)0.0035 (8)0.0006 (8)
C10.0468 (15)0.0457 (15)0.0461 (14)0.0031 (12)0.0209 (12)0.0088 (12)
C20.0510 (16)0.0525 (16)0.0385 (13)0.0020 (12)0.0193 (12)0.0007 (12)
C30.0493 (15)0.0384 (13)0.0427 (14)0.0021 (11)0.0172 (12)0.0015 (11)
C40.0350 (13)0.0400 (14)0.0365 (13)0.0002 (10)0.0121 (11)0.0020 (10)
C50.0614 (17)0.0467 (16)0.0421 (14)0.0016 (12)0.0204 (13)0.0029 (12)
C60.0657 (18)0.0376 (14)0.0555 (16)0.0021 (12)0.0255 (14)0.0009 (12)
C70.0437 (14)0.0463 (15)0.0343 (13)0.0003 (11)0.0109 (11)0.0007 (11)
C80.0382 (13)0.0418 (14)0.0309 (12)0.0019 (11)0.0101 (11)0.0012 (10)
C90.0310 (12)0.0467 (15)0.0322 (12)0.0024 (10)0.0081 (10)0.0031 (10)
C100.0331 (13)0.0458 (15)0.0479 (14)0.0018 (11)0.0113 (11)0.0043 (11)
C110.0518 (17)0.0580 (17)0.0681 (19)0.0012 (14)0.0162 (15)0.0195 (15)
C120.0616 (19)0.090 (2)0.0449 (16)0.0146 (17)0.0116 (14)0.0229 (16)
C130.0640 (19)0.085 (2)0.0356 (14)0.0184 (16)0.0189 (13)0.0034 (14)
C140.0499 (15)0.0561 (16)0.0381 (13)0.0060 (12)0.0156 (12)0.0016 (12)
C150.0514 (17)0.0499 (16)0.0742 (19)0.0054 (13)0.0246 (15)0.0065 (14)
Geometric parameters (Å, º) top
N1—O11.213 (3)C6—H60.9300
N1—O21.213 (3)C7—H70.9300
N1—C11.468 (3)C8—C91.494 (3)
N2—C71.275 (3)C9—C141.397 (3)
N2—N31.383 (2)C9—C101.400 (3)
N3—C81.351 (3)C10—C111.391 (3)
N3—H30.900 (10)C10—C151.504 (3)
O3—C81.229 (2)C11—C121.373 (4)
C1—C61.371 (3)C11—H110.9300
C1—C21.375 (3)C12—C131.374 (4)
C2—C31.377 (3)C12—H120.9300
C2—H20.9300C13—C141.373 (3)
C3—C41.391 (3)C13—H130.9300
C3—H3A0.9300C14—H140.9300
C4—C51.387 (3)C15—H15A0.9600
C4—C71.459 (3)C15—H15B0.9600
C5—C61.382 (3)C15—H15C0.9600
C5—H50.9300
O1—N1—O2123.6 (3)O3—C8—N3123.2 (2)
O1—N1—C1118.5 (3)O3—C8—C9123.1 (2)
O2—N1—C1117.9 (2)N3—C8—C9113.66 (19)
C7—N2—N3114.48 (19)C14—C9—C10120.2 (2)
C8—N3—N2119.86 (18)C14—C9—C8118.7 (2)
C8—N3—H3121.8 (18)C10—C9—C8121.0 (2)
N2—N3—H3118.2 (18)C11—C10—C9116.9 (2)
C6—C1—C2121.9 (2)C11—C10—C15119.9 (2)
C6—C1—N1119.0 (2)C9—C10—C15123.1 (2)
C2—C1—N1119.1 (2)C12—C11—C10122.1 (3)
C1—C2—C3118.6 (2)C12—C11—H11119.0
C1—C2—H2120.7C10—C11—H11119.0
C3—C2—H2120.7C11—C12—C13120.9 (3)
C2—C3—C4121.0 (2)C11—C12—H12119.5
C2—C3—H3A119.5C13—C12—H12119.5
C4—C3—H3A119.5C14—C13—C12118.5 (3)
C5—C4—C3118.7 (2)C14—C13—H13120.8
C5—C4—C7119.9 (2)C12—C13—H13120.8
C3—C4—C7121.3 (2)C13—C14—C9121.4 (2)
C6—C5—C4120.7 (2)C13—C14—H14119.3
C6—C5—H5119.7C9—C14—H14119.3
C4—C5—H5119.7C10—C15—H15A109.5
C1—C6—C5119.0 (2)C10—C15—H15B109.5
C1—C6—H6120.5H15A—C15—H15B109.5
C5—C6—H6120.5C10—C15—H15C109.5
N2—C7—C4121.1 (2)H15A—C15—H15C109.5
N2—C7—H7119.5H15B—C15—H15C109.5
C4—C7—H7119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.90 (1)1.99 (1)2.870 (2)167 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13N3O3
Mr283.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.416 (1), 26.198 (3), 7.860 (2)
β (°) 114.206 (1)
V3)1392.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7336, 2941, 1696
Rint0.046
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.140, 1.01
No. of reflections2941
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.900 (10)1.986 (12)2.870 (2)167 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds