metal-organic compounds
Poly[[[μ3-N′-(carboxymethyl)ethylenediamine-N,N,N′-triacetato]dysprosium(III)] trihydrate]
aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com
In the title coordination polymer, {[Dy(C10H13N2O8)]·3H2O}n, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carboxymethyl)ethylenediaminetriacetate ligands in a distorted square-antiprismatic geometry. The ligands connect the metal atoms, forming layers parallel to the ab plane. O—H⋯O hydrogen bonds further assemble adjacent layers into a three-dimensional supramolecular network.
Related literature
For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002). For related structures, see: Wang et al. (2007); You & Ng (2007); Sakagami et al. (1999); Templeton et al. (1985); Vikram & Sivasankar (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810041784/rz2501sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041784/rz2501Isup2.hkl
A mixture of Dy2O3 (0.189 g, 0.5 mmol), ethylenediaminetetraacetic acid (0.146 g, 0.5 mmol), and H2O (10 mL) was sealed in a 20 mL Teflon-lined reactor, which was heated in an oven to 423 K for 36 h and then cooled to room temperature at a rate of 5 K h-1. Colourless crystals were obtained in a yield of 46% based on Dy.
All water H atoms were tentatively located in difference density Fourier maps and were refined with O–H distance restraints of 0.85 (2) Å and with Uiso(H) = 1.5 Ueq(O). In the last stage of
they were treated as riding on their parent O atoms. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(C).The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The flexible ethylenediaminetetraacetato ligand possessing variable coordination modes to bind to metal ions, provides unique opportunities for the construction of unusual networks. Recently, some mono- and polynuclear Dy complexes of this ligand have been reported (Wang et al., 2007; You & Ng, 2007; Sakagami et al., 1999; Templeton et al., 1985; Vikram & Sivasankar, 2008). Herein, we report the structure of the new polynuclear dysprosium complex, {[Dy(C10H9N2O8)].3H2O}n.
In the structure of the title compound, the dysprosium(III) metal displays a distorted square antiprism geometry provided by two N atoms from one (carboxymethyl)ethylenediaminetriacetato ligand (HEDTA) and six O atoms from three different HEDTA ligands (Fig. 1). The ligands connect the dysprosium centres to form layers parallel to the ab plane. O—H···O hydrogen bonds involving the interstitial water molecules assemble adjacent layers to construct a three-dimensional supramolecular network (Table 1; Fig. 2).
For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002). For related structures, see: Wang et al. (2007); You & Ng (2007); Sakagami et al. (1999); Templeton et al. (1985); Vikram & Sivasankar (2008).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (ii) 1/2-x, -1/2+y, z; (iii) 1/2+x, y, 1/2-z. | |
Fig. 2. Crystal packing of the title compound viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines. |
[Dy(C10H13N2O8)]·3H2O | F(000) = 1976 |
Mr = 505.77 | Dx = 2.064 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4800 reflections |
a = 13.3835 (5) Å | θ = 1.4–28.0° |
b = 13.0127 (4) Å | µ = 4.65 mm−1 |
c = 18.6943 (7) Å | T = 296 K |
V = 3255.7 (2) Å3 | Block, colourless |
Z = 8 | 0.25 × 0.19 × 0.18 mm |
Bruker APEXII area-detector diffractometer | 3192 independent reflections |
Radiation source: fine-focus sealed tube | 2230 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ and ω scan | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −13→16 |
Tmin = 0.389, Tmax = 0.488 | k = −16→16 |
19825 measured reflections | l = −22→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0239P)2 + 3.1993P] where P = (Fo2 + 2Fc2)/3 |
3192 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.74 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
[Dy(C10H13N2O8)]·3H2O | V = 3255.7 (2) Å3 |
Mr = 505.77 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.3835 (5) Å | µ = 4.65 mm−1 |
b = 13.0127 (4) Å | T = 296 K |
c = 18.6943 (7) Å | 0.25 × 0.19 × 0.18 mm |
Bruker APEXII area-detector diffractometer | 3192 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | 2230 reflections with I > 2σ(I) |
Tmin = 0.389, Tmax = 0.488 | Rint = 0.034 |
19825 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.74 e Å−3 |
3192 reflections | Δρmin = −0.69 e Å−3 |
217 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.195820 (13) | 0.546220 (11) | 0.248589 (10) | 0.01538 (8) | |
N1 | 0.1266 (2) | 0.6990 (2) | 0.32682 (16) | 0.0170 (7) | |
N2 | 0.0619 (2) | 0.6517 (2) | 0.17784 (16) | 0.0167 (7) | |
C4 | 0.1889 (3) | 0.5806 (3) | 0.4196 (2) | 0.0220 (10) | |
C3 | 0.1109 (3) | 0.6609 (3) | 0.4002 (2) | 0.0219 (9) | |
H3A | 0.0448 | 0.6310 | 0.4040 | 0.026* | |
H3B | 0.1149 | 0.7178 | 0.4335 | 0.026* | |
C2 | 0.1622 (3) | 0.5832 (3) | 0.0792 (2) | 0.0245 (10) | |
C1 | 0.0980 (3) | 0.6704 (3) | 0.1040 (2) | 0.0231 (10) | |
H1A | 0.1362 | 0.7337 | 0.1027 | 0.028* | |
H1B | 0.0414 | 0.6779 | 0.0721 | 0.028* | |
C6 | 0.0396 (3) | 0.7507 (3) | 0.2145 (2) | 0.0187 (9) | |
H6A | −0.0229 | 0.7778 | 0.1964 | 0.022* | |
H6B | 0.0918 | 0.7998 | 0.2033 | 0.022* | |
C5 | 0.0323 (3) | 0.7387 (3) | 0.2951 (2) | 0.0195 (9) | |
H5A | 0.0166 | 0.8048 | 0.3163 | 0.023* | |
H5B | −0.0217 | 0.6918 | 0.3064 | 0.023* | |
O2 | 0.1990 (2) | 0.5221 (2) | 0.12204 (15) | 0.0305 (8) | |
O4 | 0.2355 (2) | 0.5364 (2) | 0.36996 (14) | 0.0258 (7) | |
O3 | 0.2014 (2) | 0.5610 (2) | 0.48468 (15) | 0.0375 (8) | |
O1 | 0.1763 (3) | 0.5794 (3) | 0.01143 (16) | 0.0444 (9) | |
H1 | 0.2118 | 0.5300 | 0.0018 | 0.067* | |
C8 | 0.2652 (3) | 0.7845 (3) | 0.2596 (2) | 0.0187 (9) | |
C7 | 0.2041 (3) | 0.7799 (3) | 0.3277 (2) | 0.0204 (9) | |
H7A | 0.2487 | 0.7677 | 0.3677 | 0.024* | |
H7B | 0.1722 | 0.8459 | 0.3352 | 0.024* | |
O5 | 0.2750 (2) | 0.70278 (19) | 0.22414 (15) | 0.0228 (6) | |
C10 | −0.0465 (3) | 0.5264 (3) | 0.2434 (2) | 0.0180 (9) | |
C9 | −0.0296 (3) | 0.5873 (3) | 0.1748 (2) | 0.0219 (9) | |
H9A | −0.0243 | 0.5399 | 0.1349 | 0.026* | |
H9B | −0.0870 | 0.6312 | 0.1663 | 0.026* | |
O6 | 0.03078 (19) | 0.4997 (2) | 0.27769 (15) | 0.0218 (6) | |
O7 | 0.30708 (18) | 0.86679 (19) | 0.24311 (14) | 0.0243 (7) | |
O8 | −0.13277 (19) | 0.50137 (19) | 0.26058 (14) | 0.0216 (6) | |
O1W | 0.9746 (4) | 0.4386 (3) | 0.4225 (2) | 0.0840 (14) | |
H2W | 0.9668 | 0.4475 | 0.3780 | 0.126* | |
H1W | 0.9200 | 0.4478 | 0.4441 | 0.126* | |
O2W | 0.8853 (3) | 0.7777 (3) | 0.0541 (2) | 0.0798 (13) | |
H3W | 0.8606 | 0.7769 | 0.0133 | 0.096* | |
H4W | 0.9063 | 0.8364 | 0.0649 | 0.096* | |
O3W | 0.3282 (4) | 0.7889 (3) | 0.0831 (2) | 0.0966 (16) | |
H6W | 0.2814 | 0.8319 | 0.0909 | 0.145* | |
H5W | 0.3833 | 0.8247 | 0.0785 | 0.145* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.01199 (11) | 0.01112 (10) | 0.02303 (12) | 0.00043 (6) | 0.00005 (9) | −0.00001 (9) |
N1 | 0.0157 (17) | 0.0155 (15) | 0.0197 (18) | 0.0009 (14) | −0.0011 (14) | 0.0026 (14) |
N2 | 0.0193 (18) | 0.0153 (16) | 0.0156 (17) | 0.0010 (14) | 0.0044 (14) | 0.0002 (14) |
C4 | 0.023 (2) | 0.020 (2) | 0.022 (2) | 0.0000 (18) | −0.0041 (19) | 0.0008 (18) |
C3 | 0.025 (2) | 0.025 (2) | 0.016 (2) | −0.0007 (19) | 0.0048 (18) | −0.0006 (18) |
C2 | 0.024 (2) | 0.029 (2) | 0.020 (2) | 0.002 (2) | 0.005 (2) | −0.0044 (19) |
C1 | 0.024 (2) | 0.023 (2) | 0.022 (2) | 0.0052 (19) | 0.0024 (18) | 0.0024 (18) |
C6 | 0.015 (2) | 0.0148 (19) | 0.027 (2) | 0.0073 (17) | −0.0028 (18) | 0.0023 (17) |
C5 | 0.017 (2) | 0.0167 (19) | 0.025 (2) | 0.0043 (17) | 0.0026 (18) | −0.0020 (17) |
O2 | 0.042 (2) | 0.0291 (16) | 0.0204 (16) | 0.0182 (14) | 0.0014 (14) | −0.0032 (13) |
O4 | 0.0253 (17) | 0.0287 (16) | 0.0233 (16) | 0.0092 (14) | −0.0022 (14) | 0.0028 (13) |
O3 | 0.046 (2) | 0.048 (2) | 0.0180 (16) | 0.0207 (16) | −0.0026 (14) | 0.0043 (15) |
O1 | 0.059 (2) | 0.048 (2) | 0.0260 (18) | 0.0262 (18) | 0.0108 (16) | 0.0033 (16) |
C8 | 0.0086 (18) | 0.0125 (18) | 0.035 (3) | 0.0022 (15) | −0.0059 (18) | 0.0031 (18) |
C7 | 0.023 (2) | 0.0147 (19) | 0.023 (2) | −0.0004 (17) | −0.0021 (18) | −0.0029 (17) |
O5 | 0.0212 (15) | 0.0139 (14) | 0.0332 (16) | −0.0004 (12) | 0.0088 (13) | −0.0013 (12) |
C10 | 0.017 (2) | 0.0103 (16) | 0.026 (2) | 0.0009 (15) | −0.0007 (19) | −0.0050 (17) |
C9 | 0.017 (2) | 0.025 (2) | 0.023 (2) | −0.0019 (18) | −0.0044 (18) | 0.0021 (18) |
O6 | 0.0114 (14) | 0.0188 (13) | 0.0352 (16) | 0.0000 (12) | −0.0021 (13) | 0.0088 (13) |
O7 | 0.0177 (15) | 0.0116 (12) | 0.0437 (18) | −0.0019 (11) | 0.0034 (14) | 0.0005 (14) |
O8 | 0.0077 (14) | 0.0187 (12) | 0.0383 (18) | −0.0011 (11) | 0.0011 (12) | 0.0039 (13) |
O1W | 0.109 (4) | 0.097 (3) | 0.046 (3) | −0.014 (3) | 0.024 (3) | 0.002 (2) |
O2W | 0.062 (3) | 0.113 (4) | 0.064 (3) | 0.018 (3) | −0.004 (2) | 0.017 (3) |
O3W | 0.127 (5) | 0.084 (3) | 0.079 (3) | 0.007 (3) | 0.011 (3) | −0.003 (3) |
Dy1—O4 | 2.334 (3) | C6—C5 | 1.518 (6) |
Dy1—O7i | 2.337 (3) | C6—H6A | 0.9700 |
Dy1—O5 | 2.342 (3) | C6—H6B | 0.9700 |
Dy1—O6 | 2.354 (3) | C5—H5A | 0.9700 |
Dy1—O8ii | 2.373 (3) | C5—H5B | 0.9700 |
Dy1—O2 | 2.387 (3) | O1—H1 | 0.8200 |
Dy1—N2 | 2.617 (3) | C8—O7 | 1.248 (4) |
Dy1—N1 | 2.636 (3) | C8—O5 | 1.260 (4) |
N1—C3 | 1.473 (4) | C8—C7 | 1.513 (5) |
N1—C7 | 1.477 (5) | C7—H7A | 0.9700 |
N1—C5 | 1.487 (5) | C7—H7B | 0.9700 |
N2—C1 | 1.482 (5) | C10—O8 | 1.243 (4) |
N2—C9 | 1.485 (5) | C10—O6 | 1.265 (4) |
N2—C6 | 1.488 (5) | C10—C9 | 1.524 (5) |
C4—O4 | 1.257 (5) | C9—H9A | 0.9700 |
C4—O3 | 1.254 (5) | C9—H9B | 0.9700 |
C4—C3 | 1.521 (5) | O7—Dy1iii | 2.337 (3) |
C3—H3A | 0.9700 | O8—Dy1iv | 2.373 (2) |
C3—H3B | 0.9700 | O1W—H2W | 0.8462 |
C2—O2 | 1.231 (5) | O1W—H1W | 0.8429 |
C2—O1 | 1.282 (5) | O2W—H3W | 0.8322 |
C2—C1 | 1.496 (5) | O2W—H4W | 0.8371 |
C1—H1A | 0.9700 | O3W—H6W | 0.8515 |
C1—H1B | 0.9700 | O3W—H5W | 0.8763 |
O4—Dy1—O7i | 89.53 (9) | O2—C2—O1 | 124.0 (4) |
O4—Dy1—O5 | 97.72 (10) | O2—C2—C1 | 121.2 (4) |
O7i—Dy1—O5 | 150.23 (9) | O1—C2—C1 | 114.8 (4) |
O4—Dy1—O6 | 88.56 (10) | N2—C1—C2 | 110.6 (3) |
O7i—Dy1—O6 | 74.80 (9) | N2—C1—H1A | 109.5 |
O5—Dy1—O6 | 133.90 (9) | C2—C1—H1A | 109.5 |
O4—Dy1—O8ii | 80.61 (10) | N2—C1—H1B | 109.5 |
O7i—Dy1—O8ii | 76.54 (8) | C2—C1—H1B | 109.5 |
O5—Dy1—O8ii | 76.25 (9) | H1A—C1—H1B | 108.1 |
O6—Dy1—O8ii | 149.38 (9) | N2—C6—C5 | 112.4 (3) |
O4—Dy1—O2 | 162.25 (10) | N2—C6—H6A | 109.1 |
O7i—Dy1—O2 | 79.94 (10) | C5—C6—H6A | 109.1 |
O5—Dy1—O2 | 85.01 (10) | N2—C6—H6B | 109.1 |
O6—Dy1—O2 | 102.22 (10) | C5—C6—H6B | 109.1 |
O8ii—Dy1—O2 | 83.05 (9) | H6A—C6—H6B | 107.9 |
O4—Dy1—N2 | 132.53 (9) | N1—C5—C6 | 112.1 (3) |
O7i—Dy1—N2 | 119.38 (9) | N1—C5—H5A | 109.2 |
O5—Dy1—N2 | 75.81 (10) | C6—C5—H5A | 109.2 |
O6—Dy1—N2 | 66.98 (9) | N1—C5—H5B | 109.2 |
O8ii—Dy1—N2 | 138.99 (9) | C6—C5—H5B | 109.2 |
O2—Dy1—N2 | 65.17 (9) | H5A—C5—H5B | 107.9 |
O4—Dy1—N1 | 65.28 (9) | C2—O2—Dy1 | 123.5 (3) |
O7i—Dy1—N1 | 140.53 (9) | C4—O4—Dy1 | 125.5 (3) |
O5—Dy1—N1 | 67.10 (9) | C2—O1—H1 | 109.5 |
O6—Dy1—N1 | 74.70 (10) | O7—C8—O5 | 123.1 (4) |
O8ii—Dy1—N1 | 124.40 (9) | O7—C8—C7 | 119.0 (3) |
O2—Dy1—N1 | 130.94 (9) | O5—C8—C7 | 117.8 (3) |
N2—Dy1—N1 | 69.15 (9) | N1—C7—C8 | 113.4 (3) |
C3—N1—C7 | 109.2 (3) | N1—C7—H7A | 108.9 |
C3—N1—C5 | 111.5 (3) | C8—C7—H7A | 108.9 |
C7—N1—C5 | 110.7 (3) | N1—C7—H7B | 108.9 |
C3—N1—Dy1 | 108.2 (2) | C8—C7—H7B | 108.9 |
C7—N1—Dy1 | 107.3 (2) | H7A—C7—H7B | 107.7 |
C5—N1—Dy1 | 109.8 (2) | C8—O5—Dy1 | 125.7 (2) |
C1—N2—C9 | 109.0 (3) | O8—C10—O6 | 123.8 (4) |
C1—N2—C6 | 110.6 (3) | O8—C10—C9 | 119.4 (3) |
C9—N2—C6 | 109.9 (3) | O6—C10—C9 | 116.7 (3) |
C1—N2—Dy1 | 109.4 (2) | N2—C9—C10 | 112.5 (3) |
C9—N2—Dy1 | 106.7 (2) | N2—C9—H9A | 109.1 |
C6—N2—Dy1 | 111.0 (2) | C10—C9—H9A | 109.1 |
O4—C4—O3 | 123.9 (4) | N2—C9—H9B | 109.1 |
O4—C4—C3 | 118.5 (4) | C10—C9—H9B | 109.1 |
O3—C4—C3 | 117.6 (4) | H9A—C9—H9B | 107.8 |
N1—C3—C4 | 110.9 (3) | C10—O6—Dy1 | 125.4 (2) |
N1—C3—H3A | 109.5 | C8—O7—Dy1iii | 147.0 (2) |
C4—C3—H3A | 109.5 | C10—O8—Dy1iv | 144.6 (2) |
N1—C3—H3B | 109.5 | H2W—O1W—H1W | 110.2 |
C4—C3—H3B | 109.5 | H3W—O2W—H4W | 111.4 |
H3A—C3—H3B | 108.1 | H6W—O3W—H5W | 106.7 |
Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x+1/2, y, −z+1/2; (iii) −x+1/2, y+1/2, z; (iv) x−1/2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3v | 0.82 | 1.69 | 2.504 (5) | 172 |
O1W—H2W···O6vi | 0.85 | 2.17 | 2.920 (5) | 148 |
O1W—H1W···O3vii | 0.84 | 2.10 | 2.925 (5) | 165 |
O2W—H3W···O3Wviii | 0.83 | 2.04 | 2.813 (6) | 154 |
O2W—H4W···O1Wix | 0.84 | 2.09 | 2.844 (6) | 150 |
O3W—H6W···O2iii | 0.85 | 2.56 | 3.141 (5) | 127 |
Symmetry codes: (iii) −x+1/2, y+1/2, z; (v) −x+1/2, −y+1, z−1/2; (vi) x+1, y, z; (vii) −x+1, −y+1, −z+1; (viii) x+1/2, −y+3/2, −z; (ix) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Dy(C10H13N2O8)]·3H2O |
Mr | 505.77 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 13.3835 (5), 13.0127 (4), 18.6943 (7) |
V (Å3) | 3255.7 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 4.65 |
Crystal size (mm) | 0.25 × 0.19 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008) |
Tmin, Tmax | 0.389, 0.488 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19825, 3192, 2230 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.061, 1.07 |
No. of reflections | 3192 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.69 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.82 | 1.69 | 2.504 (5) | 172.0 |
O1W—H2W···O6ii | 0.85 | 2.17 | 2.920 (5) | 147.5 |
O1W—H1W···O3iii | 0.84 | 2.10 | 2.925 (5) | 164.7 |
O2W—H3W···O3Wiv | 0.83 | 2.04 | 2.813 (6) | 154.1 |
O2W—H4W···O1Wv | 0.84 | 2.09 | 2.844 (6) | 149.6 |
O3W—H6W···O2vi | 0.85 | 2.56 | 3.141 (5) | 126.8 |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x+1/2, −y+3/2, −z; (v) −x+2, y+1/2, −z+1/2; (vi) −x+1/2, y+1/2, z. |
Acknowledgements
The authors acknowledge Zhongshan Polytechnic for supporting this work.
References
Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2004). APEX2, SAINT andSADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Sakagami, N., Yamada, Y., Konno, T. & Okamoto, K. (1999). Inorg. Chim. Acta, 288, 7–16. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Templeton, L. K., Templeton, D. H. & Zalkin, A. (1985). Acta Cryst. C41, 355–358. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Vikram, L. & Sivasankar, B. N. (2008). Ind. J. Chem. Sect. A, 47, 25–31. Google Scholar
Wang, J., Gao, G., Zhang, Z., Zhang, X. & Wang, Y. (2007). J. Coord. Chem. 60, 2221–2241. Web of Science CSD CrossRef CAS Google Scholar
You, X.-L. & Ng, S. W. (2007). Acta Cryst. E63, m1819. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The flexible ethylenediaminetetraacetato ligand possessing variable coordination modes to bind to metal ions, provides unique opportunities for the construction of unusual networks. Recently, some mono- and polynuclear Dy complexes of this ligand have been reported (Wang et al., 2007; You & Ng, 2007; Sakagami et al., 1999; Templeton et al., 1985; Vikram & Sivasankar, 2008). Herein, we report the structure of the new polynuclear dysprosium complex, {[Dy(C10H9N2O8)].3H2O}n.
In the structure of the title compound, the dysprosium(III) metal displays a distorted square antiprism geometry provided by two N atoms from one (carboxymethyl)ethylenediaminetriacetato ligand (HEDTA) and six O atoms from three different HEDTA ligands (Fig. 1). The ligands connect the dysprosium centres to form layers parallel to the ab plane. O—H···O hydrogen bonds involving the interstitial water molecules assemble adjacent layers to construct a three-dimensional supramolecular network (Table 1; Fig. 2).